
International Journal of Computer Information Systems and Industrial Management Applications.

c© MIR Labs, www.mirlabs.net/ijcisim/index.html

QoS4WSC: A Framework for Web Services
Composition based on QoS constraints

Bassirou Gueye, Ibrahima Niang, Bamba Gueye and Mohamed Ould Deye

University Cheikh Anta Diop de Dakar
Faculty of Science and Technology

Department of Mathematics and Computer Science
Dakar - SENEGAL

bassirou.gueye@ucad.edu.sn, iniang@ucad.sn, bamba.gueye@ucad.edu.sn, mohamed.ouldeye@ucad.edu.sn

Abstract: Web Services Composition (WSC) is a paradigm
for enabling application integration within and across organi-
zational boundaries. Nowadays, the main challenges of WSC in
environment like Internet are to ensure high quality execution.
Former works on service composition have enabled the elabora-
tion of the BPEL4WS standard. Nevertheless, the management
of the Quality of Service (QoS) of service composition, generally
defined in Service Level Agreement (SLA), was not taken into
account. Therefore, it is mandatory to built flexible solutions,
reusable, and offering a suitable level of abstraction.
We propose a new framework, called QoS4WSC, that evaluates
constraints-based response time in WSC. In order to provide a
model which can estimate the effective response time of a service
composition, we use a parsing file composition technique. Since
elementary web services are based on a best effort approach, we
propose an architecture which takes into account the response
time of a each given service. Our architecture is composed by
two components. The first one pre-determines the response time
of elementary web services and the second one verifies the QoS
constraints related to the WSC.
Keywords: Web Services Composition - BPEL - Quality of Ser-
vice - SLA.

I. Introduction

Web services are a tremendous technology that ensure in-
teroperability between applications in the Internet [1]. This
new concept leads to a development of new paradigms that
enable an interaction between different applications. In fact,
web services are the latest distributed technology as well the
most suitable technology for the realization of SOA (Service
Oriented Architecture) [3, 4]. They become the commonly
used technology for integrating applications and information
systems. This trend is expected to be unabated. Web services
provide the technological foundation for achieving interop-
erability between applications by using different software
platforms, operating systems, and programming languages.
They are built on XML which is de facto the standard for
data-level integration.
From the technological perspective, web services can be seen
as a distributed architecture which started with DCE (Dis-
tributed Computing Environment), RPC (Remote Procedure
Call), and messaging systems. Thereafter, distributed ob-

jects and ORBs (Object Request Brokers), such as CORBA
(Common Object Request Broker Architecture), DCOM
(Distributed Component Object Model), and RMI (Remote
Method Invocation), have emerged.
Similarly, web services have been proposed, and they were
the first distributed technology that were supported by all
major software vendors. Therefore, web services promote
an universal interoperability between applications running on
disparate platforms.
Web services are based on the following fundamental speci-
fications: (i) WSDL Web Services Description Language [5]
which is the description of the web services; (ii) UDDI Uni-
versal Description, Discovery and Integration [6] which en-
ables to publish the services; SOAP Simple Object Access
Protocol [7] which is a protocol of communication that is
used in order to invoke the web services. It is worth not-
ing that WSDL, UDDI and SOAP are XML-based which
prones web services protocol messages and descriptions to
become human readable. Web services are designed to pro-
mote SOA, integrating highly distributed complex heteroge-
neous systems, that can cooperate without considering spe-
cific and costly integration. It exists different web-based ap-
plications that can perform specific tasks.
According to few applications, it is necessary to combine a
set of basic web services in order to create a composite web
services. However, the task of composing web services is
more complex due to the autonomy and heterogeneity of ser-
vices, as well the dynamic nature of the composition [8].
Indeed, a composition is not simply a collection of any web
services but a group whose tasks are ordered according to
the relationships between web services. In addition, web
services are usually provided by different organizations, and
their executions are not related to context. Since each orga-
nization has its own rules of work, web services should be
treated as strictly autonomous units.
The QoS (Quality of Service) examines the quality of the
relationship that exists between a service and its customers
is crucial. Although it exists significant works around ser-
vices composition which have enabled the development of
the standard BPEL4WS [9] (Business Process and Execution
Language For Web Services), the management of QoS in ser-
vices composition needs new solutions that are either flexi-

