
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 5 (2012) pp. 365-372

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Evolutionary Spiking Neural Networks

as Racing Car Controllers

Elias E. Yee
1
 and Jason Teo

2

School of Engineering and Information Technology, Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
1eliasyee0@gmail.com
2jtwteo@ums.edu.my

Abstract—The Izhikevich spiking neural network model is

investigated as a method to develop controllers for a simple, but

not trivial, car racing game, called TORCS. The controllers are

evolved using Evolutionary Programming, and the performance

of the best individuals is compared with the hand-coded

controller included with the Simulated Car Racing

Championship API. A set of experiments using the sigmoid

neural network was also conducted, to act as a benchmark for

the network of Izhikevich neurons. The results are promising,

indicating that this spiking neural network model can be

applied to other games or control problems.

Keywords—Car racing, evolutionary programming, games,

Izhikevich neuron model, Spiking neural networks, TORCS.

I. Introduction

Networks of spiking neurons have been increasingly gaining

popularity over the years as a computationally powerful and

biologically more plausible model of distributed computation

[1]–[3]. It is the third generation of artificial neural networks,

which was modeled to resemble the biological brain as close

as possible, as the biological brain transmits information

through electric pulses (action potentials), which is fired at

certain points in time by the neurons. In an artificial spiking

neural network, incoming pulses (spikes) stimulates a

postsynaptic potential according to a response function, and

when the voltage potential exceeds a threshold, it triggers a

pulse. After the emission of the pulse, the neuron’s

membrane potential resets to its resting state. The input to

the neuron does not affect the size and shape of the spike, but

it affects the time when the neuron fires. Therefore,

information is capable of being transmitting by individual

spike timings, which in turn makes spiking neural networks

capable of exploiting time as a resource for coding and

computation in more sophisticated way than other

conventional models [4]. Furthermore, spiking neural

networks are able to simulate sigmoidal feedforward neural

networks and approximate any continuous function.

Computer games have received much attention as

computational intelligence research tools for many years,

because it adds value and functionality to the games, and it

allows researcher to use these games as test beds for

research. Car racing is a challenging problem that could

generate considerable excitement, which is evident from the

multitude of resource invested in it by racers and observers

alike, to practice and watch the races. Hence, the problem in

racing is not trivial because many parameters influence it. To

drive a car, the speed and steer has to be adjusted at the right

amount and time, but many situations can happen, given that

there are so many parameters influencing the behavior of the

car, including the characteristics of the track, road curvature,

inclination, surface friction, and banks. Others include the

state of the car such as the current speed, acceleration,

direction, slipping and skidding of wheels. Furthermore, cars

have different characteristics including horsepower, traction,

air resistance, and center of gravity [5] All these parameters

manipulate how the car needs to be driven to achieve

desirable results.

Spiking neural networks (SNN) are investigated in many

areas and problems. Pavlidis et. al. evolved spiking neural

networks using parallel differential evolution for

classification problems [6]. There are studies in the area of

robotics as well, including the evolution of spiking neural

controller for a vision-based mobile robot [7], and indoor

flight of a vision-based micro-robot composed of adaptive

spiking neurons [8]. There are other application areas as

well, such as temporal pattern classification, speech

recognition, computer vision, XOR problems, associative

memory, and function approximations

Artificial evolution of neural networks has been

investigated by Togelius and Lucas for car racing [9,10].

Another study investigated the imitation of human behaviors

in driving using the TORCS racing game [11]. However,

spiking neural networks have not been investigated before as

a computational intelligence technique in evolving racing car

controllers. Hence, motivated by the encouraging results of

SNN applications in other domains, this forms the main

objective of our study. A successful outcome will not only

demonstrate the usefulness of SNNs as a potential car racing

AI agent but also in other computer game genres or even

real-world problems that exhibit similar real-time control

requirements.

This is an extended paper of an earlier published work in

which we considered the application of the Izhikevich

spiking neuron model for the neural network, trained using

Evolutionary Programming, for the control of a simulated

racecar [12]. In this paper, we included a set of experiments

using the sigmoid neural network as an additional

benchmark, alongside other controllers, including the rule-

based and TORCS included controllers, as well as the human

MIR Labs, USA

ISSN 2150-7988 Volume 5 (2013) pp. 365-372

player, for the spiking neural network. Section 2 briefly

introduces the Izhikevich spiking neuron model, and section

3 describes the methods applied, including the simulator,

fitness function, and optimization algorithm. Then, the report

of the experimental results are presented and discussed. The

paper concludes with a summary of the current work and

ideas for future works.

II. Spiking Neural Network

The nature of biological neurons led to explorations of

modeling the neuron into computational models. A widely

known mathematical model, which earned its authors the

Nobel Prize, is the Hodgkin-Huxley model. This model

reproduces the behavior of the giant axon of the squid and

includes terms that represent the specific ionic currents

through the neuron membrane. This neuron model accurately

represents many of the behaviors of biological neurons, but it

places a significant burden on digital computers because it

comprise of four coupled differential equations. On the other

hand, the Integrate-and-Fire model is more computationally

efficient, but it is unable to produce the many spiking

behaviors exhibited by biological neurons. Dr. Izhikevich

presented a paper in 2003 that describes a new simple

spiking neuron model that is capable of reproducing many

neuron behaviors while also maintaining computational

efficiency. The section below describes a brief introduction

to the Izhikevich neuron model.

