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Abstract- Recognizing patterns in time series has become a 
necessary machine learning task in many fields including 
medicine, finance, business and oil and gas industry. In this 
paper we propose a feature-based approach to recognize 
patterns in drilling time series data. Our approach consists 
of four phases which are: data preparation, feature 
extraction, feature selection and classifier training. In the 
first phase, the sensor-generated data required for building 
the recognition models are collected and prepared. In the 
second phase, the prepared time series data are transformed 
into a compact representation. The compact representation 
of the data consists of a set of statistical features extracted by 
sliding a window across the time series. In the third phase, 
numerous feature selection algorithms are applied to select a 
subset of most informative features from the statistical 
features set. Finally, the selected features are exploited to 
train a classifier that is used for final pattern recognition.  
Numerous feature weighting and selection algorithms were 
tested to find which statistical measures clearly distinguish 
between several different patterns. In addition, many 
classification techniques were employed to find the best one 
in terms of accuracy and speed. Experimental evaluation 
with real data shows that our approach has the ability to 
extract and select the best features and build accurate 
classifiers. Four different real-world drilling scenarios were 
used in the experiments. The performance of the classifiers 
was evaluated by using the cross-validation method. 
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I.  Introduction 

Time series data are omnipresent and broadly available in 
industrial applications. In the oil and gas industry, it is 
very common to monitor the basic drilling actions such as 
moving the drill string, rotating the drill string and 
circulating the drilling mud. Many mechanical parameters, 
such as hook load and block position, are continuously 
measured during drilling oil wells. These parameters are 
measured by a group of sensors located around the drilling 
rig and wired to a measurement system called a mud-
logging system. Fig. 1 shows sensor-generated time series 
data of eight hours of drilling. This time series is 

multivariate which means that many variables - eight in 
our case - will be measured at each time point. 
After collecting the data at the rig site, data transferring 
systems and data storing systems can be employed to 
transfer and store these data anywhere in the world. 
Although the sensor measurement and transferring 
systems are being developed rapidly, the techniques of 
data interpretation and analysis have not developed at the 
same speed. There is a lack of systems able to make 
efficient use of all the data available to improve the 
drilling process. 

Improving the drilling process relies on performance 
analysis that is primarily based on daily activity 
breakdowns [1]. Drilling operations recognition systems 
break down the total drilling time into a list of well-
defined operations e.g. drilling, rotating and make 
connection. These systems provide the engineers with 
detailed information about what is happening on the rig 
site. In the last decade, numerous operation recognition 
approaches have been proposed. Some of these 
approaches take as input the sensors data themselves, and 
recognize the drilling operations. Adriane et al. [2] present 
a drilling operations classification system using Support 
Vector Machine (SVM). The input of this system is five 
sensors values with a specific timestamp, and the output is 
one of six predefined operations.   
 

Drilling time series data have a very high 
dimensionality. The high dimensionality of the data 
makes the access time very slow and the total computation 
time more expensive [3]. That means, applying machine 
learning techniques directly on raw time series data is not 
practical. What is needed is a higher-level representation 
of the raw data that allows efficient computation, and 
extracts higher order features. Esmael et al. [4] propose a 
new representation of drilling time series data which 
combines trend-based and value-based approximations. 
The proposed compact representation consists of symbolic 
strings that represent the trends and the values of each 
variable in the time series.  

 



455   
 

 

Figure 1. Drilling time series data

In this work, we improve the approach proposed in 
[5]. This approach is based on creating a compact 
representation of the raw sensor data in a given time 
range. The compact representation contains a set of 
statistical features calculated from the raw data.  
Many papers suggest using statistical features to recognize 
patterns in time series. Lambrou [6] uses mean, variance, 
skewness, kurtosis and entropy as statistical features to 
classify audio signals. In [7], visual analytics techniques 
are used to explore the statistical features of sensors 
measurement. The results show how the statistical features 
are important in detecting different situations in 
underlying drilling process. Moreover, monitoring few 
features such as Skewness and Entropy can be considered 
as powerful tool to observe very critical situations (e.g. 
Stuck Pipes) in drilling process.  

In this work, we focus on developing an approach that 
is not custom-made to solutions of specific application 
areas, but that will be applicable to other fields as well.  