ISSN 2150-7988 Volume 5(2013) pp. 488-498

MIR Labs, USA

ble, or reusable, To this purpose, we can provide more ab-
straction levels. Indeed, the expressiveness of BPEL is only
the functional aspects of the compositions.
According to SOA context, where the end users are unfamil-
iar, QoS issues are also important as much as the assembly of
functional services. In this respect, it is mandatory to ensure
that a given BPEL process will be executed with efficiency
after its construction. QoS characteristics in web services
should respect the agreement between the service provider
and the user. This agreement is defined in a SLA (Service
Level Agreement) [10, 12] which defines the supply and the
demand of these two entities.
The QoS in web service can be monitored by using differ-
ent non functional metrics such as response time, availabil-
ity, cost, etc [12, 13]. It is worth noticing that the response
time is the most important metric with respect to WSC. An
efficient management of the response time induces the avail-
ability at any time of the web service composition. Indeed,
the invocation of a web service can be triggered anywhere
on the Internet and the response should be given in a short
time interval. In such case, this implies that the service is
available. Therefore, in order to take into account the QoS,
it is mandatory to develop new tools for its management. It
is worth noting that, the degradation of the quality of service
can lead to serious problems with a loss of customers that
promotes a reduction economic gain. In fact, if a service runs
during a long time or is not available quite often (failure), it
will be not re-used by customers.
Similarly, it is important for the QoS-aware composition to
be fast. Hence, for interactive systems, a long execution de-
lay may be unacceptable from a customer point of view. For
example, a user of a booking ticket system would not like to
wait during a long time when the system is seeking candidate
services that offer low cost flight tickets. A fast composition
is also required to re-plan a service composition during the
execution. In fact, the actual QoS deviates from the esti-
mated one, and hence, this could cause constraint violation,
or simply because some services might not be available. In
this case, the time composition influences the overall services
response time, thus it should be kept as low as possible.
In addition to our early work [2], this paper provides a en-
hanced description of the execution process of BPEL con-
structors. For instance, an algorithm which describes a thor-
ough operating of the “sequenceActivity” constructor is de-
picted. Afterwards, we give an overview of the different ac-
tivities that are involved in a life cycle of a service composi-
tion. Therefore, the proposed framework QoS4WSC (Qual-
ity of Service For Web Service Composition) enables to take
into account QoS concerns and it is composed by two mod-
ules. The first module makes possible a predetermination
of the response time of elementaries web services whereas
the second module provides a mechanism for checking the
QoS constraints of services composition. In order to pro-
vide a model for estimating effectively the response time of a
service composition, we use the BPEL process parsing tech-
nique.
In this respect, QoS4WSC is able to estimate the amount of
time that is need for executing any service composition that
is constituted by a set of constructors. Consequently, the ser-
vice providers compose their services by taking into account

the execution time of these constructors, and thus reduce the
time for getting a response during the invocation of a web
service composite. It should be noted that our model fully
covers the last version of WS-BPEL 2.0 which is adopted as
OASIS Standard.
The rest of the paper is organized as follows. In section II, we
present an overview on previous works on WSC. Next, Sec-
tion III is devoted to introduce the architecture of QoS4WSC.
Section IV presents how our QoS4WSC framework enables
to evaluate QoS constraints, as well illustrates the different
constructors used by QoS4WSC in order to estimate and ver-
ify the response time of a service compositions. Section V
shows the impact of QoS4WSC in the life cycle of a web
services composition. In section VI, we validate and evaluate
our proposition with respect to former works. Finally, Sec-
tion VII concludes the paper and outlines our future work.

II. Background and related work

In this section we give a brief overview on web services com-
position , and illustrate the incentives for managing QoS. Af-
terwards, we survey the former works that propose some so-
lutions in order to tend towards efficient WSC.