A. Neuron Model

Izhikevich (2003) introduced a neuron model that is

capable of producing many patterns of biological neurons,

which is as biologically plausible as the Hodgkin-Huxley

model, yet as computationally efficient as the integrate-and-

fire model. This model is a simplification of the Hodgkin-

Huxley model to a system of two ordinary differential

equations. These two equations describe the membrane

potential, v, and the recovery variable, u, which is roughly

considered to represent the activation of K+ and the

inactivation of Na+ ionic currents, and provide negative

feedback to the membrane potential, v, with an auxiliary

after-spike reset rule. When the membrane potential, v,

exceeds its peak of 30mV, an action potential (spike) occurs.

The membrane potential is reset to its initial value, c, and the

recovery variable is incremented by d. When v ≥ 30, then

v ← c, u ← u + d. Synaptic currents are conducted to the

neuron through the variable I. The typical time-step used

with this model is 1ms.

The variables �, �, �, and � are dimensionless model

parameters that have constant values. The variable � is the

time scale of the recovery variable, u, where smaller values

mean slower recovery. The variable � is the sensitivity of

the recovery variable, u, to the sub-threshold fluctuations of

the membrane potential, v, where bigger values couples the

variables v and u more strongly, which would result in low-

threshold spiking dynamics. The variable � is the membrane

potential after spike reset value that is caused by the high-

threshold K+ conductance. The variable � is the recovery

variable after-spike reset value that is caused by the slow

high-threshold Na
+
 and K

+
 conductance [13], [14].

The Izhikevich model is capable of producing the firing

patterns that biological neurons could produce, and are

classified as excitatory, which includes regular spiking,

intrinsically bursting, chattering, and thalamo-cortical

neurons; and inhibitory, which includes fast spiking,

resonator and low-threshold spiking neurons. Furthermore,

this model is capable of modeling all twenty identified firing

behaviors that neurons could exhibit by tuning the four

constant parameters of the model. Although, not all spiking

behaviors could be modeled simultaneously as some

behaviors are mutually exclusive.

This model does not have a fixed firing threshold but is

dependent on previous firings and can be anywhere between

-55 mill volts (mV) and -40mV [13].

III. Methods

This section describes the controller, its environment, fitness

function, optimization technique, and the experiment setup.

A. Car Simulator

The racing simulator that is employed for performing

experiments in this paper is The Open Racing Car Simulator

(TORCS). TORCS is a very realistic simulator with a

sophisticated physic engine and many game contents like

different cars, tracks and controllers. TORCS is not only an

open source racing game but was also designed so that

anyone could create their own car controller. This simulator

takes into account many aspects including damage due to

collision, fuel consumption, aerodynamics, wheel slippage

and so on. This section describes only the relevant aspect for

the controller used.

The Computational Intelligence in Games (CIG)

Simulated Car Racing Championship provides an API to

TORCS for developments. It is a client-server architecture

where the controllers run as external processes and

connected to the server through UDP connections.

Furthermore, races run in real-time where in every game-

tick, which roughly corresponds to 20 milliseconds (ms) of

simulated time, the server sends sensory information to the

client and waits 10 milliseconds (ms) of real-time for an

action respond. If no action signals arrive, the server will use

the last performed signal.

There are many sensor information available to the

controller, but only those that we think are most essential are

used. These include:

��
�� � 	
	���
 ���
 ��	 � �
 �

��
�� � ���� � ��

Figure 1. Voltage response of a neuron model exhibiting a

regular spiking firing pattern, with input current, I = 20.

366 Yee and Teo

Evolutionary Spiking Neural Networks as Racing Car Controllers

• The angle between car direction and direction of
track axis.

• Distance between the car and track axis, and the
distance between the car and track edge within 200
meters.

• Car speed along the longitudinal axis of the car.

• Current gear and revolutions per minute (R.P.M.).

• Rotation speed of the wheels.

• Distance raced, current and last lap time.
The actuators to control the car include the steering wheel,

gas, brake, and clutch pedals and the gearbox. However, the

car is assumed to have automatic transmission, hence active

gear changing is not necessary, but may be included in future

works. The car is also assumed to have an anti

system (ABS). Both the automatic transmission a

were adopted from the controller that came with

competition's API.

B. Controller

The car is controlled by a feedforward network of

Izhikevich model neurons. In the experiments reported in

this paper, the network is composed of eight input neurons

and four output neurons. The inputs are directly mapped to

the outputs, so it has no hidden layer, which means this is a

single layered network. The neural network weights are real

numbers with values in the range of [-1, 1]. We employed a

spike rate encoding method, which is similar to the meth

used by Floreano [7]. This means that the strength of the

stimulation is represented by the probability of spike

emissions within a given time interval. We have taken the

firing rate of the neurons measured over 20 milliseconds

(ms) as commands for the decision of the controller to steer,

accelerate and brake. The Izhikevich neuron model

parameter values used correspond to cortical pyramidal

neurons exhibiting regular spiking firing patterns

The inputs include the angle between the car direction and

track direction, distance between the car and track axis,

speed of the car, and five range finder sensors to measure the

distance between the car and the track edge, and all inputs

are normalized to have the value [0, 10]. The outputs, with

values in the range of [0, 1], correspond to the steering

wheel, gas and brake pedals. The command to steer right or

left is determined by the difference of two outputs, where a

negative value means to steer right, and a positive value

means to steer left. On the other hand, the acceleration and

brake values are denoted by the difference between the other

two outputs. A positive value indicates to accelerate, whi

Figure 2. Track 3 of The Open Racing Car Simulator

(TORCS)

Evolutionary Spiking Neural Networks as Racing Car Controllers

The angle between car direction and direction of

between the car and track axis, and the
istance between the car and track edge within 200

long the longitudinal axis of the car.

