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Abstract—The Izhikevich spiking neural network model is 

investigated as a method to develop controllers for a simple, but 

not trivial, car racing game, called TORCS. The controllers are 

evolved using Evolutionary Programming, and the performance 

of the best individuals is compared with the hand-coded 

controller included with the Simulated Car Racing 

Championship API. A set of experiments using the sigmoid 

neural network was also conducted, to act as a benchmark for 

the network of Izhikevich neurons. The results are promising, 

indicating that this spiking neural network model can be 

applied to other games or control problems. 
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I. Introduction 

Networks of spiking neurons have been increasingly gaining 

popularity over the years as a computationally powerful and 

biologically more plausible model of distributed computation 

[1]–[3]. It is the third generation of artificial neural networks, 

which was modeled to resemble the biological brain as close 

as possible, as the biological brain transmits information 

through electric pulses (action potentials), which is fired at 

certain points in time by the neurons. In an artificial spiking 

neural network, incoming pulses (spikes) stimulates a 

postsynaptic potential according to a response function, and 

when the voltage potential exceeds a threshold, it triggers a 

pulse. After the emission of the pulse, the neuron’s 

membrane potential resets to its resting state. The input to 

the neuron does not affect the size and shape of the spike, but 

it affects the time when the neuron fires. Therefore, 

information is capable of being transmitting by individual 

spike timings, which in turn makes spiking neural networks 

capable of exploiting time as a resource for coding and 

computation in more sophisticated way than other 

conventional models [4]. Furthermore, spiking neural 

networks are able to simulate sigmoidal feedforward neural  

networks and approximate any continuous function. 

Computer games have received much attention as 

computational intelligence research tools for many years, 

because it adds value and functionality to the games, and it 

allows researcher to use these games as test beds for 

research. Car racing is a challenging problem that could 

generate considerable excitement, which is evident from the 

multitude of resource invested in it by racers and observers 

alike, to practice and watch the races. Hence, the problem in 

racing is not trivial because many parameters influence it. To 

drive a car, the speed and steer has to be adjusted at the right 

amount and time, but many situations can happen, given that 

there are so many parameters influencing the behavior of the 

car, including the characteristics of the track, road curvature, 

inclination, surface friction, and banks. Others include the 

state of the car such as the current speed, acceleration, 

direction, slipping and skidding of wheels. Furthermore, cars 

have different characteristics including horsepower, traction, 

air resistance, and center of gravity [5] All these parameters 

manipulate how the car needs to be driven to achieve 

desirable results. 

Spiking neural networks (SNN) are investigated in many 

areas and problems. Pavlidis et. al. evolved spiking neural 

networks using parallel differential evolution for 

classification problems [6]. There are studies in the area of 

robotics as well, including the evolution of spiking neural 

controller for a vision-based mobile robot [7], and indoor 

flight of a vision-based micro-robot composed of adaptive 

spiking neurons [8]. There are other application areas as 

well, such as temporal pattern classification, speech 

recognition, computer vision, XOR problems, associative 

memory, and function approximations  

Artificial evolution of neural networks has been 

investigated by Togelius and Lucas for car racing [9,10]. 

Another study investigated the imitation of human behaviors 

in driving using the TORCS racing game [11]. However, 

spiking neural networks have not been investigated before as 

a computational intelligence technique in evolving racing car 

controllers. Hence, motivated by the encouraging results of 

SNN applications in other domains, this forms the main 

objective of our study. A successful outcome will not only 

demonstrate the usefulness of SNNs as a potential car racing 

AI agent but also in other computer game genres or even 

real-world problems that exhibit similar real-time control 

requirements. 

This is an extended paper of an earlier published work in 

which we considered the application of the Izhikevich 

spiking neuron model for the neural network, trained using 

Evolutionary Programming, for the control of a simulated 

racecar [12]. In this paper, we included a set of experiments 

using the sigmoid neural network as an additional 

benchmark, alongside other controllers, including the rule-

based and TORCS included controllers, as well as the human 
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player, for the spiking neural network. Section 2 briefly 

introduces the Izhikevich spiking neuron model, and section 

3 describes the methods applied, including the simulator, 

fitness function, and optimization algorithm. Then, the report 

of the experimental results are presented and discussed. The 

paper concludes with a summary of the current work and 

ideas for future works.  

