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Abstract: Activity monitoring plays a crucial role in ambient
living environments for assessing changes in the normal behav-
ioral pattern of elderly people. In this paper, we present anac-
tion description and detection mechanism for real-time activity
monitoring using wearable sensors and hybrid classifiers. First
a single sensor single classifier model is presented (SSSC) for the
detection of simple and composite actions. Then the model isen-
hanced with multiple sensors and classifiers for the purposeof
real-time monitoring. The enhanced Multi-Sensor Multi Clas-
sifier (MSMC) model uses two wearable TI Chronos watches
with a built-in tri-axial accelerometer for data acquisiti on and
a composition of naive Bayes, Susan Corner Detector(SCD) and
Hidden Markov(HMM) classifiers for the detection of transi-
tions between defined actions in real-time. A real testbed envi-
ronment is established to asses the success of real-time monitor-
ing. The test results have revealed that SSSC model is highly
successful in controlled tests when the burden of real-timesam-
pling is ignored whereas MSMC model is fast and accurate for
real time detection of transitions between actions. The proposed
models are tested against the simple actions;walk, sit, stand, lie
as well aswalk-while-hands-in-pocket and walk-on-wheelchair.
The unique feature of the selected actions is that the transi-
tion between walk, sit and lie are the most likely causes of a
fall event in a home environment for elderly people. The best
achieved detection rates for simple actions range between 92-
100 % for SSSC model whereas MSMC model is 100 % success-
ful in real-time detection of transitions with a slightly reduced
achievement for individual actions.
Keywords: activity monitoring, hidden markov model, susan cor-
ner detection, hybrid classifier, naive bayes, chronos

I. Introduction

Assistive technology provides solutions to people with dis-
abilities and aging population in performing tasks without
being helped by another person. Even if a person is not suf-
fering from disabilities or aging, they still can benefit from
assistive technology tools and services. As a branch of assis-
tive technology, ambient care systems are emerging. To aid
everyday life of people in need, ambient care systems contain
a network of objects used in people’s daily routines. Am-
bient care systems are capable of sensing the environment
through sensors and reacting to certain conditions reasoned