 
The remainder of the paper is organized as follows:  

Section II presents the general framework of our 
approach. Section III introduces the data preparation 
phase. Section IV shows the details of statistical features 
extraction phase. Sections V, VI and VII introduce the 
details of features ranking and feature selection phases. 
Section VIII shows the details of the classification task, 
and the last section IX displays the experimental results of 
the approach. 

II. The General Framework 

The proposed approach is simple but efficient; it uses 
the classical steps of data preparation, feature extraction, 
feature selection and classifier training. The general steps 
of the approach are sketched in Fig. 2 and described in 
more details later. 
The input of the approach is the raw sensor-generated data 
which called “channels“. Most of the mud-logging 
systems provide 10 time series channels that represent the 
most important mechanical parameters. Table 1 describes 
the commonly-used channels. 

TABLE 1. STANDARD DATA CHANNELS 

Channels  Description 
flowinav Average mud flow-rate 
hkldav Average hook load 
mdbit Measured depth of the bit 
mdhole Measured depth of the hole 
posblock Block position 
prespumpav Average pump pressure 
ropav Average rate of penetration 
rpmav Average drill string revolutions 
tqav Average torque 
wobav Average weight on bit 

 
In other words, the input is a multivariate time series with 
ten variables (channels) ���, ��, … , ����,	 where �
  is a 
series of real numbers	���, ��, … , ���  made sequentially 
through time.  
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Figure 2. The general framework.  

After receiving the input data, these data will be cleaned 
and prepared, a set of statistical features will be 
calculated, and then a subset features will be selected, and 
finally a classifier will be trained. Several techniques were 
used in the third and fourth phases in order to get the best 
performance in terms of speed and accuracy. 
The final output of the approach is a sequence of drilling 
operations that have different durations.  

III. Data Preparation 

The sensor-generated data are not directly ready for 
building the classification models. These data contain, in 
most cases, outliers and missing values that will influence 
the accuracy of the features calculation.  
Data cleansing is an elementary phase that should precede 
all others machine learning phases. In data cleansing task, 
two subtasks were executed which are: 

• Identification and handling of missing values 

• Identification and handling of outliers 

Outlier is a numeric value which has an unusually 
high deviation from either the mean or the median value. 
Although there are numerous sophisticated algorithms for 
outlier detection, a simple statistical method is used in this 
work. This method is based on interquartile range (IQR) 

which is a measure of variability of the data. IQR was 
calculated by this equation:  

 �� � 	�� � �� (1) 

Here ��, �� are the middle values in the first and the third 
half of the data set respectively. An outlier is any value � 
that is at least 1.5 interquartile ranges below the first 
quartile ��, or at least 1.5 interquartile ranges above the 
third quartile �� . One of these equations should be 
satisfied: 

 � � �� � 1.5 � �� (2) 

 � � �� � 1.5 � �� (3) 

Boxplot (Box-and-Whisker plot) was used as a 
graphical representation of dispersion of the data. In other 
words, it was used to display the outliers graphically. 
Fig. 3 shows that there are no outliers in the “mdbit” and 
“mdhole” data taken from one drilling scenario. Fig. 4 
shows the outliers in “Hook load” and “Block 
position“ data taken from the same drilling scenario. 

 
The length of the box equals to the difference 

between Q3 and Q1 which is IRQ. The red line drawn 
inside the box represents the median value. All data points 
appear above the top horizontal line or below the bottom 
horizontal line will be considered as outliers.  

 

Figure 3. Boxplot for mdbit and mdhole channels 

 

Figure 4. Boxplot for hkldav and posblock channels 
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After identification the outliers, these outliers as well as 
the missing values were substituted by the mean value. If �
 is considered as an outlier or missing value, then this 
value will be substituted by: 

 �
 � �
�� � �
��2  (4) 

Although this data cleansing procedure is simple, it is 
very efficient and can remove most erroneous values from 
the data. 
  
Data Normalization 

Data were normalized to reduce unwanted variation 
between datasets as well as to allow data on different 
scales to be compared by converting them to a common 
unified scale. 
Since the total depth of the drilling wells differ from a 
well to another, all channels that are related to the depth 
(e.g. “hkldav”, “mdbit” and “mdhol”) were normalized by 
dividing by the total depth of the selected well. The 
unrelated channels (e.g. “posblock” and “ropav”) were 
used without normalization.  