II. Spiking Neural Network 

The nature of biological neurons led to explorations of 

modeling the neuron into computational models. A widely 

known mathematical model, which earned its authors the 

Nobel Prize, is the Hodgkin-Huxley model. This model 

reproduces the behavior of the giant axon of the squid and 

includes terms that represent the specific ionic currents 

through the neuron membrane. This neuron model accurately 

represents many of the behaviors of biological neurons, but it 

places a significant burden on digital computers because it 

comprise of four coupled differential equations. On the other 

hand, the Integrate-and-Fire model is more computationally 

efficient, but it is unable to produce the many spiking 

behaviors exhibited by biological neurons. Dr. Izhikevich 

presented a paper in 2003 that describes a new simple 

spiking neuron model that is capable of reproducing many 

neuron behaviors while also maintaining computational 

efficiency. The section below describes a brief introduction 

to the Izhikevich neuron model. 

A. Neuron Model 

Izhikevich (2003) introduced a neuron model that is 

capable of producing many patterns of biological neurons, 

which is as biologically plausible as the Hodgkin-Huxley 

model, yet as computationally efficient as the integrate-and-

fire model. This model is a simplification of the Hodgkin-

Huxley model to a system of two ordinary differential 

equations. These two equations describe the membrane 

potential, v, and the recovery variable, u, which is roughly 

considered to represent the activation of K+ and the 

inactivation of Na+ ionic currents, and provide negative 

feedback to the membrane potential, v, with an auxiliary 

after-spike reset rule. When the membrane potential, v, 

exceeds its peak of 30mV, an action potential (spike) occurs. 

The membrane potential is reset to its initial value, c, and the 

recovery variable is incremented by d. When v ≥ 30, then     

v ← c, u ← u + d. Synaptic currents are conducted to the 

neuron through the variable I. The typical time-step used 

with this model is 1ms. 

The variables �, �, �, and � are dimensionless model 

parameters that have constant values. The variable � is the 

time scale of the recovery variable, u, where smaller values 

mean slower recovery. The variable � is the sensitivity of 

the recovery variable, u, to the sub-threshold fluctuations of 

the membrane potential, v, where bigger values couples the 

variables v and u more strongly, which would result in low-

threshold spiking dynamics. The variable � is the membrane 

potential after spike reset value that is caused by the high-

threshold K+ conductance. The variable � is the recovery 

variable after-spike reset value that is caused by the slow 

high-threshold Na
+
 and K

+
 conductance [13], [14]. 

The Izhikevich model is capable of producing the firing 

patterns that biological neurons could produce, and are 

classified as excitatory, which includes regular spiking, 

intrinsically bursting, chattering, and thalamo-cortical 

neurons; and inhibitory, which includes fast spiking, 

resonator and low-threshold spiking neurons. Furthermore, 

this model is capable of modeling all twenty identified firing 

behaviors that neurons could exhibit by tuning the four 

constant parameters of the model. Although, not all spiking 

behaviors could be modeled simultaneously as some 

behaviors are mutually exclusive. 

This model does not have a fixed firing threshold but is 

dependent on previous firings and can be anywhere between 

-55 mill volts (mV) and -40mV [13]. 

III. Methods 

This section describes the controller, its environment, fitness 

function, optimization technique, and the experiment setup. 

A. Car Simulator 

The racing simulator that is employed for performing 

experiments in this paper is The Open Racing Car Simulator 

(TORCS). TORCS is a very realistic simulator with a 

sophisticated physic engine and many game contents like 

different cars, tracks and controllers. TORCS is not only an 

open source racing game but was also designed so that 

anyone could create their own car controller. This simulator 

takes into account many aspects including damage due to 

collision, fuel consumption, aerodynamics, wheel slippage 

and so on. This section describes only the relevant aspect for 

the controller used. 

The Computational Intelligence in Games (CIG) 

Simulated Car Racing Championship provides an API to 

TORCS for developments. It is a client-server architecture 

where the controllers run as external processes and 

connected to the server through UDP connections. 

Furthermore, races run in real-time where in every game-

tick, which roughly corresponds to 20 milliseconds (ms) of 

simulated time, the server sends sensory information to the 

client and waits 10 milliseconds (ms) of real-time for an 

action respond. If no action signals arrive, the server will use 

the last performed signal. 

There are many sensor information available to the 

controller, but only those that we think are most essential are 

used. These include: 
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Figure 1. Voltage response of a neuron model exhibiting a 

regular spiking firing pattern, with input current, I = 20. 

366 Yee and Teo 



Evolutionary Spiking Neural Networks as Racing Car Controllers

• The angle between car direction and direction of 
track axis. 

• Distance between the car and track axis, and the 
distance between the car and track edge within 200 
meters. 

• Car speed along the longitudinal axis of the car.

• Current gear and revolutions per minute (R.P.M.).

• Rotation speed of the wheels. 

• Distance raced, current and last lap time.
The actuators to control the car include the steering wheel, 

gas, brake, and clutch pedals and the gearbox. However, the 

car is assumed to have automatic transmission, hence active 

gear changing is not necessary, but may be included in future 

works. The car is also assumed to have an anti

system (ABS). Both the automatic transmission a

were adopted from the controller that came with

competition's API. 