in the network mentioned. The ultimate goal of an ambient
care system is presenting the assistive technology by meet-
ing the following criteria: Devices in the system should be
embedded in the surroundings or should be wearable. The
constituents of the system should be able to detect the per-
son being serviced and his conditions, the so-called context
awareness principle. The system should also be adjustable
to the personal needs. It should adapt itself depending on
the reactions of the person. It should understand when it is
needed and consequently act as needed without the person’s
intrusion, namely principle of being anticipatory.
In the field of ambient care systems and more generally assis-
tive technology, activity monitoring plays a vital role in terms
of taking decisions on when to make the system respond in
what way.If the action performed by a person can be identi-
fied, this reveals the information regarding what the person
needs or wants, so that his needs are met by the ambient care
system.The person can be reminded of taking his medication
if he forgets to do so or if the detected action reveals thathe
is about to fall, he may be prevented from falling or from a
more severe situation.
There are various technical challenges for the design of ac-
tivity monitoring systems. Since even the same person does
not perform the same activity in the same way all the time
and some different actions may exhibit similar characteris-
tics, there is a potential deterioration in the recognitionac-
curacy. Noise in the activity signal, namely differentiating
between the noise and the actual signal causes problems as
well. Enhancing an activity monitoring system includes de-
tecting abnormal activities defined in accordance with the
context and providing the appropriate actuation facilities in
response.
Activity monitoring can be achieved in two phases; data col-
lection followed by data classification. Data collection pro-
cess is carried out through wireless sensors, cameras, PDA’s
or other health care monitoring devices[1]. The devices
which do not intrude into the privacy of the person to be mon-
itored can have an advantage over the devices like cameras.
Wireless sensor networks (WSN) can also improve the effi-
ciency of data collection phase. For detection, various clas-
sification methods can be used such as least squares[2], k-
nearest neighbor (k-NN)[3], hidden markov, artificial neural
networks (ANN)[4] and support vector machines (SVM)[5]
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In this experimental study, an indoor activity monitoring sys-
tem is designed and implemented to recognize the simple ac-
tions performed by a human subject and the transitions be-
tween these actions in real time. Two models are analyzed:
single sensor single classifier (SSSC) and multi sensor multi
classifiers( MSMC). In both models, sensor readings from a
tri-axial accelerometer built-in the TI Chronos watch is used
for data acquisition.
In the single sensor-single classifier (SSSC) model, the watch
is worn by the person on the left wrist for the walk action, and
worn to the left thigh for the sit, stand and lie actions. The re-
sulting sensor data obtained in the form of unsigned integers
varying in the range [0,255] are converted to their 2’s com-
plement equivalents. The acceleration values in 2’s comple-
ment form are classified by using naive Bayes classifier into
a simple action. Naive Bayes classifier has training and pre-
diction phases. In the training phase, the training data areex-
posed to normal distribution to extract unique intervals ofav-
erage posterior probability. These intervals create the pattern
for the specified action. Patterns for all simple actions are
recorded into a database. In the prediction phase, data sam-
ple of a composite action with unknown type is detected by
comparing the differentiated simple actions to the patterns in
the database to produce a posterior probability value. The ac-
tion of which average posterior probability value is included
in one of the distinct intervals is marked as the corresponding
action.
The multi sensor-multi classifier (MSMC) model includes
a data collection component composed of two acceleration
sensors built in TI Chronos watch worn on wrist and ankle
by the human subject. It also includes a composite data clas-
sification subsystem employing naive Bayes classifier first to
differentiate between activities. When naive Bayes classifier
reports that an action performed by a person is ambiguous
ie. may be recognized as more than one action, then the
data classification component uses Hidden Markov Model
(HMM) and Susan corner detector (SCD) in order to find
a single answer to what the action is. Data classification has
training and prediction phases. During the training phase,the
system processes the samples of the actions to be recognized,
generating patterns for those actions. In the prediction phase,
the system processes real time data, splitting the data into
chunks on the fly and inferring what action each chunk be-
longs to by evaluating the patterns obtained in training phase.
Real-time activities are modeled as simple and composite ac-
tions. Simple actions are walk, walk while hands in pocket,
stand, sit, lie and wheelchair driving. Any combination of
these actions are regarded as composite actions. The sys-
tem is trained with simple actions whereas the real time data
processed during prediction phase are composed of compos-
ite actions. The presented work is also featured by its suc-
cessful differentiation between different kinds of walk ac-
tions, namely walk, walk while hands in pocket and walk
on wheelchair.
The content of the following sections is as follows: In Sec-
tion II related work is reviewed. In Sections III-A and
III-B, single sensor-single classifier and multi sensor-multi-
classifier models are given. Section IV reveals the results of
the experiments and elaborates on the future work.