IV. Statistical Features Extraction 

The second step of the approach is feature extraction, 
which is the transformation of patterns into features that 
are considered as a compressed representation. 
Drilling time series data have a very high dimensionality, 
therefore mining such data is a challenge because a huge 
number of features can be extracted from the raw data [8].  
To reduce the dimensionality of the data, a high-level 
representation is built where a set of significant features 
are calculated. These features provide an approximation of 
the original time series data. 
 

For each time series variable	�
 � ���, ��, … , ��� , � � 1. .10  many statistical features were calculated to 
measure different properties of that variable. Fig. 5 shows 
the main groups of the calculated statistical measures, and 
below is some details about these measures. 

 

Figure 5. Statictical Features Extraction 

A. Arithmetic mean (AM) 

The arithmetic mean �  is the average of the 
values	���, ��, … , � �  located within a time window. It 
was calculated by equation (5): 

 � � 1!"�
 

#�  (5) 

B. Standard Deviation 

The standard deviation $ was calculated by equation (6) 
to measure how the values 	���, ��, … , � �	are spread out.  

 $ � %1!"&�
 � �'� 

#�  (6) 

C. Standardized moment 

It is the normalization of the kth moment with respect to 
standard deviation. It was calculated by the equation: 

 �($( (7) 

Here �(  is kth moment about the mean. The third 
standardized moment (skewness) and fourth standardized 
moment (kurtosis) were calculated and used as features. 

D. Kurtosis 

Kurtosis was calculated by equation (8) to measure the 
peakedness of the probability distribution of the data.  

 )* � �+$+ (8) 

where �+ is the 4th moment about the mean, and given by: 

 �+ � 1!"&�
��'+ 

#�  (9) 

E. Skewness 

Skewness was used to measure the asymmetry of the data. 
It was calculated by equation (10): 

 ,- � ��$� (10) 

Where �� is the 3th moment about the mean, and given by: 

 �� � 1!"&�
��'� 

#�  (11) 

F. Entropy 

Entropy was used to measure the impurity associated with 
a random variable. The entropy . of a discrete variable / 
with possible values ���, ��, … , � � and probability mass 
function  0&/' is given by: 

 .&/' � �"1&�
'. 234�1&�
' 

#�  (12) 
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G. Root Mean Square (RMS) 

Root mean square is a measure of the magnitude of a set 
of values. It is the square root of the arithmetic mean of 
the squares of the original values. It was calculated using 
the following equation (13): 

 �5, � 6∑ �
� 
#�!  (13) 

H. Percentiles 

A percentile is the value of a variable below which a 
certain percent of observations fall. In other words, the pth 
percentile is a value 89 such that at most &100 × 0)% of 
the measurements are less than this value and 100 ×

(1 −  0)% are greater. 
Percentiles were used to measure the position. Five 
percentiles were calculated and used namely: p10, p25, 
p50, p75 and p90. 

 
In addition to the above mentioned measures, basic 

statistical functions were calculated like sum, min, max, 
etc. Overall 22 statistical features were calculated for each 
channel namely: mean, median, mode, variance, standard 
deviation, root mean square, interquartile range IRQ, 
range, skewness, kurtosis, second moment, p10, p25, p50, 
p75, p90, min, max, sum, first, last and entropy.  
The total number of calculated features equals: Number of 
channels times Number of features = 11 x 22 = 242 
features. All these features were calculated using simple 
software written in Matlab. This software takes as input a 
list of channels and a time range (start timestamp and end 
timestamp) and returns the mentioned statistical measures. 

V. Feature Ranking & Selection  

High dimensional data, like our dataset, which has 
hundreds of features, can contain high degree of irrelevant 
and redundant information which might greatly reduce the 
performance of learning algorithms [9]. Therefore, feature 
selection becomes very necessary in our approach.   
In the feature selection step, we seek to choice a subset of 
relevant features with high predictive value for creating 
robust learning models. Feature selection was 
implemented to improve the performance of our learning 
models by increasing the accuracy of the classifiers and 
speeding up learning and classification processes. In 
addition, feature selection improves model interpretability 
because it is much easier to tell an engineer that from 
hundreds of features these 10 are important to the 
classification task than to explain the influence of the 
hundreds features. 