B. Controller 

The car is controlled by a feedforward network of 

Izhikevich model neurons. In the experiments reported in 

this paper, the network is composed of eight input neurons 

and four output neurons. The inputs are directly mapped to 

the outputs, so it has no hidden layer, which means this is a 

single layered network. The neural network weights are real 

numbers with values in the range of [-1, 1]. We employed a 

spike rate encoding method, which is similar to the meth

used by Floreano [7]. This means that the strength of the 

stimulation is represented by the probability of spike 

emissions within a given time interval. We have taken the 

firing rate of the neurons measured over 20 milliseconds 

(ms) as commands for the decision of the controller to steer, 

accelerate and brake. The Izhikevich neuron model 

parameter values used correspond to cortical pyramidal 

neurons exhibiting regular spiking firing patterns

The inputs include the angle between the car direction and 

track direction, distance between the car and track axis, 

speed of the car, and five range finder sensors to measure the 

distance between the car and the track edge, and all inputs 

are normalized to have the value [0, 10]. The outputs, with 

values in the range of [0, 1], correspond to the steering 

wheel, gas and brake pedals. The command to steer right or 

left is determined by the difference of two outputs, where a 

negative value means to steer right, and a positive value 

means to steer left. On the other hand, the acceleration and 

brake values are denoted by the difference between the other 

two outputs. A positive value indicates to accelerate, whi

Figure 2. Track 3 of The Open Racing Car Simulator 

(TORCS) 
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The angle between car direction and direction of 

between the car and track axis, and the 
istance between the car and track edge within 200 

long the longitudinal axis of the car. 

Current gear and revolutions per minute (R.P.M.). 

Distance raced, current and last lap time. 
The actuators to control the car include the steering wheel, 

the gearbox. However, the 

car is assumed to have automatic transmission, hence active 

gear changing is not necessary, but may be included in future 

works. The car is also assumed to have an anti-lock braking 

system (ABS). Both the automatic transmission and ABS 

were adopted from the controller that came with the CIG 

The car is controlled by a feedforward network of 

In the experiments reported in 

network is composed of eight input neurons 

directly mapped to 

so it has no hidden layer, which means this is a 

The neural network weights are real 

1, 1]. We employed a 

method, which is similar to the method 

. This means that the strength of the 

stimulation is represented by the probability of spike 

emissions within a given time interval. We have taken the 

measured over 20 milliseconds 

(ms) as commands for the decision of the controller to steer, 

accelerate and brake. The Izhikevich neuron model 

parameter values used correspond to cortical pyramidal 

neurons exhibiting regular spiking firing patterns [15]. 

The inputs include the angle between the car direction and 

track direction, distance between the car and track axis, 

speed of the car, and five range finder sensors to measure the 

and the track edge, and all inputs 

are normalized to have the value [0, 10]. The outputs, with 

values in the range of [0, 1], correspond to the steering 

wheel, gas and brake pedals. The command to steer right or 

outputs, where a 

negative value means to steer right, and a positive value 

the acceleration and 

brake values are denoted by the difference between the other 

two outputs. A positive value indicates to accelerate, while a 

negative value indicates to brake. 

In addition, we also ran tests using a sigmoid neural 

network with most parameters being similar to the spiking 

neuron network, with the exception that the sigmoid neural 

network has a hidden layer of six hidden unit

continuous firing rate, instead of a firing rate measured over 

20 milliseconds (ms) as used for the spiking neuron network. 

Another difference is the values of the inputs, which are 

normalized to have values in the range of [0, 1]. Apart from 

that, the number of inputs, outputs and the correspondences 

of the inputs and outputs are the same.

C. Fitness Function 

The fitness function used is somewhat similar to the 

fitness function used by Simmerson, winner of the WCCI 

2008 simulated car-racing competit

differences. 

The controller’s fitness is determined by how far the car 

was driven, average speed and amount of damage it took 

throughout the whole race, and the ability to stay inside t

track, measured using the number of time

as game ticks. In this paper, we employed 10000 time

for the evaluation of each controller, which is roughly about 

3 minutes of simulated time. 

The fitness of a controller is given by the 

where draced is the total distance raced, 

the car, and Tmax is the maximum number of game ticks in 

each race. Tout is the number of game ticks the car had been 

outside the track, and D is the amount 

sustained. 

While a car is being evaluated, the damage the car took is 

also monitored, so much so that if the damage exceeds 1000, 

the controller is immediately disqualified, and the evaluation 

of the next controller will begin. 