II. Related Work

Human activity monitoring has started to be used in a wide
area. Even though the most common tool used for moni-
toring activities is camera, it causes computational load as
the number of people being monitored increases. Another
widely used method is PIR sensors. PIR sensors are used
in thermal imaging, radiometry, thermometry and biometry.
Achieving coverage, video surveillance assistance and track-
ing exploit multiple PIR sensors. A still person can be dis-
tinguished from its background with PIR sensors. A video
surveillance system with multi-modal sensor integrity has
been put forward where a tracking system with multiple cam-
eras is united with a wireless sensor network supported with
PIR sensors. Apart from tracking, PIR sensors are beneficial
for detection, differentiation and describing human activity.
The works discussed so far are restricted as a result of the
need for synchronizing the time accurately for sensor nodes
and the related communication cost. There exists a study
which tries to solve these issues by supporting each sensor
node with two PIR sensors to synchronize the data which are
sampled from PIR sensors and communication cost problem
[6].
A method to extract the meaning from the raw sensor data
directly on the sensors is presented by Kay Römer in [7].
A multi-modal sensor system for monitoring human activ-
ities is developed by Hung et. al. in [6]. Bao and Intille
developed and evaluated algorithms to detect physical activi-
ties and used biaxial accelerometers worn simultaneously on
various parts on the body for data collection in [8]. Zhu and
Sheng propose a human daily activity recognition method by
fusing the data from two wearable inertial sensors attached
on one foot and the waist of the human subject, respectively
in [9]. Lymberopoulos et. al. present an automated method-
ology for extracting the spatiotemporal activity model of a
person using a wireless sensor network deployed inside a
home in [10]. Bosch et. al. implement and evaluate physi-
cal activity monitoring and stimulation using wireless sensor
networks and motion sensors in [11]. Uslu et.al [12] imple-
mented a single sensor single classifier system for monitoring
human activities.
Because data gathered from sensors may not be trustworthy
some researches are carried out targeting sensor data accu-
racy issue. Hong et. al. address effects of sensor data un-
certainty on decision making through information handling
techniques such as Dempster-Shafer theory of evidence and
Equally Weighted Sum operator [13]. Context-aware ap-
plications introduce high complexity due to changing con-
text information, changing quality and uncertainty of sensor
data. This complexity necessitates integrating context mod-
elling and reasoning techniques to context aware applications
which also improve maintainability and evolvability along
with reducing complexity. For this reason, Bettini et. al.
compare current context modelling and reasoning techniques
[14]. J. Ye et. al. study situation identification as a way of
coping with uncertainty of sensor data and maps noisy sen-
sor data to patterns useful for applications. They also anal-
yse complexity of situation identification and compare most
common situation identification techniques [15].
Sazonov et. al. present a shoe sensor because distributing
multiple sensors on the body can be too obtrusive. Their
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method can operate without feature extraction to classify
postures and typical activities with respect to heel acceler-
ation and plantar pressure [16]. Chen et. al. employ do-
main knowledge, ontology and semantic reasoning in activ-
ity recognition [17]. People suffering from aging problems
or stroke need continuous physical therapy so activity moni-
toring systems offer help for physiatrists. Chiang et. al. pro-
pose an activity monitoring procedure to assess movements
of patients to see whether they abide what therapy necessi-
tates or not. Their system utilizes WSN based body motion
sensors containing accelerometer and gyroscope along with
fuzzy algorithm to differentiate between static postures and
dynamic motions [18]. Ward et. al. propose performance
metrics for continuous activity recognition [19]. Czabke et.
al. carry out real time activity monitoring with data acquired
from a tri-axial accelerometer and processed on a microcon-
troller. Their solution does not require a specific positioning
of sensor and they classify actions with no training data [20].
To the best of our knowledge, current studies in the literature
do not particularly focus on capturing transitions betweenac-
tions on a real-time sequence. Rather they focus on detecting
predefined specific actions.

III. Methodology

We have established an experimental setup to analyze the
proposed SSSC and MSMC models. In both models TI
Chronos watch which contains a 3D accelerometer is used
for the data collection in training and prediction phases. The
watch communicates with the PC through an access point
(AP) over its RF interface operating SimpliciTI protocol
stack. Using multiple Chronos’ with a single AP brings syn-
chronization problem which causes data loss. For the AP
to receive data from multiple Chronos’ in MSMC model,
we reprogrammed it. Sensor readings are transmitted from
Chronos to AP after all Chronos’ establish a connection with
the AP. A master-slave communication protocol is devel-
oped between AP and Chronos watches. As a result of this
scheme, while one Chronos transmits to AP, others do not
send any data. In addition, the received data are buffered.
Since Chronos sends twenty acceleration vectors per trans-
mit, the size of the buffer which is the size of a chunk ex-
tracted from real time activity data includes twenty vectors.
The classification module of SSSC uses only naive Bayes
classifier whereas MSMC uses naive Bayes classifier as the
initial classifier but upon conflicting detection results, SCD
and HMM are used to resolve the conflict in real-time. The
classifiers naive Bayes and SCD evaluate standard deviation
and mean of training data under normal distribution to gen-
erate patterns for actions. The system is designed to monitor
daily activities of a human subject by recording the number
of repeated actions and transitions between actions. Training
of HMM proceeds with calculating the probability of mov-
ing to the next state by using the repeated actions and transi-
tion counts recorded in the database. In the prediction phase,
naive Bayes classifier processes the real time data to evaluate
the posterior probability value to be compared with the poste-
rior probability of other actions. If the posterior probability
of the real time data corresponds to more than one action,
SCD compares the distance value of the real time data with
other actions. With the condition that SCD is unable to clas-