Current gear and revolutions per minute (R.P.M.).

Distance raced, current and last lap time.
The actuators to control the car include the steering wheel,

the gearbox. However, the

car is assumed to have automatic transmission, hence active

gear changing is not necessary, but may be included in future

works. The car is also assumed to have an anti-lock braking

system (ABS). Both the automatic transmission and ABS

were adopted from the controller that came with the CIG

The car is controlled by a feedforward network of

In the experiments reported in

network is composed of eight input neurons

directly mapped to

so it has no hidden layer, which means this is a

The neural network weights are real

1, 1]. We employed a

method, which is similar to the method

. This means that the strength of the

stimulation is represented by the probability of spike

emissions within a given time interval. We have taken the

measured over 20 milliseconds

(ms) as commands for the decision of the controller to steer,

accelerate and brake. The Izhikevich neuron model

parameter values used correspond to cortical pyramidal

neurons exhibiting regular spiking firing patterns [15].

The inputs include the angle between the car direction and

track direction, distance between the car and track axis,

speed of the car, and five range finder sensors to measure the

and the track edge, and all inputs

are normalized to have the value [0, 10]. The outputs, with

values in the range of [0, 1], correspond to the steering

wheel, gas and brake pedals. The command to steer right or

outputs, where a

negative value means to steer right, and a positive value

the acceleration and

brake values are denoted by the difference between the other

two outputs. A positive value indicates to accelerate, while a

negative value indicates to brake.

In addition, we also ran tests using a sigmoid neural

network with most parameters being similar to the spiking

neuron network, with the exception that the sigmoid neural

network has a hidden layer of six hidden unit

continuous firing rate, instead of a firing rate measured over

20 milliseconds (ms) as used for the spiking neuron network.

Another difference is the values of the inputs, which are

normalized to have values in the range of [0, 1]. Apart from

that, the number of inputs, outputs and the correspondences

of the inputs and outputs are the same.

C. Fitness Function

The fitness function used is somewhat similar to the

fitness function used by Simmerson, winner of the WCCI

2008 simulated car-racing competit

differences.

The controller’s fitness is determined by how far the car

was driven, average speed and amount of damage it took

throughout the whole race, and the ability to stay inside t

track, measured using the number of time

as game ticks. In this paper, we employed 10000 time

for the evaluation of each controller, which is roughly about

3 minutes of simulated time.

The fitness of a controller is given by the

where draced is the total distance raced,

the car, and Tmax is the maximum number of game ticks in

each race. Tout is the number of game ticks the car had been

outside the track, and D is the amount

sustained.

While a car is being evaluated, the damage the car took is

also monitored, so much so that if the damage exceeds 1000,

the controller is immediately disqualified, and the evaluation

of the next controller will begin.

D. Optimization

Evolutionary Programming is employed to optimize the

controller for all experiments described in this paper. In each

generation, the fitness of all controllers were evaluated and

compared with their respective parents. The controller with

the higher fitness score will act as parents for the next

generation. Their genes are perturbed with a

distribution random generator based on a

rate, to produce the offspring for the next generation.

Experiments in this paper are conducted with a population

size of 10 controllers and 10 runs, with 1000 generations

�� � ������
 �		 � �!"#$%&'�()

Track 3 of The Open Racing Car Simulator

Figure 3. Human player racing against SNN and TORCS

controllers (left). SNN controller racing against TORCS

controller (right).

367

In addition, we also ran tests using a sigmoid neural

network with most parameters being similar to the spiking

neuron network, with the exception that the sigmoid neural

network has a hidden layer of six hidden units, with a

continuous firing rate, instead of a firing rate measured over

20 milliseconds (ms) as used for the spiking neuron network.

Another difference is the values of the inputs, which are

normalized to have values in the range of [0, 1]. Apart from

t, the number of inputs, outputs and the correspondences

of the inputs and outputs are the same.

The fitness function used is somewhat similar to the

fitness function used by Simmerson, winner of the WCCI

racing competition [16] with some

fitness is determined by how far the car

amount of damage it took

ability to stay inside the

the number of time-steps, also known

. In this paper, we employed 10000 time-steps

for the evaluation of each controller, which is roughly about

The fitness of a controller is given by the equation:

is the total distance raced, v is the velocity of

is the maximum number of game ticks in

is the number of game ticks the car had been

is the amount of damage the car had

While a car is being evaluated, the damage the car took is

also monitored, so much so that if the damage exceeds 1000,

the controller is immediately disqualified, and the evaluation

is employed to optimize the

controller for all experiments described in this paper. In each

generation, the fitness of all controllers were evaluated and

compared with their respective parents. The controller with

higher fitness score will act as parents for the next

perturbed with a Gaussian

based on a constant mutation

, to produce the offspring for the next generation.

ducted with a population

size of 10 controllers and 10 runs, with 1000 generations

)
 �&'�(� &*+,� � -

Human player racing against SNN and TORCS

controllers (left). SNN controller racing against TORCS

each run, unless stated otherwise.