D. Optimization 

Evolutionary Programming is employed to optimize the 

controller for all experiments described in this paper. In each 

generation, the fitness of all controllers were evaluated and 

compared with their respective parents. The controller with 

the higher fitness score will act as parents for the next 

generation. Their genes are perturbed with a 

distribution random generator based on a

rate, to produce the offspring for the next generation. 

Experiments in this paper are conducted with a population 

size of 10 controllers and 10 runs, with 1000 generations 

�� � ������ 
 �		 � �!"#$%&'�( )
 

 

Track 3 of The Open Racing Car Simulator 

Figure 3. Human player racing against SNN and TORCS 

controllers (left). SNN controller racing against TORCS 

controller (right). 
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In addition, we also ran tests using a sigmoid neural 

network with most parameters being similar to the spiking 

neuron network, with the exception that the sigmoid neural 

network has a hidden layer of six hidden units, with a 

continuous firing rate, instead of a firing rate measured over 

20 milliseconds (ms) as used for the spiking neuron network. 
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normalized to have values in the range of [0, 1]. Apart from 
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amount of damage it took 

ability to stay inside the 

the number of time-steps, also known 

. In this paper, we employed 10000 time-steps 

for the evaluation of each controller, which is roughly about 

The fitness of a controller is given by the equation: 

 
is the total distance raced, v is the velocity of 

is the maximum number of game ticks in 

is the number of game ticks the car had been 

is the amount of damage the car had 

While a car is being evaluated, the damage the car took is 

also monitored, so much so that if the damage exceeds 1000, 

the controller is immediately disqualified, and the evaluation 

is employed to optimize the 

controller for all experiments described in this paper. In each 

generation, the fitness of all controllers were evaluated and 

compared with their respective parents. The controller with 

higher fitness score will act as parents for the next 

perturbed with a Gaussian 

based on a constant mutation 

, to produce the offspring for the next generation. 
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controllers (left). SNN controller racing against TORCS 



 

 

each run, unless stated otherwise. 

E. Experimental Setup 

The clients for the spiking and sigmoid neural networks 

were developed by extending the sample client included with 

the TORCS CIG competition API. Loops were added into 

the main controller for the generation and number of drivers 

in each generation. The driver was redeveloped to include a 

neural network object and a function call to process the 

outputs from the inputs. However, the automatic 

transmission and anti-lock braking system functions included 

with the sample driver were retained. 

Preliminary experiments were carried out to test if the 

controller could be evolved to respond to turns or curvatures 

on a simple track and then on a more difficult track. Then, 

experiments were carried out to race without going off the 

track, and drive as fast and far as possible, in the hope of 

completing a lap within the shortest time. 

The three tracks used in experiments are depicted in Fig.4, 

starting from the simplest track to the hardest track of the 

three. Track 1 is 1908.32 meters in length, while track 2 is 

2057.56 meters, and track 3 is 3823.05 meters in length. 

As mentioned in the methods section, the experiment was 

carried out with three tracks, each track consists of 10 runs. 

The population goes through 1000 generations each run, with 

10 drivers in each generation, and each generation has 10000 

game ticks. All these remained constant throughout the 

experiment, and all racecars begin the race from the starting 

line. The mutation rate used is 0.7, and the Gaussian 

distribution has a mean 0 and a standard deviation 1, N (0, 

1). A general overview of the implementation is given in the 

flowchart. 

IV. Results And Discussions 

A. Spiking Neural Network 

Results showed that the evolved spiking neural network 

(SNN) controllers managed to race through all three defined 

tracks, with minimal or no damage. The controllers even 

showed sophisticated driving techniques when turning 

corners. Figures below present the collected results of the 

best controllers of all runs for each track. 

Fig. 6 presents the average fitness growth of the best SNN 

controllers evolved on track 1. It shows a sharp improvement 

of the controllers during early generations, slowed down 

after the first hundred generations, and converges around 

generation 500. The population was probably lucky enough 

to produce well performing offspring in the beginning. The 

spiking neural network controllers evolved on track 1 have 

the highest fitness scores among the three tracks, reaching 

values as high as 50,000, but these scores are dependent on 

the environment as well. As track 1 is much simpler than the 

other tracks, the controllers do not need to slow down too 

much while turning, so it gathered scores from larger 

distance raced, and higher average speeds. Having said that, 

some explanations for the early discovery of good 

performing solutions is most likely because track 1 is easier 

to drive in. Some interesting points to note, in addition to the 

track being easy, are the sophisticated driving behaviors the 

controller has developed on the track, where it made some 

distance to the outer side of a curve to turn, instead of 

making a sharp turn, thus it does not need to slow down too 

much for each turn. 