Figure. 1: Formal Representation of Simple and Composite
Actions

sify, HMM assesses transitions, observations and last defined
action. In the following sections, the algorithms used in both
models are explained in detail.
Notations used in Algorithms 1-8 are as follows:
N : Number of simple actions
K : Number of samples taken for each action
S : Number of acceleration vectors in corresponding sample
C : Number of repetitions for an action
card(H) : Number of elements in set H
R : Set of chunks taken from real time data
ACi : Simple actioni, with i ǫ 1, 2, ..., N
Ttr : Training sample
µl : Mean
σl : Standard deviation
Al : Array of acceleration vectors along axisl, l ǫ {X, Y, Z}
Cz [.] : Test data along Z axis
Tz[.] : Training data along Z axis
A : Array of acceleration vectors
postProb[.] : Array of posterior probability values
npdf : Normal probability density function

A. Single sensor-single classifier approach

In this approach, continuous activity monitoring is achieved
through detecting successive simple actions in a collected
data samples. The collected data sample from a single
Chronos watch is composed of lines each of which contain
a vector of X,Y and Z axis acceleration values. Simple ac-
tions, which can not be split into other actions, are stored in
database and actions contained in collected data are classified
into these actions by utilizing naive Bayes classifier. The de-
fined simple actions arewalk, sit, stand andlie, whose con-
tent are implied by their names. The collected data sample
holds a composite action since it contains multiple simple
actions. Simple actions which are performed sequentially
produce composite actions. The sample composite actions
experimented aresit-after-lie andwalk-after-sit. The formal
definitions of simple and composite actions can be seen as
finite state automata as given in Figure 1. The stateS repre-
sents a simple action in the automata. At the end of the pro-
cess, the collected data sample is divided into chunks which
are labeled as one of the actions recorded in the database.
The size of each chunk is determined dynamically and the
size value is used to figure out how long the action related
to that chunk lasts. This is where the innovation of the pro-
posed approach is. Figure 2 illustrates a picture of the test
environment. In this study, all simple and composite action
data samples are obtained in a controlled test environment.
Training phase of the Naive Bayes classifier consists of per-
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Figure. 2: Walk and Sit-after-Lie Actions

forming the same action many times, acquiring distinct in-
tervals for every simple action, finally storing these intervals
in the database. In our experiments, every action is repeated
25 times. The intervals contain average posterior probability
values. Once the training phase is complete, the prediction
process takes place. The algorithm which generates the dis-
tinct intervals in training phase is also used in the prediction
phase to generate an average posterior probability value. In
the prediction phase, collected data is processed by extract-
ing a chunk from it in each iteration.n being the current
iteration number, Cn being chunk at iteration n, ci beingith
line in the collected data, iteration number ranging from one
to number of lines in collected data,Cn = [c 1,c2,c3,...,cn]
shows the structure of a chunk extracted from collected data
at any iteration. Chunk at iteration number one is exposed to
the same interval generation scheme in training phase and de-
pending on the resulting average posterior probability value
is in which interval, the chunk is classified into the corre-
sponding action. As long as the following iterations gener-
ate the same action classified as the first iteration, the itera-
tive procedure continues, otherwise iteration terminates. The
chunk at the instance of termination is the ultimate structure
representing a simple action classified in collected data and
the iteration number at the instance of termination is the size
of that chunk. After the first chunk is classified, collected
data is truncated so that it starts with the vectors right after
the first chunk and chunk classification continues until there
are no vectors left in collected data.

Algorithm 1 Average posterior probability calculation

A← Cz[.]
⋃
Tz[.]

(µ, σ2)← normalDistribution(A)
postProb[.]← npdf(Tz[.], µ, σ

2)
avg ← average(postProb[.])