E. Experimental Setup

The clients for the spiking and sigmoid neural networks

were developed by extending the sample client included with

the TORCS CIG competition API. Loops were added into

the main controller for the generation and number of drivers

in each generation. The driver was redeveloped to include a

neural network object and a function call to process the

outputs from the inputs. However, the automatic

transmission and anti-lock braking system functions included

with the sample driver were retained.

Preliminary experiments were carried out to test if the

controller could be evolved to respond to turns or curvatures

on a simple track and then on a more difficult track. Then,

experiments were carried out to race without going off the

track, and drive as fast and far as possible, in the hope of

completing a lap within the shortest time.

The three tracks used in experiments are depicted in Fig.4,

starting from the simplest track to the hardest track of the

three. Track 1 is 1908.32 meters in length, while track 2 is

2057.56 meters, and track 3 is 3823.05 meters in length.

As mentioned in the methods section, the experiment was

carried out with three tracks, each track consists of 10 runs.

The population goes through 1000 generations each run, with

10 drivers in each generation, and each generation has 10000

game ticks. All these remained constant throughout the

experiment, and all racecars begin the race from the starting

line. The mutation rate used is 0.7, and the Gaussian

distribution has a mean 0 and a standard deviation 1, N (0,

1). A general overview of the implementation is given in the

flowchart.

IV. Results And Discussions

A. Spiking Neural Network

Results showed that the evolved spiking neural network

(SNN) controllers managed to race through all three defined

tracks, with minimal or no damage. The controllers even

showed sophisticated driving techniques when turning

corners. Figures below present the collected results of the

best controllers of all runs for each track.

Fig. 6 presents the average fitness growth of the best SNN

controllers evolved on track 1. It shows a sharp improvement

of the controllers during early generations, slowed down

after the first hundred generations, and converges around

generation 500. The population was probably lucky enough

to produce well performing offspring in the beginning. The

spiking neural network controllers evolved on track 1 have

the highest fitness scores among the three tracks, reaching

values as high as 50,000, but these scores are dependent on

the environment as well. As track 1 is much simpler than the

other tracks, the controllers do not need to slow down too

much while turning, so it gathered scores from larger

distance raced, and higher average speeds. Having said that,

some explanations for the early discovery of good

performing solutions is most likely because track 1 is easier

to drive in. Some interesting points to note, in addition to the

track being easy, are the sophisticated driving behaviors the

controller has developed on the track, where it made some

distance to the outer side of a curve to turn, instead of

making a sharp turn, thus it does not need to slow down too

much for each turn.

The charts in Fig. 7 and Fig. 8 show a similar trend as Fig.

6, but have lower fitness scores and are more curved. The

experiment on track 2, as presented in Fig. 7, had a steep but

steady climb in early generations, until around generation

150 when the steep climb ended, and the population started

to progress slowly. It was not until around generation 800

when the controllers start to converge. However, considering

the pattern of the chart, the controllers might not yet

converge, since the graph showed that the controllers made

some improvements at almost the end of the runs, signifying

further improvements are possible.

The experimental results from the SNN controllers on

track 3 on the other hand, as presented in Fig. 8, show that

the controllers raced in it gained lower scores than those

from track 1 and 2, barely reaching 30,000. As track 3 has U-

turns and more curves, it explains why controllers in track 3

gained lower fitness scores, because they needed to

slowdown for turns more. Nevertheless, the population also

experienced a quick improvement in their performance in

early generations, and only started to slowdown after

approximately a hundred generations. Yet the population still

maintained its’ advance albeit slowly until the end. Like the

results in Fig. 7, the populations evolved on this track most

likely have not converged, as can be seen from the graph in

Fig. 8, where the population’s fitness have the potential to

increase if given more generations to evolve in. Furthermore,

if drawn a trend line, we can see that the graph have not

leveled out.

After having obtained the results, we re-simulated the

solutions to observe their behavior on the track. We found

out that the controller evolved on track 1 was driving at top

speed and not slowing down much during turns, which is

good. Conversely, the controllers evolved on tracks 2 and 3

did not drive at top speed, but managed to avoid colliding

into or gliding along the rail of the tracks. We also noticed

that the controllers did not accelerate at maximum (flooring

the gas pedal) often, even on straight roads, which give

reasons why the cars seldom or did not reach full speed.

Although it is quite reasonable not to accelerate at maximum

in places that has many turns, probably the genes to floor the

gas pedal in straight roads had not emerge yet. We also

observed that many controllers are still going out of the track

in track 3, particularly during the hard turn after the straight

road, as it took speed but failed to slowdown enough to avoid

skidding off the track. Yet some controllers managed to have

evolved the behavior to overcome skidding off the track.