The charts in Fig. 7 and Fig. 8 show a similar trend as Fig. 

6, but have lower fitness scores and are more curved. The 

experiment on track 2, as presented in Fig. 7, had a steep but 

steady climb in early generations, until around generation 

150 when the steep climb ended, and the population started 

to progress slowly. It was not until around generation 800 

when the controllers start to converge. However, considering 

the pattern of the chart, the controllers might not yet 

converge, since the graph showed that the controllers made 

some improvements at almost the end of the runs, signifying 

further improvements are possible. 

The experimental results from the SNN controllers on 

track 3 on the other hand, as presented in Fig. 8, show that 

the controllers raced in it gained lower scores than those 

from track 1 and 2, barely reaching 30,000. As track 3 has U-

turns and more curves, it explains why controllers in track 3 

gained lower fitness scores, because they needed to 

slowdown for turns more. Nevertheless, the population also 

experienced a quick improvement in their performance in 

early generations, and only started to slowdown after 

approximately a hundred generations. Yet the population still 

maintained its’ advance albeit slowly until the end. Like the 

results in Fig. 7, the populations evolved on this track most 

likely have not converged, as can be seen from the graph in 

Fig. 8, where the population’s fitness have the potential to 

increase if given more generations to evolve in. Furthermore, 

if drawn a trend line, we can see that the graph have not 

leveled out. 

After having obtained the results, we re-simulated the 

solutions to observe their behavior on the track. We found 

out that the controller evolved on track 1 was driving at top 

speed and not slowing down much during turns, which is 

good. Conversely, the controllers evolved on tracks 2 and 3 

did not drive at top speed, but managed to avoid colliding 

into or gliding along the rail of the tracks. We also noticed 

that the controllers did not accelerate at maximum (flooring 

the gas pedal) often, even on straight roads, which give 

reasons why the cars seldom or did not reach full speed. 

Although it is quite reasonable not to accelerate at maximum 

in places that has many turns, probably the genes to floor the 

gas pedal in straight roads had not emerge yet. We also 

observed that many controllers are still going out of the track 

in track 3, particularly during the hard turn after the straight 

road, as it took speed but failed to slowdown enough to avoid 

skidding off the track. Yet some controllers managed to have 

evolved the behavior to overcome skidding off the track. 

Early 100 generations consists of the controllers crashing 

into the sides of the track and gliding against the rail, which 

deducted fitness scores, driving slowly or not being able to 

race far. Hence, the logarithmic-like graph, but after that 

early generations, the controllers started to improve very 

slowly. By this point, they were already able to drive fairly 

far or complete a full lap, avoid crashing into the sides or 

going out of the track often. Therefore, the only thing 

remaining is for them to learn strategies for increasing 

speeds at certain segments of the track and how much they 

needed to slow down for each turn, in addition to strategies 

for turning, such as avoiding sharp turns to avoid losing too 

much speed, so larger distance could be covered. 
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Table 1. Best Lap Times of Spiking Neural Network

Run 
Best Lap (seconds) 

Track 1 Track 2 

1 25.98 48.65 

2 25.77 48.27 

3 25.74 44.87 

4 25.79 46.73 

5 25.49 47.21 

6 25.82 44.71 

7 25.89 46.67 

8 25.82 45.89 

9 25.92 46.73 

10 25.72 51.48 

µ / σ 25.79 0.1340 47.12 1.9879 126.72

 

Figure 9. The path driven by the respective best 

controllers on the tracks used in this paper. 

As the selection process we used is similar to the selection 

method used in the differential evolution (DE) algorithm, 

where a better performing child directly replaces its parent, 

we see a very slow but gradual fitness improvement. One 

very interesting question we consider is if another selection 

technique, like tournament selection, round robin, or hall

fame, would increase the speed of the fitness improvement, 

and perhaps help the controllers escape from local optima. 

We also like to find out how much coevolution would do to 

help the controllers improve. 
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f Spiking Neural Network 

Track 3 
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method used in the differential evolution (DE) algorithm, 

rforming child directly replaces its parent, 

we see a very slow but gradual fitness improvement. One 

very interesting question we consider is if another selection 

technique, like tournament selection, round robin, or hall-of-

of the fitness improvement, 

and perhaps help the controllers escape from local optima. 

We also like to find out how much coevolution would do to 

Table 1 shows the shortest times achieved by the 

controllers for each track of all 10 runs. The SNN controllers 

evolved on track 1 achieved an average time of 25.8 seconds 

with a standard deviation of 0.134 seconds, and the fastest 

controller took 25.49 seconds to complete a lap. The 

controllers evolved on track 2 needed an average tim

47.12 seconds with a standard deviation of about 2 seconds. 