 
From a theoretical perspective, the best features can 

be selected using brute-force search, also known 
as exhaustive search of all possible subsets of 
features. For a dataset with n features, exhaustive search 
needs (2n-1) possibilities. In our case we have 242 features 
yielding: 

2�+� − 1 = 7.06 =>�  possibilities to combine all the 
features.  That means using exhaustive search is not 
feasible in finite time, and other selection algorithms 
should be considered.  
The initial step in our feature selection phase is removing 
the correlated features in order to drop the dimensionality 
of the data and increase the computational efficiency. 
A correlation matrix (242×242) was calculated to check 
the correlation strength between features, then we 
searched for highly correlated ones and removed one of 
them. In this step 24 features were removed. 

VI. Feature Ranking  

The fastest method for feature selection is ranking the 
features with some statistical test, and then selecting the k 
features with the highest score or those with a score 
greater than some threshold t. Such univariate filters do 
not take into account feature interaction, but they allow a 
first inspection of the data and most probably provide 
reasonable results [10]. 

We used 10 different feature ranking algorithms 
(described in table2) and measured the performance of 
them. 

TABLE 2. FEATURE RANKING ALGORITHMS 

Algorithm Description 

SAM 
Calculates a weight according to "Significance Analysis 
for Microarrays" 

PCA 
Uses the factors of one of the principal components 
analysis as feature weights 

SVM 
Uses the coefficients of the normal vector of a linear 
support vector machine as feature weights 

Chi 
Squared 

Calculates the relevance of a feature by computing for 
each attribute the value of the chi-squared statistic with 
respect to the class attribute 

Relief 

Measures the relevance of features by sampling 
examples and comparing the value of the current feature 
for the nearest example of the same and of a different 
class 

Gini Index 
Calculates the relevance of the attributes based on the 
Gini impurity index 

Information 
Gain 

Calculates the relevance of the attributes based on the 
information gain 

Correlation 
Calculates the correlation of each attribute with the 
label attribute and returns the absolute or squared value 
as its weight. 

Maximum 
Relevance 

Selects Pearson correlation, mutual information or F-
test depending on feature and label type 
(numerical/nominal). 

Uncertainty 
Calculates the relevance of an attribute by measuring 
the symmetrical uncertainty with respect to the class 

 
Although the aforementioned algorithms did not produce 
identical results, there was about 70% of similarity 
between these results. For example most algorithms put 
flowin-p90, wobav-skewness, rpm-variance and 
prespumpav-range features in the top of the ranking list. 
  
Feature number optimization 

The resulting question now is: How many features 
should be used to get the best model in terms of accuracy? 
To answer this question, many tests were performed. We 
generated many models with different number of features 
and calculated the accuracy for each one. We started with 
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the top 150 features and then reduced this number to 100, 
50 and 25. Table 3 shows the results. For most algorithms, 
models trained with 50 features have the best accuracy. 

To select the best number of features accurately, PCA 
algorithm, which gives the best accuracy, was used to 
rank the features. We started with the top feature, and 
each time we added the next top feature until we finished 
all features. 

  
TABLE 3. FEATURE RANKING COMPARISON  

(150, 100, 50 AND 25 FEATURES) 

Algorithm 
Accuracy [%] 

150 F 100 F 50 F 25 F 
SAM 80.29 81.19 75.12 66.06 
PCA 83.29 81.38 85.72 80.74 
SVM 80.59 81.09 76.33 66.06 

Chi Squared 82.31 82.41 83.19 79.68 
Relief 81.29 82.2 83.19 78.57 

Gini Index 80.89 80.69 81.59 80.08 
Information Gain 81.6 81.19 81.88 80.39 

Correlation 80.89 84.22 83.3 80.21 
Maximum Relevance 80.69 82 79.31 79.58 

Uncertainty 80.89 82.61 85.51 82.91 

 
Fig. 6 shows the accuracy curve as a function of the 
features number. It’s clear that with 38 features we will 
get the most accurate classifier, but also with only 5 
features we will get an acceptable result. 

 

Figure 6. Accuracy curve as a function of the features 
numbers 

VII. Forward Selection Methods 

Forward selection method was used to bridge the gap 
between fast, but univariate filters, on the one hand, and 
slow, but multivariate exhaustive search, on the other 
hand. 
Forward regression starts with creating models using 
exactly one feature. So we trained in the first step several 
networks using only the first feature as input, then the 
same procedure using the second feature as input and 
continued until the last feature was used as single model 
input [12]. The feature which yields the lowest error 
(ropav-p90) will be considered as the feature that has the 
most impact to the model. 
In the second step we made new training runs with ropav-
p90 as fixed input and adding exactly one of the 
remaining features as second input. We performed that 
procedure until all features were used as model input. 
Many networks were trained to obtain as result the 
ranking of the input with respect to the model error.  