Early 100 generations consists of the controllers crashing

into the sides of the track and gliding against the rail, which

deducted fitness scores, driving slowly or not being able to

race far. Hence, the logarithmic-like graph, but after that

early generations, the controllers started to improve very

slowly. By this point, they were already able to drive fairly

far or complete a full lap, avoid crashing into the sides or

going out of the track often. Therefore, the only thing

remaining is for them to learn strategies for increasing

speeds at certain segments of the track and how much they

needed to slow down for each turn, in addition to strategies

for turning, such as avoiding sharp turns to avoid losing too

much speed, so larger distance could be covered.

368 Yee and Teo

Evolutionary Spiking Neural Networks as Racing Car Controllers

Table 1. Best Lap Times of Spiking Neural Network

Run
Best Lap (seconds)

Track 1 Track 2

1 25.98 48.65

2 25.77 48.27

3 25.74 44.87

4 25.79 46.73

5 25.49 47.21

6 25.82 44.71

7 25.89 46.67

8 25.82 45.89

9 25.92 46.73

10 25.72 51.48

µ / σ 25.79 0.1340 47.12 1.9879 126.72

Figure 9. The path driven by the respective best

controllers on the tracks used in this paper.

As the selection process we used is similar to the selection

method used in the differential evolution (DE) algorithm,

where a better performing child directly replaces its parent,

we see a very slow but gradual fitness improvement. One

very interesting question we consider is if another selection

technique, like tournament selection, round robin, or hall

fame, would increase the speed of the fitness improvement,

and perhaps help the controllers escape from local optima.

We also like to find out how much coevolution would do to

help the controllers improve.

Evolutionary Spiking Neural Networks as Racing Car Controllers

f Spiking Neural Network

Track 3

128.47

126.58

127.46

129.47

128.55

125.78

124.99

124.42

125.74

125.76

126.72 1.6871

The path driven by the respective best

As the selection process we used is similar to the selection

method used in the differential evolution (DE) algorithm,

rforming child directly replaces its parent,

we see a very slow but gradual fitness improvement. One

very interesting question we consider is if another selection

technique, like tournament selection, round robin, or hall-of-

of the fitness improvement,

and perhaps help the controllers escape from local optima.

We also like to find out how much coevolution would do to

Table 1 shows the shortest times achieved by the

controllers for each track of all 10 runs. The SNN controllers

evolved on track 1 achieved an average time of 25.8 seconds

with a standard deviation of 0.134 seconds, and the fastest

controller took 25.49 seconds to complete a lap. The

controllers evolved on track 2 needed an average tim

47.12 seconds with a standard deviation of about 2 seconds.

Its fastest controller took 44.71 seconds to complete a lap.

The SNN controllers evolved on track 3, on the other hand,

needed a staggering average time of 126.72 seconds, which

is about two minutes, and a standard deviation of 1.69

seconds, and its fastest controller took 124.42 seconds to

complete a lap. Furthermore, unlike the controllers evolved

on tracks 1 and 2, the controllers evolved on track 3 managed

to complete only one lap throughout the whole duration of

10000 game ticks. The fact, also, that the controllers on track

2 had a standard deviation of about 2 seconds might give a

clear sign that the controllers may have not fully converge

yet.

Though it is not presented in the table, bu

the raw data of the lap times and fitness score, we found the

controller that achieved the shortest time to complete a lap

does not mean it obtained the highest fitness score. However,

from the last generation of all runs, we found that the

for completing a lap is proportional to the fitness scores

obtained by the controllers, and this is true for the fittest

controller, as they achieved the shortest time and has the

highest fitness score. Yet there are some cases where a

controller achieved a shorter time than the time another

controller achieved, but obtained a lower fitness score than

the other controller, and vice versa.

Some explanation we could come up for this occurrence is

in the deduction of the fitness scores. A controller might

have achieved a shorter time to complete a lap, but it went

out of the track’s boundary and had its fitness score

deducted. As a car comes closer to the inner edge of the

curved path on the road, its distance to the finish line

becomes shorter. The aforementioned controller could have

drove outside the boundary of the track, but was nearer to the

inner edge of the curved path on the road. Hence, its distance

to the finish line was made shorter than the controller that

kept its course within the boundary of

We tried playing our SNN controllers against some

TORCS included controllers and the hand

controller, included with the TORCS CIG competition API.

We also tried playing against the SNN controllers

and witnessed some amusing discovery. Firstly, the evolved

controllers were able to beat the rule

without much effort on all three tracks. Secondly, the

controllers evolved on track 1 were able to beat both the

TORCS included controllers and us. The controll

on track 2, on the other hand, were able to beat us, but was

not able to beat the TORCS included controllers. The

controllers evolved on track 3 did not manage to overtake

both the TORCS included controllers and us, but drove so

much better than us, as we kept crashing onto the sides of the

track.

Observations we made and noted from our play against the

evolved controllers and the competition we set between them

and the TORCS included controllers, is that the evolv

controllers accelerates slower. The major cause of this, from

369

Table 1 shows the shortest times achieved by the

l 10 runs. The SNN controllers

evolved on track 1 achieved an average time of 25.8 seconds

with a standard deviation of 0.134 seconds, and the fastest

controller took 25.49 seconds to complete a lap. The

controllers evolved on track 2 needed an average time of

47.12 seconds with a standard deviation of about 2 seconds.

Its fastest controller took 44.71 seconds to complete a lap.