Its fastest controller took 44.71 seconds to complete a lap. 

The SNN controllers evolved on track 3, on the other hand, 

needed a staggering average time of 126.72 seconds, which 

is about two minutes, and a standard deviation of 1.69 

seconds, and its fastest controller took 124.42 seconds to 

complete a lap. Furthermore, unlike the controllers evolved 

on tracks 1 and 2, the controllers evolved on track 3 managed 

to complete only one lap throughout the whole duration of 

10000 game ticks. The fact, also, that the controllers on track 

2 had a standard deviation of about 2 seconds might give a 

clear sign that the controllers may have not fully converge 

yet. 

Though it is not presented in the table, bu

the raw data of the lap times and fitness score, we found the 

controller that achieved the shortest time to complete a lap 

does not mean it obtained the highest fitness score. However, 

from the last generation of all runs, we found that the 

for completing a lap is proportional to the fitness scores 

obtained by the controllers, and this is true for the fittest 

controller, as they achieved the shortest time and has the 

highest fitness score. Yet there are some cases where a 

controller achieved a shorter time than the time another 

controller achieved, but obtained a lower fitness score than 

the other controller, and vice versa. 

Some explanation we could come up for this occurrence is 

in the deduction of the fitness scores. A controller might

have achieved a shorter time to complete a lap, but it went 

out of the track’s boundary and had its fitness score 

deducted. As a car comes closer to the inner edge of the 

curved path on the road, its distance to the finish line 

becomes shorter. The aforementioned controller could have 

drove outside the boundary of the track, but was nearer to the 

inner edge of the curved path on the road. Hence, its distance 

to the finish line was made shorter than the controller that 

kept its course within the boundary of

We tried playing our SNN controllers against some 

TORCS included controllers and the hand

controller, included with the TORCS CIG competition API. 

We also tried playing against the SNN controllers 

and witnessed some amusing discovery. Firstly, the evolved 

controllers were able to beat the rule

without much effort on all three tracks. Secondly, the 

controllers evolved on track 1 were able to beat both the 

TORCS included controllers and us. The controll

on track 2, on the other hand, were able to beat us, but was 

not able to beat the TORCS included controllers. The 

controllers evolved on track 3 did not manage to overtake 

both the TORCS included controllers and us, but drove so 

much better than us, as we kept crashing onto the sides of the 

track. 

Observations we made and noted from our play against the 

evolved controllers and the competition we set between them 

and the TORCS included controllers, is that the evolv

controllers accelerates slower. The major cause of this, from 
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with a standard deviation of 0.134 seconds, and the fastest 
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47.12 seconds with a standard deviation of about 2 seconds. 
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on tracks 1 and 2, the controllers evolved on track 3 managed 

ut the whole duration of 

10000 game ticks. The fact, also, that the controllers on track 

2 had a standard deviation of about 2 seconds might give a 

clear sign that the controllers may have not fully converge 

Though it is not presented in the table, but by examining 

the raw data of the lap times and fitness score, we found the 

controller that achieved the shortest time to complete a lap 

does not mean it obtained the highest fitness score. However, 

from the last generation of all runs, we found that the time 

for completing a lap is proportional to the fitness scores 

obtained by the controllers, and this is true for the fittest 

controller, as they achieved the shortest time and has the 

highest fitness score. Yet there are some cases where a 

eved a shorter time than the time another 

controller achieved, but obtained a lower fitness score than 

Some explanation we could come up for this occurrence is 

in the deduction of the fitness scores. A controller might 

have achieved a shorter time to complete a lap, but it went 

out of the track’s boundary and had its fitness score 

deducted. As a car comes closer to the inner edge of the 

curved path on the road, its distance to the finish line 

entioned controller could have 

drove outside the boundary of the track, but was nearer to the 

inner edge of the curved path on the road. Hence, its distance 

to the finish line was made shorter than the controller that 

kept its course within the boundary of the track. 

We tried playing our SNN controllers against some 

TORCS included controllers and the hand-coded/rule-based 

controller, included with the TORCS CIG competition API. 