A. Overview on web services composition

Recently, WSC has received much interest for support-
ing Business-To-Business (B2B) and Enterprise Applica-
tion Integration (EAI). Many industrial standard specifica-
tions have been proposed in recent years, such as BPEL4WS
(Business Process Execution Language for Web Services)
[9], BPML (Business Process Modeling Language) [14],
XLANG (XML business process Language) [15], WSFL
(Web Service Flow Language) [16], WSCL (Web Service
Conversation Language) [17], and WSCI (Web Services
Choreography Interface) [18] in order to compose web ser-
vices. Afterwards, we give a definition of the previously pro-
posed specifications.
BPEL (Business Process Execution Language), also called
either Web Services BPEL (WS-BPEL), or BPEL4WS, is a
language used for composition, orchestration, and coordina-
tion of web services. It provides a rich vocabulary for ex-
pressing the behavior of business processes. On the other
hand, BPML is a meta-language for modeling business pro-
cesses and provides an abstract execution model for describ-
ing collaborations and transactions. It defines a formal model
for expressing abstract and executable processes.
XLANG, which is proposed by Microsoft, is an extension
of WSDL (Web Service Definition Language). It provides a
model of services orchestration as well as collaboration con-
tracts between orchestrations.
Similarly, WSFL is an XML language for the description of
web services compositions as part of a business process def-
inition. It is designed by IBM to be part of the web ser-
vice technology framework, relies and complements existing
specifications like SOAP, WSDL, XMLP and UDDI.
WSCL provides a XML schema for defining legal sequences
of documents that web services can exchange. WSCL makes
possible to define the abstract interfaces of web services and
may be used in conjunction with other service description
languages like WSDL.

489 Gueye, Niang, Gueye and Deye

Finally, WSCI is a language that returns the exchanged flows
messages by web services in the context of a process. It de-
scribes the collective message exchange among interacting
web services, providing a global and message-oriented view
of a process involving multiple web services.
The general adoption of business process automation re-
quires to propose standardized and specialized language in
order to compose services into business processes. In such
case, one provides the ability to express business processes
in a standardized way by using a commonly accepted lan-
guage. To this purpose, our proposition is based on BPEL in
view of this language represents the evolution of the former
composition languages like BPML, WSFL, WSCL, etc. Fur-
thermore, since 2007 BPEL becomes the standard for web
service composition. It is worth noting that BPEL is a con-
vergence of two early workflow languages: IBM WSFL [16]
and Microsoft XLANG [15]. It combines both approaches
and provides language for the formal specification of busi-
ness processes and business interaction protocols.
In addition, BPEL is the most comprehensive standard for
describing business processes that can exist. It is the most
sustained in industry as well as the most accepted by devel-
opers. Besides, we noticed a lot of works based on this lan-
guage such as METEOR-S [19], AO4BPEL [20], DYNAMO
[21], MASC [22], etc. In this sense, it is a language that is
largely deployed in industries.
On the other hand, we note several technologies implemented
with BPEL akin to Microsoft BizTalk Server, IBM BPWS4J,
Oracle BPEL Server, Apache ODE.
BPEL provides a set of constructors allowing to define com-
posite processes from the operations required by the WSDL
partners’ files. During the BPEL process each element or
constructor is considered like an activity which can be de-
scribed as a primitive or a structured activity. The main dif-
ference between both constructors is due to the fact a prim-
itive constructor should be used itself whereas a structured
constructor is able to call other constructors that are either
structured or primitive [9].
The set of primitive and structured activities are illustrated in
figure 1. Notwithstanding a detailed description, of the set of
activities enumerated in figure 1, is given in Section IV-B.

Figure. 1: Activities of BPEL process.