The SNN controllers evolved on track 3, on the other hand,

needed a staggering average time of 126.72 seconds, which

minutes, and a standard deviation of 1.69

seconds, and its fastest controller took 124.42 seconds to

complete a lap. Furthermore, unlike the controllers evolved

on tracks 1 and 2, the controllers evolved on track 3 managed

ut the whole duration of

10000 game ticks. The fact, also, that the controllers on track

2 had a standard deviation of about 2 seconds might give a

clear sign that the controllers may have not fully converge

Though it is not presented in the table, but by examining

the raw data of the lap times and fitness score, we found the

controller that achieved the shortest time to complete a lap

does not mean it obtained the highest fitness score. However,

from the last generation of all runs, we found that the time

for completing a lap is proportional to the fitness scores

obtained by the controllers, and this is true for the fittest

controller, as they achieved the shortest time and has the

highest fitness score. Yet there are some cases where a

eved a shorter time than the time another

controller achieved, but obtained a lower fitness score than

Some explanation we could come up for this occurrence is

in the deduction of the fitness scores. A controller might

have achieved a shorter time to complete a lap, but it went

out of the track’s boundary and had its fitness score

deducted. As a car comes closer to the inner edge of the

curved path on the road, its distance to the finish line

entioned controller could have

drove outside the boundary of the track, but was nearer to the

inner edge of the curved path on the road. Hence, its distance

to the finish line was made shorter than the controller that

kept its course within the boundary of the track.

We tried playing our SNN controllers against some

TORCS included controllers and the hand-coded/rule-based

controller, included with the TORCS CIG competition API.

We also tried playing against the SNN controllers ourselves

musing discovery. Firstly, the evolved

controllers were able to beat the rule-based controllers

without much effort on all three tracks. Secondly, the

controllers evolved on track 1 were able to beat both the

TORCS included controllers and us. The controllers evolved

on track 2, on the other hand, were able to beat us, but was

not able to beat the TORCS included controllers. The

controllers evolved on track 3 did not manage to overtake

both the TORCS included controllers and us, but drove so

n us, as we kept crashing onto the sides of the

Observations we made and noted from our play against the

evolved controllers and the competition we set between them

and the TORCS included controllers, is that the evolved

controllers accelerates slower. The major cause of this, from

our observation, is in the automated gear shifting strategy

used in the controllers’ car. Apparently, the car shifted its

gear earlier than the TORCS controllers and the human

controlled car, hence the reason for the slow buildup of

speed. Furthermore, the SNN controller accelerates with

values in the range of [0.0, 1.0], but the human controlled car

and the TORCS controllers accelerates at maximum value

(flooring the gas pedal). The SNN controllers from track 1

learned to floor the gas pedal throughout the race, but the

SNN controllers from track 2 and 3 did not manage to learn

it yet. Hence, the TORCS controllers have the upper hand to

win because it picks up speed faster. This matter provides us

with further interesting improvements that we could conduct

on our part.

B. Sigmoid Neural Network

The experiment with the sigmoid neuron network on the

other hand is used as an additional benchmark for the spiking

neuron controllers, alongside other benchmarks as mentioned

in Section 1. Based on the result charts, the sigmoid neural

network exhibits an almost similar pattern to the charts of the

SNN controllers. The sigmoid NN controllers evolved on

track 1 has the highest fitness scores, where as the fitness

scores for controllers evolved on track 3 are lowest.

Fig. 10 presents the average fitness growth of all the best

sigmoid NN controllers evolved on track 1 for all 10 runs. It

shows a sharp improvement in early generations and slowed

down after about 100 generations to start converging. It

finished the evolutionary run at the fitness of about 50,000.

Much as the controllers evolved using the SNN, the sigmoid

NN controllers show quick improvement and convergence.

The observations made are quite similar to the SNN

controllers, whereby they are able to display sophisticated

driving behaviors, such as by increasing it distance between

the car and the inner boundary of the track before turns to

avoid skidding.

Fig. 11 shows the average results of all the best sigmoid

NN controllers on track 2. The chart shows a slower

improvement compared to the results obtained from the

spiking NN controllers. Although both neural network

controllers finished the evolution process between the fitness

score of 30,000 and 35,000, the sigmoid NN controllers

required more generations to gain fitness scores above

30,000. Still, similar to the results obtained from the SNN,

the controllers may have not converged yet, since the slope

(tangent line) of the graph at 900 < generation (x) < 1000 is

still positive.

The average results obtained from the sigmoid neural

network controllers on track 3, as presented in Fig. 12, also

gained the lowest scores among the three tracks. The

sigmoid NN controllers experienced a slow but gradual

improvement in performance throughout its evolutionary

run, with earlier periods of about 200 generations being

faster than after it has reached a fitness score of over 20,000.

However, one significant difference between the two neural

networks, which is most notably seen in the results obtained

on track 3, is that the sigmoid NN only managed to obtain

scores above 20,000, but below 25,000, where as the SNN

managed to obtain scores above 25,000. Yet, based on its

slope, the sigmoid NN controllers should still be able to

improve if given more generations to evolve.