We also tried playing against the SNN controllers ourselves 

musing discovery. Firstly, the evolved 

controllers were able to beat the rule-based controllers 

without much effort on all three tracks. Secondly, the 

controllers evolved on track 1 were able to beat both the 

TORCS included controllers and us. The controllers evolved 

on track 2, on the other hand, were able to beat us, but was 

not able to beat the TORCS included controllers. The 

controllers evolved on track 3 did not manage to overtake 

both the TORCS included controllers and us, but drove so 

n us, as we kept crashing onto the sides of the 

Observations we made and noted from our play against the 

evolved controllers and the competition we set between them 

and the TORCS included controllers, is that the evolved 

controllers accelerates slower. The major cause of this, from 



 

our observation, is in the automated gear shifting strategy 

used in the controllers’ car. Apparently, the car shifted its 

gear earlier than the TORCS controllers and the human 

controlled car, hence the reason for the slow buildup of 

speed. Furthermore, the SNN controller accelerates with 

values in the range of [0.0, 1.0], but the human controlled car 

and the TORCS controllers accelerates at maximum value 

(flooring the gas pedal). The SNN controllers from track 1 

learned to floor the gas pedal throughout the race, but the 

SNN controllers from track 2 and 3 did not manage to learn 

it yet. Hence, the TORCS controllers have the upper hand to 

win because it picks up speed faster. This matter provides us 

with further interesting improvements that we could conduct 

on our part. 

B. Sigmoid Neural Network 

The experiment with the sigmoid neuron network on the 

other hand is used as an additional benchmark for the spiking 

neuron controllers, alongside other benchmarks as mentioned 

in Section 1. Based on the result charts, the sigmoid neural 

network exhibits an almost similar pattern to the charts of the 

SNN controllers. The sigmoid NN controllers evolved on 

track 1 has the highest fitness scores, where as the fitness 

scores for controllers evolved on track 3 are lowest. 

Fig. 10 presents the average fitness growth of all the best 

sigmoid NN controllers evolved on track 1 for all 10 runs. It 

shows a sharp improvement in early generations and slowed 

down after about 100 generations to start converging. It 

finished the evolutionary run at the fitness of about 50,000. 

Much as the controllers evolved using the SNN, the sigmoid 

NN controllers show quick improvement and convergence. 

The observations made are quite similar to the SNN 

controllers, whereby they are able to display sophisticated 

driving behaviors, such as by increasing it distance between 

the car and the inner boundary of the track before turns to 

avoid skidding. 

Fig. 11 shows the average results of all the best sigmoid 

NN controllers on track 2. The chart shows a slower 

improvement compared to the results obtained from the 

spiking NN controllers. Although both neural network 

controllers finished the evolution process between the fitness 

score of 30,000 and 35,000, the sigmoid NN controllers 

required more generations to gain fitness scores above 

30,000. Still, similar to the results obtained from the SNN, 

the controllers may have not converged yet, since the slope 

(tangent line) of the graph at 900 < generation (x) < 1000 is 

still positive. 

The average results obtained from the sigmoid neural 

network controllers on track 3, as presented in Fig. 12, also 

gained the lowest scores among the three tracks. The 

sigmoid NN controllers experienced a slow but gradual 

improvement in performance throughout its evolutionary 

run, with earlier periods of about 200 generations being 

faster than after it has reached a fitness score of over 20,000. 

However, one significant difference between the two neural 

networks, which is most notably seen in the results obtained 

on track 3, is that the sigmoid NN only managed to obtain 

scores above 20,000, but below 25,000, where as the SNN 

managed to obtain scores above 25,000. Yet, based on its 

slope, the sigmoid NN controllers should still be able to 

improve if given more generations to evolve. 

Table 2 details the fastest sigmoid NN controllers on all 

three tracks. The sigmoid NN controllers evolved on track 1 

achieved an average time of 25.80 seconds with a standard 

deviation of 0.1701 seconds, while the fastest controller took 

25.48 seconds to finish a lap. The sigmoid NN controllers 

evolved on track 2 took an average time of 49.43 with a 

standard deviation of 2.6417, which indicated to us that it 

could still improve. The fastest controller evolved on track 2 

took 45.08 seconds to complete a lap. Sigmoid NN 

controllers evolved on track 3 needed an average time of 

155.94 seconds with a standard deviation of 12.6369 

seconds, whereas the fastest controller took 126.18 seconds 

to complete a lap. 

Weighting the differences, based on Table 1 and 2 

between the Spiking Neural Network and the Sigmoid 

Neural Network controllers, both neural network strategies 

performed quite similar to each other for track 1, except 

some small details, which might make the difference in a 

 
Figure 6. The average fitness of the SNN controllers against 

generation chart for track 1 
 

 
Figure 7. The average fitness of the SNN controllers against 

generations chart for track 2 
 

 
Figure 8. The average fitness of the SNN controllers against 

generations chart for track 3 
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race. The fastest controller between both NN strategies 

comes from the Sigmoid NN strategy, with a time of 25.48 

seconds. A bigger difference started to appear from track 2, 

most notably from the average time and standard deviation. 

Only one SNN controller took more than 50 seconds to 

complete a lap, but five, nearly six, sigmoid NN controllers 

took more than 50 seconds. The winner for track 2 comes 

from the SNN strategy, with 44.71 seconds. Track 3 has the 

largest difference, as seen from the standard deviation of 

both neural networks and the performance of the controllers. 