B. Quality of service management

With the emergence of services in software architectures,
it appears a new relational model between Internet users.
This is due to the fact that a lot of services are provided by
providers and hence used by customers. With a lack of cou-
pling, the Service Oriented Architecture (SOA) simplifies the
services process discovery, but also their utilization. Accord-
ing to SOA, customers may easily substitute one service for
another according to their convenience.
Moreover, with respect to the proliferation of services that
have quite often the same functionality, we attend to a com-
petition between providers, in the sense that each one seeks
to provide the best service in term of response time, cost, and
availability.
In addition, due to the ubiquitous nature of Internet users can
invoke services from different networking devices (e.g., mo-
bile phone, laptop, tablet computer, etc.) that can have dif-
ferent bandwidth requirements. Therefore, service providers
should have a big concern about the QoS requirements ac-
cording to these heterogeneous equipments. In this context,
the notion of quality of service becomes a crucial issue. Like-
wise, this notion refers to multiple properties such as re-
sponse time, availability or cost.
In this sense, the authors of [23] proposed to introduce a
framework where the service registries as well as services
contribute to an automation of service discovery, and hence,
workload is distributed more efficiently. This is achieved by
developing a Linked Data compliant Web services frame-
work which communicates with semi-centralised registries
that compute themselves their suitability for a given request.
Note that, all communications among different framework
components use RDF-based message protocols including In-
put/Output service. Consequently, the offered framework in
[23] aims to optimize the load balancing as well the perfor-
mance by dynamically assembling services at run-time in a
massively distributed Web environment.
On the other hand, Tripathy et al. illustrated in [24] a frame-
work for monitoring the compliance of a set of pre-specified
requirements of a SBS (Web Service Based Systems) . These
set of requirements may include behavioral properties of SBS
and/or assumptions that can be specified by service providers
in terms of events. It is worth noticing that these events are
extracted from SBS at run-time. To achieve this, a Monitor
Specification Language (MSL) has been developed to specify
the properties of the system that should be monitored during
the runtime. Note that, according to the proposed framework
[24], the SBS runs quite independently the monitoring func-
tionality in a non-intrusive manner .
According to SOA context QoS guarantee is also fundamen-
tal as much as the concern of assembling functional ser-
vices. For example, a service allowing to place orders for
purchase/sale of shares on the stock exchange would also
be useless if he altered the orders given by customers that
if their performances was poor. As business processing, QoS
characteristics of web services should meet the supply and
demand.
In contrast to the well-established standards in the functional
domain of services such as SOAP or WSDL, it does not ex-
ist mechanisms which are formally recognized by the com-
munity of services with respect to the specification and pro-

QoS4WSC: A Framework for Web Services Composition based on QoS constraints 490

cessing of QoS of web services. To overcome these limi-
tations, several works like WS-Agreement [25], IBM WSLA
[26], Slang [27] have been proposed. The main goal is
to establish agreement between client and service providers
through the use of service level agreement (SLA) [11].
A SLA [10, 11] is a part of a agreement where the level of
service given by a provider is formally defined. Quite often,
the term SLA refers also to the service delivery time or its
performance. For instance, Internet Service Providers will
commonly include a SLA with respect to the accord that they
establish with customers. To this purpose, they define several
service levels that will be sold in plain language terms.
Additionally, the SLA has technical specifications like mean
time between failures (MTBF), mean time to repair or re-
covery (MTTR), various data rates, etc [11], that enable
to achieve the agreement established between actors during
SLA negotiations.
In order to respect the SLA during the execution of services,
a monitoring mechanism should be used for checking the
QoS constraints. During the execution process, if a violation
happens with respect to the negotiated SLA then corrective
mechanism should be applied.

C. QoS constraints in web services composition

Web services are an attracting area that interest many re-
searchers and industrial organizations [1].
The authors of [28] proposed different algorithms in order
to aggregate QoS properties for some standardized workflow
patterns of the web service compositions. These properties
include upper and lower bounds of execution time and cost,
as well throughput and uptime probability.
In [29], an algorithm which determines the QoS of a web
service composition, by aggregating the QoS dimensions of
the individual services, is proposed. This algorithm is based
on a collection of workflow patterns defined in [30]. The QoS
parameters include an upper and lower bounds of execution
time as well as throughput.
Furthermore, in order to improve the availability of web ser-
vices, Cotroneo et al. [29] proposed a new architecture which
enhances the service availability of premium users groups.
On the other hand, Bhatti et al. [31] studied the end-to-end
response time for composites web services by taking into
account Internet overhead factor in their execution model.
Similarly, in METEOR-S project [19], it is proposed to take
in consideration the principal idea from workflow QoS and
transpose it to web services technologies. In this sense, the
authors of this project suggest some QoS constraints that
were implemented into METEOR-S workflow management
systems [19].
Rud et al. in [33] described analytical formulas that take into
account the response time of different BPEL constructors. To
achieve these objectives, they used mathematical models by
adopting a formalism ratings based on different assumptions.
A good overview of these approaches is given in [34].
Haddad et al. [35] present an extension of web service com-
posite model illustrated previously in [36]. Indeed, in [36] a
composite web service is considered as a set of tasks running
in parallel.