Average posterior probability of training sample T or a chunk
C from real time sample is calculated as in the Algorithm 1
While naive Bayes classifier can be implemented as assign-
ing the action yielding greatest posterior probability as the
action detected, this work follows the approach that generat-
ing unique intervals for every action out of posterior proba-
bility values and regards these unique intervals as the differ-
entiating parameter.
There are a number of reasons why normal distribution is
chosen in this work during posterior probability generation
process: First, the normal distribution provides simplicity

Figure. 3: Walk-after-Sit Data Sample

Figure. 4: Sit-after-Lie Data Sample

since practically there are many cases where a population
who does not fit normal distribution is successfully processed
under the normal distribution. Second, as the size of the pop-
ulation increases, the probability distribution becomes more
similar to the normal form. Particularly the second point is
a strong reason because the length of the training data can
reach the order of thousands.
Acceleration vs time relationship for the composite action
walk-after-sit are depicted in Figure 3. Here, time is rep-
resented virtually by the number of the acceleration vectors
collected during the action. Higher number of vectors re-
sembles an action of longer duration. With the transmission
frequency of 33 packets per second, approximately 2.5 s cor-
responds to 45 vectors. During this approximate calculation,
lost packets caused by Chronos are ignored. Figure 3 illus-
trates the collected data sample for thewalk-after-sit action.
In these plots, the action occurs as the combination of simple
actions sit, stand and walk respectively. Since the aim is de-
tecting walk after sit rather than the sequence of sit, standand
walk, during the tests, the section of the signal showing the
stand action is ignored by filtering that segment, regarding
stand as the transition. The data is obtained by appending
walk samples to the end of sit samples. The training data
related to the simple walk action are collected by wearing
sensor on the left wrist whereas the composite action is per-
formed with the sensor on the left thigh. The transition signal
samples for thesit-after-lie action are also illustrated in Fig-
ure 4.

348 Uslu, Dursunoglu, Altun and Baydere



(a) Wheelchair Test (b) Stand Test

Figure. 5: Sensor placement on human body

1) Training

Training data are exposed to normal distribution to extract
mean and standard deviation for the Z axis. These values are
used to calculate average posterior probability which form
the pattern of an action. A pattern is created for every action
and all patterns are inserted to a database to be used in the
prediction phase later.

2) Prediction

A collected data sample of an action whose type is unknown
is compared to all of the action patterns in the database, pro-
ducing a posterior probability value. In posterior probability
calculation, normal probability density function values found
for the Z axis are used. To evaluate a normal probability den-
sity function value, the acceleration data obtained from the
collected data sample, the mean and standard deviation val-
ues related to the specified axis are used.

B. Multi sensor-multi classifier approach

MSMC model focuses on the detection of transitions. De-
tecting transition between activities can not always be done
with SSSC model. In the cases where SSSC model is insuffi-
cient to generate a unique class for an action, using multiple
sensors help generating such a unique class by enlarging the
feature space. Thus the use of multiple sensors decreases the
probability of an action overlapping with the unique features
of more than one action. Also, hybrid classifiers have the
potential to improve the detection success further.

Algorithm 2 Main classification module
for i <= N do

vectorCount← 0
for j <= K do

for m <= S do
vectorCount← vectorCount+ 1
A[vectorCount]← Ttr[m]

end for
end for

end for

Actions are classified according to the location of Chronos
watch yielding the signal of that action. One Chronos is worn
on right ankle whereas the other one is worn on right wrist
as in Figure 5(a) and 5(b). Plots of walking and wheelchair
driving are shown in Figure 6(a), Figure 6(b), Figure 7(a) and
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(a) Walking test data sample for arm sensor
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(b) Walking test data sample for foot sensor