Table 2 details the fastest sigmoid NN controllers on all

three tracks. The sigmoid NN controllers evolved on track 1

achieved an average time of 25.80 seconds with a standard

deviation of 0.1701 seconds, while the fastest controller took

25.48 seconds to finish a lap. The sigmoid NN controllers

evolved on track 2 took an average time of 49.43 with a

standard deviation of 2.6417, which indicated to us that it

could still improve. The fastest controller evolved on track 2

took 45.08 seconds to complete a lap. Sigmoid NN

controllers evolved on track 3 needed an average time of

155.94 seconds with a standard deviation of 12.6369

seconds, whereas the fastest controller took 126.18 seconds

to complete a lap.

Weighting the differences, based on Table 1 and 2

between the Spiking Neural Network and the Sigmoid

Neural Network controllers, both neural network strategies

performed quite similar to each other for track 1, except

some small details, which might make the difference in a

Figure 6. The average fitness of the SNN controllers against

generation chart for track 1

Figure 7. The average fitness of the SNN controllers against

generations chart for track 2

Figure 8. The average fitness of the SNN controllers against

generations chart for track 3

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

370 Yee and Teo

Evolutionary Spiking Neural Networks as Racing Car Controllers 371

race. The fastest controller between both NN strategies

comes from the Sigmoid NN strategy, with a time of 25.48

seconds. A bigger difference started to appear from track 2,

most notably from the average time and standard deviation.

Only one SNN controller took more than 50 seconds to

complete a lap, but five, nearly six, sigmoid NN controllers

took more than 50 seconds. The winner for track 2 comes

from the SNN strategy, with 44.71 seconds. Track 3 has the

largest difference, as seen from the standard deviation of

both neural networks and the performance of the controllers.

Only one sigmoid NN controller managed to achieve a time

of 126.18 seconds, which intriguingly could beat five best

SNN controllers from its respective runs, while other

sigmoid NN controllers could not even achieve a time under

130 seconds.

One most possible and likely reason for this occurrence is

the increased complexity of the sigmoid neural network, as it

has more number of neurons compared to the spiking neural

network. Hence, the likelihood of the sigmoid NN to need a

longer period of evolution to achieve comparable lap times

to the SNN. Some observations we noted from the simulation

of the sigmoid NN is that it did not learn how to fully floor

the gas pedal on tracks 2 and 3 yet. In track 1, both SNN and

sigmoid NN controllers raced neck to neck on the track, and

at some points knocking out the other or each other off the

track. On track 2 on the other hand, we begin to see the

controllers start to outplay each other more as the fastest

sigmoid NN was able to win against five SNN controllers.

Although based on Table 1 and 2, the fastest sigmoid NN

controller should be able to defeat seven SNN controllers,

but in the simulation, we observed that two slower SNN

controllers knocked the fastest sigmoid NN controller off

course rendering it to waste time recovering its path or

impossible to continue the race.

The sigmoid NN that was used as a benchmark has a

hidden layer of six hidden units, which may not be fair to the

SNN that has no hidden layer. Hence, it may be more

appropriate if the experiment with the sigmoid NN was

conducted with no hidden layer as well. However, despite

the differences between the two strategies, the SNN

controllers were able to outrun the sigmoid NN controllers,

as if without much effort. Although necessary experiments

should be conducted for the sigmoid NN to find the best

number of hidden units and/or layer, it should be conducted

for the SNN too. Even though the SNN controllers may be

underfitted, since having too few neurons in a hidden layer

for a feedforward network will result in underfitting, which

will result in the inadequacy to detect the signals in a

complicated dataset [17], it still performed well. It drove

with sophisticated behaviors and win against the rule-based

controller on all tracks. It also outran the TORCS included

controller on track 1 and human player on tracks 1 and 2.

Furthermore, it performed better than the sigmoid neural

network controllers did. It will be interesting to see how it

will do with additional neurons and network recurrences.

Spiking neural networks present many challenges but also

opens up many new opportunities for pioneering innovations

in artificial intelligence research [18].

Table 2. Best Lap Times of Sigmoid Neural Network

Run
Best Lap (seconds)

Track 1 Track 2 Track 3

1 25.74 45.85 163.78

2 25.68 51.56 157.24

3 25.89 50.27 171.68

4 25.88 48.29 145.52

5 26.03 47.59 164.35

6 25.81 52.78 152.51

7 25.65 45.08 157.65

8 26.03 50.75 126.18

9 25.79 52.24 162.47

10 25.48 49.91 158.02

μ / σ 25.80 0.1701 49.43 2.6417 155.94 12.6369

Figure 10. The Sigmoid NN controllers’ average fitness

against generation chart for track 1.

Figure 11. The Sigmoid NN controllers’ average fitness

against generation chart for track 2.

Figure 12. The Sigmoid NN controllers’ average fitness

against generation chart for track 3.

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Fitness

Generation

V. Conclusion and Future Works

This study has shown that cars or games for that matter,

controlled by evolved spiking neuron models could perform

well. The generated controllers were not only capable of

driving through a complete racetrack without inflicting much

or any damage on itself but could also demonstrate

sophisticated driving behaviors. We have presented and

noted many interesting reasons behind many occurrences

during the experiment. Interestingly in some generations, the

controllers decided to break rules and drove off-track so it

could reduce its distance to the finish line. The results

obtained from this experiment showed that the potential of

using spiking neural networks in games, similar areas and

more are immense. Our focus in this paper was to discover

and show that spiking neuron models are capable of acting as

well performing controllers in games, and we chose a racing

game platform called TORCS, and interfaced our controllers

through the TORCS CIG competition API.