The authors of [35] argue that the model described by
Menasce et al. [36] is acceptable only if all web services
participating in the composition can be executed indepen-
dently. Note that, this assumption is not generally true.
Therefore, with respect to this former work [36], Haddad et
et al. propose analytical formulas according to the response
time for the following constructors: <sequence>, <switch>
and <flow>. It is worth noticing that the authors of [35] do
not propose a model that can estimates the response time of
WSC.
Notwithstanding, Haddad et al. [37] improved their early
work [35]. To this purpose, in order to overcome the short-
comings noticed in [35], they considered new assumptions
such as the number of basic web services invoked can be
variable, as well the response time of web services follow ex-
ponential and heavy-tailed model [37]. The choice of these
mathematical models is motivated by the fact that the authors
of [38] showed that the response time of basic services can
be modeled by such mathematical distributions.
In a nutshell, these works [33, 35, 37] that are more related to
our work, proposed only analytical formulas for few BPEL
constructors for managing the response time of web services
composition. Basically, they do not offer tools that are able
to verify the QoS parameters of WSC.

III. QoS4WSC architecture design

Since former works have just proposed analytical formulas
for few BPEL constructors [9] in order to take into account
the response time, we promote a new framework that enables
to estimate the response time as well to reduce it according to
WSC. Nevertheless, offering a short execution time for WSC
is not an easy task.
Indeed, elementary web services, as described by WSDL, are
conceptually limited to relatively simple features that are re-
ported as a collection of operations. Moreover, existing pub-
lic directories have not yet integrated this response time cri-
terion in the representation of the services that they do pro-
vide. In such case, most basic web services do not explicitly
expose their QoS.
Following this lack of QoS, it is mandatory to built modules
that provide a preliminary indication of the response time for
basic services. Therefore, the time that one can wait for a
given WSC is known in advance.
Our proposed QoS4WSC middleware is illustrated in Fig-
ure 2 and it is formed by two main modules. The goal of
the first module, called “Module 1” (Figure 2), is to estimate
the response time of web services. The second one, called
“Module 2” (Figure 2) verifies whether the QoS constraints
specified, for instance in a given SLA, are achieved.
The different steps, (1, . . . , 8), as labelled in Figure 2 enable
to estimate the response time of an elementary web services
and to verify the QoS constraints of WSC. During each step
we have the following tasks: (step 1) the provider (e.g., en-
gineer in Figure 2) of the WSC connects to a directory in
order to seek the potential services that can participate in a
composition; once a desired service is found, he retrieves the
address of the WSDL interface file that owns this service. It
should be noted that the web service will be invoked from
this address.
Afterwards, during the step 2, the provider gives the URL of

491 Gueye, Niang, Gueye and Deye

Figure. 2: Our QoS4WSC framework.

the WSDL file to the Module 1. Following that, the module 1
estimates the response time of the selected web service (step
3). The goal of this processing is to generate automatically
a set of class called “servicename”, “servicenameLocator”,
“servicenameSoap”, “servicenameSoapProxy” and “service-
nameSoapStub” from the URL of the WSDL file obtained
previously. These five classes are used in order to estimate
the response time of a given elementary web service.
In fact, a main class will be created by considering the previ-
ous five classes generated before. In order to obtain optimal
results of response time, we submit multiple requests to the
server that hosts the web service. Therefore, for each request
reqi, we obtain a response time Ti. The average response
time of a web service wsi, 1 < i < k, is obtained as follows:

T [wsi] =

k∑
i=1

(
Ti

reqi
) (1)

It is worth noting that, the estimated response time for each
web service is saved at the local database of the QoS4WSC
framework (step 4). In such case, this value can be reused if
the web service is re-invoked shortly.
Thereafter, during step 5, the provider of the WSC should
rank the different web services following their precedence
and then sends this new WSC to the Module 2 (in Figure 2)
in order to verify if the constraints in term of response time
is respected. In order to verify, if the time constraints are re-
spected, we consider the parsing file composition technique
(step 6) described in more details in Section IV-B.
Put simply, the main goal of the module 2 is to estimate the
response time of web service composition as well as to ver-
ify the QoS constraints by retrieving the response time of
elementary web service from the local database (step 7).
Furthermore, we should adapt the WSC if the QoS con-
straints are violated (step 8). In this respect, we can change

either the elementary web services that form the WSC, or
change the fixed constraints.

IV. Towards constraints-based web services
composition

This section illustrates the set of constructors that are con-
sidered in the BPEL language. Furthermore, we describe the
manager activities that enable to estimate the response time
of each constructor and to verify whether the QoS constraints
of a WSC are met.