Figure. 6: Walking real time test data samples

Figure 7(b). The sensor on right ankle forms the foot oriented
detection subsystem and the sensor on the right wrist forms
hand oriented detection subsystem. System distinguishes
the Chronos watches according to first bit of dataset. Sig-
nals emitted from both Chronos’ are combined after separate
recognition.
The main classification module is shown in Algorithm 2.
This algorithm computes the meanµ and standard deviation
σ of the training data along X, Y and Z axes.
In the prediction phase of naive Bayes classifier as shown
in Algorithm 4, a chunk from real time data is compared to
the unique intervals generated for each action. If a single
class is obtained for that chunk, detection becomes complete,
otherwise classification proceeds with HMM or SCD.
Training phase of naive Bayes classifier as given in Algo-
rithm 3 calculates the posterior probability value, namely
patternPj for each sample taken for every action through
meanµ and standard deviationσ of the acceleration data
along X and Z axes since these are the dominant axes for the
actions within the scope of this work. Range[i,j] indicates

Algorithm 3 Training phase of naive Bayes classifier
for i = 1→ N do

for j = 1→ K do
Pj ← f(µi(X,Z), σi(X,Z));
Range[i, j]← Pj ;

end for
end for
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Algorithm 4 Prediction phase of naive Bayes classifier
for all jǫR do

countNonMatching← 0
countMatching← 0
for i = 1→ N do

Pj ← f(µi(X,Z), σi(X,Z))
if ( thenPjǫRange[i])

countMatching← countMatching + 1
else

countNonMatching← count+ 1
end if

end for
if countNonMatching = N then

call HMM scheme
else

if countMatching > 1 then
call SCD scheme.

else
Classify segment j as action i

end if
end if

end for

the range of posterior probability values which belong to the
actioni, j indicating the sample index related to the actioni.
SCD algorithm maps data to a nucleus whose center is equal
to µY and radius is equal toσY . Algorithm 5 and 6 explain
how SCD scheme fulfils classification in training and predic-
tion phases.
The chunks from real time data which can not be defined
with naive Bayes classifier and SCD are exposed to HMM
scheme. HMM considers two eventslast action and next
action. Last action is the last detected action whereas next
action is the current action to be detected. If the last action is
not defined, as the last action HMM assigns the action with
greatest observation probability, in our case sit whose obser-
vation probability is shown in Table 1.
Having an action as the last action is important since HMM
needs to find the transition probability from last action to next
action. After assigning last action, HMM estimates the next
action using (1).

L(n|l, o) = P (n|l).P (n|o) (1)

Interpretation of (1) is as follows:L(n|l, o) indicates proba-
bility that the next action is n, given that l is the last action
and o is the observation probability of last action.P (n|l)
shows the probability of obtaining n as the last action given
that last action is l. Finally,P (n|o) is the probability of ob-
taining n as the last action given that o is the observation
probability of last action. HMM checks transition probabili-
ties from last action to every action. Transition probabilities
between actions are depicted in Table 2 where transition col-
umn indicates actions between which the transition occurs

Table 1: Observation probabilities of simple actions
Action Name Observation Probability
Walk 0.35
Sit 0.45
Stand 0.2
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(a) Wheel chair test data sample for arm sensor
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(b) Wheel chair test data sample for foot sensor

Figure. 7: Wheel chair real time test data samples

such that Walk-Sit means the transition from walk to sit. In
the case of potential next actions that generate equal transi-
tion probabilities, the action which yields greatest observa-
tion probability is selected to be the next action. HMM train-
ing and prediction phases are presented in Algorithm 7 and 8.
In these algorithms, transProb[.] and obsProb[.] show transi-
tion probability matrix and observation probability vector for
simple actions. Also, transition probability of moving from
action i to action j is shown as transProb(i,j) and maximum of
the transition probabilities from action i to all other actions
is designated as max(transProb(i),Y), Y being the set of ac-
tions generating the maximum transition probability. Finally,
maximum of the observation probabilities of the actions is
indicated by max(obsProb,Y), Y being the action having the
maximum observation probability.