There are many areas we can include and/or optimize for

our future works, as the complexity of the game, evolution

process and network structure are not limited to the methods

we used for this paper. Future works may include a

competitive coevolution optimization strategy, a self-

adaptation method of the constant parameter values of a, b, c,

and d, using an adaptive fitness function, and so forth.

Perhaps employing incremental learning could introduce

more generalization, and including multi-objective

techniques could generate better solutions.

References

[1] S.J. Thorpe, A. Delorme, and R. Van Rullen, "Spike-

based strategies for rapid processing," Neural Networks,

vol. 14, pp. 715–726, 2001.

[2] Sander M. Bohte, "The Evidence for Neural Information

Processing with Precise Spike-times: A Survey,"

Natural Computing, vol. 3, pp. 195–206, 2005.

[3] Wolfgang Maass, "Networks of Spiking Neurons: The

Third Generation of Neural Network Models," Neural

Networks, vol. 10, pp. 1659-1671, 1997.

[4] Wolfgang Maass, "Computation with spiking neurons,"

in The Handbook of Brain Theory and Neural Networks,

2nd ed.: MIT Press (Cambridge), 2003, pp. 1080-1083.

[5] Morgan Jakobsen, "Learning To Race In A Simulated

Environment," Department of Information Technology,

Østfold University College, Master's Thesis 2007.

[6] N.G. Pavlidis, O.K. Tasoulis, V.P. Plagianakos, G.

Nikiforidis, and M.N. Vrahatis, "Spiking Neural

Network Traning Using Evolutionary Algorithms," in

IEEE International Joint Conference on Neural

Networks (IJCNN), Montreal, Que., 2005, pp. 2190-

2194.

[7] Dario Floreano and Claudio Mattiussi, "Evolution of

Spiking Neural Controllers for Autonomous Vision-

Based Robots," in LNCS 2217. Berlin, Heidelberg:

Springer-Verlag Berlin Heidelberg, 2001, pp. 38–61.

[8] Dario Floreano, Jean-Christophe Zufferey, and Jean-

Daniel Nicoud, "From Wheels to Wings with

Evolutionary Spiking Circuits," Artificial Life, vol. 11,

no. 1-2, pp. 121-138, January 2005.

[9] J. Togelius and S.M. Lucas, "Evolving controllers for

simulated car racing," in The 2005 IEEE Congress on

Evolutionary Computation, 2005, pp. 1906-1913.

[10] J. Togelius, P. Burrow, and S.M. Lucas, "Multi-

population competitive co-evolution of car racing

controllers," in Evolutionary Computation, 2007. CEC

2007. IEEE Congress, Singapore , 2007, pp. 4043-4050.

[11] Jorge Muñoz, German Gutierrez, and Araceli Sanchis,

"A human-like TORCS controller for the Simulated Car

Racing Championship," in Proceedings 2010 IEEE

Conference on Computational Intelligence and Games,

Copenhagen, Denmark, 2010, pp. 473-480.

[12] Elias Yee and Jason Teo, "Evolutionary Spiking Neural

Networks As Racing Car Controllers," in Hybrid

Intelligent Systems (HIS), 2011 11th International

Conference on, Melacca, 2011, pp. 411-416.

[13] Eugene M. Izhikevich, "Simple Model of Spiking

Neurons," IEEE Trans. Neural Networks, vol. 14, no. 6,

pp. 1569-1572, 2003.

[14] Eugene M. Izhikevich, "Polychronization: Computation

with Spikes," Neural Computation, vol. 18, no. 2, pp.

245-282, 2006.

[15] E. M. Izhikevich, Dynamical systems in neuroscience:

The geometry of excitability. Cambridge, MA: The MIT

Press, 2006.

[16] D. Loiacono et al., "The WCCI 2008 Simulated Car

Racing Competition," in Proc. IEEE Symp. Comput.

Intell. Games, 2008, pp. 119-126.

[17] Amit Ganatra, Y P Kosta and Devyani Panchal Gaurang

Panchal, "Behaviour Analysis of Multilayer Perceptrons

with Multiple Hidden Neurons and Hidden Layers,"

International Journal of Computer Theory and

Engineering, vol. 3, no. 2, pp. 332-337, April 2011.

[18] Peter Stratton and Janet Wiles, "Why Spiking Neurons,"

University of Queensland, Brisbane, Technical Report

TS-2007001, 2007.

Author Biographies

Elias Yee is a current member of the Evolutionary Computing Laboratory

at Universiti Malaysia Sabah. He received his Bachelor of Computer

Science degree from Universiti Malaysia Sabah in 2010 majoring in

software engineering.

Jason Teo is currently an associate professor in computer science and

deputy dean of the School of Engineering and Information Technology at

Universiti Malaysia Sabah. He is also currently heading the Evolutionary

Computing Laboratory there. Jason received his Bachelor of Computer and

Mathematical Sciences degree from the University of Western Australia in

1993 with majors in information technology and biochemistry and a minor

in mathematics. He completed the Master of Information Technology degree

with distinction from Charles Sturt University in Australia externally

between 1995 and 2000, and completed his Doctor of Information

Technology degree with the University of New South Wales at the

Australian Defence Force Academy in 2003.

372 Yee and Teo