Only one sigmoid NN controller managed to achieve a time 

of 126.18 seconds, which intriguingly could beat five best 

SNN controllers from its respective runs, while other 

sigmoid NN controllers could not even achieve a time under 

130 seconds. 

One most possible and likely reason for this occurrence is 

the increased complexity of the sigmoid neural network, as it 

has more number of neurons compared to the spiking neural 

network. Hence, the likelihood of the sigmoid NN to need a 

longer period of evolution to achieve comparable lap times 

to the SNN. Some observations we noted from the simulation 

of the sigmoid NN is that it did not learn how to fully floor 

the gas pedal on tracks 2 and 3 yet. In track 1, both SNN and 

sigmoid NN controllers raced neck to neck on the track, and 

at some points knocking out the other or each other off the 

track. On track 2 on the other hand, we begin to see the 

controllers start to outplay each other more as the fastest 

sigmoid NN was able to win against five SNN controllers. 

Although based on Table 1 and 2, the fastest sigmoid NN 

controller should be able to defeat seven SNN controllers, 

but in the simulation, we observed that two slower SNN 

controllers knocked the fastest sigmoid NN controller off 

course rendering it to waste time recovering its path or 

impossible to continue the race. 

The sigmoid NN that was used as a benchmark has a 

hidden layer of six hidden units, which may not be fair to the 

SNN that has no hidden layer. Hence, it may be more 

appropriate if the experiment with the sigmoid NN was 

conducted with no hidden layer as well. However, despite 

the differences between the two strategies, the SNN 

controllers were able to outrun the sigmoid NN controllers, 

as if without much effort. Although necessary experiments 

should be conducted for the sigmoid NN to find the best 

number of hidden units and/or layer, it should be conducted 

for the SNN too. Even though the SNN controllers may be 

underfitted, since having too few neurons in a hidden layer 

for a feedforward network will result in underfitting, which 

will result in the inadequacy to detect the signals in a 

complicated dataset [17], it still performed well. It drove 

with sophisticated behaviors and win against the rule-based 

controller on all tracks. It also outran the TORCS included 

controller on track 1 and human player on tracks 1 and 2. 

Furthermore, it performed better than the sigmoid neural 

network controllers did. It will be interesting to see how it 

will do with additional neurons and network recurrences. 

Spiking neural networks present many challenges but also 

opens up many new opportunities for pioneering innovations 

in artificial intelligence research [18]. 

Table 2. Best Lap Times of Sigmoid Neural Network 

Run 
Best Lap (seconds) 

Track 1 Track 2 Track 3 

1 25.74 45.85 163.78 

2 25.68 51.56 157.24 

3 25.89 50.27 171.68 

4 25.88 48.29 145.52 

5 26.03 47.59 164.35 

6 25.81 52.78 152.51 

7 25.65 45.08 157.65 

8 26.03 50.75 126.18 

9 25.79 52.24 162.47 

10 25.48 49.91 158.02 

μ / σ 25.80 0.1701 49.43 2.6417 155.94 12.6369 

 

 

Figure 10. The Sigmoid NN controllers’ average fitness 

against generation chart for track 1. 
 

 

Figure 11. The Sigmoid NN controllers’ average fitness 

against generation chart for track 2. 
 

 

Figure 12. The Sigmoid NN controllers’ average fitness 

against generation chart for track 3. 

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation



 

 

V. Conclusion and Future Works 

This study has shown that cars or games for that matter, 

controlled by evolved spiking neuron models could perform 

well. The generated controllers were not only capable of 

driving through a complete racetrack without inflicting much 

or any damage on itself but could also demonstrate 

sophisticated driving behaviors. We have presented and 

noted many interesting reasons behind many occurrences 

during the experiment. Interestingly in some generations, the 

controllers decided to break rules and drove off-track so it 

could reduce its distance to the finish line. The results 

obtained from this experiment showed that the potential of 

using spiking neural networks in games, similar areas and 

more are immense. Our focus in this paper was to discover 

and show that spiking neuron models are capable of acting as 

well performing controllers in games, and we chose a racing 

game platform called TORCS, and interfaced our controllers 

through the TORCS CIG competition API. 

There are many areas we can include and/or optimize for 

our future works, as the complexity of the game, evolution 

process and network structure are not limited to the methods 

we used for this paper. Future works may include a 

competitive coevolution optimization strategy, a self-

adaptation method of the constant parameter values of a, b, c, 

and d, using an adaptive fitness function, and so forth. 

Perhaps employing incremental learning could introduce 

more generalization, and including multi-objective 

techniques could generate better solutions. 
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