Algorithm 5 Training phase of SCD
for i = 1→ N do

vectorCount← 0
for j = 1→ K do

for m = 1→ S do
distance=([X,Y,Z]-[0,center,0])/radius
vectorCount++
Range[i,vectorCount]=distance

end for
end for

end for
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Algorithm 6 Prediction phase of SCD
actionFound← 0
for i = 1→ N do

distance=([X,Y,Z]-[0,center,0])/radius
if distance /∈ Range[i] then

SCD fails to classify the segment
else

actionFound← 1
Mark action as the action corresponding to i
Terminate SCD

end if
end for
if actionFound = 0 then

SCD fails to classify this segment
Call HMM scheme.

end if

Algorithm 7 Training phase of HMM

transProb[.]← 0
obsProb[.]← 0
for i = 1→ N do

for t = 1→ C do
for j = 1→ N do

action=ACi∪ ACj

(transAction1,transAction2)=nBayes(action)
transProb(transAction1,transAction2)++
obsProb(transAction2)++

end for
end for

end for

IV. Results and Conclusion

This experimental study covers the design and implementa-
tion of a real time indoor human activity monitoring system
by addressing the two phases of activity monitoring, namely
data acquisition and classification. Two models are used
in the experiments; single sensor-single classifier and multi
sensors-multi classifiers models.

Table 2: Transition probabilities of simple actions
Action Name Transition Probability
Walk-Walk 0.8
Walk-Sit 0.05
Walk-Stand 0.15
Sit-Walk 0.2
Sit-Sit 0.6
Sit-Stand 0.2
Stand-Walk 0.3
Stand-Sit 0.2
Stand-Stand 0.5

In single sensor-single classifier approach, Naive Bayes clas-
sifier is implemented for the data classification subsystem.
Unique intervals of average posterior probability of the train-
ing data in 2’s complement form are calculated with the
normal distribution in the training phase. In the prediction
phase, the real time sample is partitioned into chunks at the
points where chunks show the simple actions and the chunk
size shows the representative duration of classified actionby
means of calculating average posterior probability for each

Algorithm 8 Prediction phase of HMM

if lastAction /∈ defined then
lastAction← sit

end if
max(transProb(i),Y)
if card(Y ) > 1 then

max(obsProb,Y)
Segment is classified as Y

else
aǫ Y
Segment is classified as a

end if

chunk. The tests are repeated several times. On average fol-
lowing success rates are achieved: walk92%, sit 100%, lie
88% and stand96% as tabulated in Table 3. Based on these
simple actions, various numbers of tests are performed for
the detection ofwalk-after-sit andsit-after-lie composite ac-
tions. The model classified the actions successfully when
the transition signals that normally occur between actionsin
real-life samples are ignored.

Table 3: Detection success rates for simple actions (SSSC)
Action Name Detection Success Rate
Walk 92%
Sit 100%
Lie 88%
Stand 96%

In multi sensor-multi classifier approach, a hybrid classifier
is used. naive Bayes, HMM and SCD are used to detect tran-
sitions between activities in real time. In the training stage of
Naive Bayes classifier, data are processed to calculate mean
and standard deviation under the normal probability distri-
bution to extract a posterior probability. In addition to this,
every action and transition between the actions is observed
to calculate transition probability and observation probability
under joint probability distribution in the training of HMM.
In the prediction phase, the posterior probability of the real
time data is calculated. If it overlaps with any other action,
the data are processed by SCD to find distance to center of
circle. If the distance is mapped to any action, it is marked as
detected action. Otherwise, HMM classifier finds the next ac-
tion using transition and observation probabilities, obtained
in training stage. The tests are repeated for several times and
it has been observed that the model is fast and 100% accurate
in detecting the transition signals. However, because of the
real time processing delay a minor reduction in the detection
of individual actions are observed.

Table 4: Detection success rates for simple actions(MSMC)
Action Name Detection Success Rate
Walk 94%
Walk while hands in pocket 96%
Sit 94%
Stand 94%
Wheelchair driving 98%

Detection success rates achieved with MSMC model are 94%
for walk, 96% for walking while hands in pocket, 94% for
sit, 94% for stand, and 98% for wheelchair driving, as given
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in Table 4. The results reveal that the proposed filtering
mechanism can successfully distinguish actions. As a future
work, the model will be integrated into an abnormal activity
detection scenario, such as fall and bump.
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