In Fig. 7 the results are sketched, ropav-p90 has the 
leading impact followed by wobav-skewness, mdhole-
p75, etc. 
The first error values in Fig. 7 give us the model errors 
using only ropav-p90 as input, the second values the 
errors using ropav-p90 & wobav-skewness as input, the 
third values the errors using ropav-p90 & wobav-
skewness & mdhole-p75, etc. 
 

 
Figure 7. Forward Selection 

VIII. Classifiers training 

 After extracting the features and selecting the most 
informative ones, we are ready to start classification 
process. Five classification techniques were used in this 
work. These techniques are: Support Vector Machine 
(SVM), Artificial Neural Network (ANN), Rule Induction 
(RI), Decision Tree (DT) and Naïve Bayes (NB).  
 
 Each one of these classifiers contains some 
parameters that can be tuned to improve the accuracy of 
the classification process. Numerous values and options of 
these parameters were tested to get the best results. Fig. 8 
shows the structure of the neural network used in this 
work. 

 
Figure 8. The structure of the neural network 
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A feed-forward neural network was trained by a 
backpropagation algorithm (multi-layer perceptron). The 
structure of the neural network has three layers: input, 
hidden and output. The input layer consists of input 
neurons which receive the input (statistical features). The 
output layer consists of output neurons which represented 
the classes (drilling operations). 
 
The performance of the classifiers was evaluated by using 
the cross-validation method. We found that the worst 
classifier –in most cases – is Naïve Bayes, and the best 
one is support vector machine and rule induction. 

IX. Experimental Results 

To evaluate our approach, we collected data from four 
different drilling scenarios described in table 4. The time 
versus depth curve for scenario#1 is shown in Fig. 9, and 
the histogram of its operations is shown in Fig. 10. 

 
TABLE 4. FOUR DRILLING SCENARIOS 

Scenario Instances Duration [day] Depth [m] Classes 
#1 991 95 7825 5 
#2 1250 190 4402 9 
#3 770 87 4863 7 
#4 470 41 4004 4 

 

 

Figure 9. TxD curve of scenario#1 

 
Figure 10. Histogram – operations of scenario#1 

 

The proposed approach was applied to all scenarios. 
RapidMiner [13] was used to train neural network, rule 
induction, naïve Bayes and decision tree classifiers. 
LIBSVM [14] was used to train support vector machine 
classifiers which belong to the general category of kernel 
methods. The most important point was taken into account 
when using SVM is selecting an appropriate kernel, and 
determining the best parameters.  
Most people randomly try a few kernels and parameters, 
and in most cases they cannot build an accurate classifier. 
In this work, the procedure proposed by Hsu et al. [11] 
was followed. This procedure consists of the following 
steps: 

• Transform data to the format of an SVM package 

• Conduct simple scaling on the data 
• Consider the RBF kernel K(x,y)=Exp(−γ|x-y|2) 
• Use cross-validation method to find the best 

parameters C and γ. 
• Apply the best C and  γ to train the whole training set 
• Test the classifier 

 
To measure the improvement gained as a result of 

using feature selection, two groups of experiments were 
taken place. In the first group, all the classifiers were 
trained using the whole features set. In the second group, 
all the classifiers were trained only with the selected 
features. 
Table 5 shows the results of the first group of the 
experiments. Table 6 shows the results of training the 
classifiers using only the top 38 features. 

TABLE 5. CLASSIFICATION RESULTS (ALL FEATURES) 

Scenarios 
Accuracy [%] 

ANN RI NB DT SVM 
#1 78.2 79.08 65.02 72.55 79.3 
#2 72.05 68.37 60.33 55.09 74.12 
#3 78.12 78.90 63.95 75.26 79.10 
#4 76.75 78.56 64.39 75.05 77.57 

TABLE 6. CLASSIFICATION RESULTS (38 FEATURES) 

Scenarios 
Accuracy [%] 

ANN RI NB DT SVM 
#1 82.51 85.45 67.78 76.75 83.90 
#2 70.84 70.51 63.33 54.12 72.4 
#3 80.52 86.41 66.74 79.34 83.42 
#4 81.90 85.96 67.45 78.59 82.70 

The accuracy improvement rate is about 10%, and the 
classification and training process become much faster.  
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