A. Overview on BPEL constructors

The BPEL process is formed by a set of constructors linked
by different workflows. These constructors can be splitted
into two groups. The first group is constituted by construc-
tors that are characterized as primitive, whereas the second
one is formed by constructors that are called structured [9].
By definition, a constructor is depicted as structured whether
it is able to call other constructors (primitive or structured)
during the BPEL process. In contrast, a primitive constructor
is devoted to do only a given task without having the possi-
bility to call other constructors.
Fundamentally, the following set of constructors <receive>,
<invoke>, <reply>, <assign>, <validate>, <throw>,
<wait>, <terminate>, <empty>, <compensateScope>,
<rethrow>, <extensionActivity>, and <compensate> are
considered as primitive constructors (activities) [9].
In contrast, <flow>, <sequence>, <scope>, <If>,
<elseif>, <else>, <repeatUntil>, <while>, <forEach>,
<pick>, <onMessage>, <onAlarm>, <eventHandlers>,
<onEvent>, and <repeatEvery> represent the structured
constructors [9].
Based on the BPEL 2.0 constructors surveyed in BPEL spec-

QoS4WSC: A Framework for Web Services Composition based on QoS constraints 492

ification [9], we consider amongst them a set of constructors,
called “key constructors”. The elapsed time during the ex-
ecution of these key constructors is useful for satisfying the
QoS constraints of a given WSC.
In fact, the key constructors enable to define a waiting and/or
processing time during the execution of a service composi-
tion. For instance, these key constructors are formed by:
(i) this limited set of primitive constructors: <receive>,
<invoke>, <reply>, and <wait>;
(ii) and all set of structured constructors listed previously.

B. Using QoS4WSC for the verification of QoS constraints

In contrast to previous works [33, 35, 37], we propose an
automatic tool that verifies QoS constraints for web service
composition. Our approach is based on file composition
parsing. Figure 3 depicts our proposed algorithm in order to
parse a BPEL file. Note that the BPEL file is a XML file. We
recall that the BPEL file contains the execution order of the
web service composition. In fact, the QoS verification mod-
ule (Figure 2) receives as input a fixed response time as QoS
constraint and a BPEL process that describes a WSC (Figure
3). Inside the QoS verification module, the XML tree of the
process is created (Figure 3).
A XML file appears as an upside-down tree: if the XML
tree is well generated, it has a root that has branches
(<partnerLinks> and <sequence>) as illustrated in Figure
3. The <partnerLinks> contains the list of partners (web ser-
vices) that will participate in the WSC, whereas <sequence>
defines the execution order of the web service composition as
it was specified in the BPEL file.
Nevertheless, we should verify if <partnerLinks> and
<sequence> nodes are well defined. In such case, the re-
sponse time counter, identified by the label “ResponseTime”
in Figure 3, is initialized to zero. Otherwise, the parsing is
stopped (Figure 3) and an error exception is sent. If the con-
structors located in the <sequence> node match one of the
key constructors defined in Section IV-A, we call the related
manager in order to estimate the corresponding amount of
time. It should be noted that a manager is used in order to
estimate the response time of a given key constructor.
Furthermore, a manager is related to a key constructor, or a
set of key constructors. The set of managers that are used
in our QoS4WSC middleware are listed in Section IV-B.1
to IV-B.8. According to a given manager, if the obtained
response time is violated, the parsing is stopped (Figure 3)
and a time-constraint violation is sent to the provider of the
web services.
Afterwards, we describe the managers used in the algorithm
illustrated in Figure 3. Therefore, we adopt the following
formalism:
n∑

i=1

P [ci] = 1; with probability p[ci] of entering in the

branch ci
T[a]: defines the response time of the activity a
Twait: defines the waiting time
Tbody: defines the amount of time needed to execute one
iteration in a given loop
k: defines the number of iterations of a given loop
TscopeX : execution time of scope X of one activity
TrepeatEvery: execution time of one activity repeatEvery

Figure. 3: Algorithm for parsing a BPEL process.

1) “getResponseTime” manager

This manager makes the correspondence between two at-
tributes (partnerLink defined by the caller constructor
and name defined by the partnerLink constructor) to
know the invoked web service. Another matching is done be-
tween the name attribute and partnerLinkType in order
to know the operation attribute of the service. This allow
to access to the database in order to retrieve the response time
of a given web service.

2) “flowActivity” manager

This manager is invoked if the current element, that we are
testing during the execution our algorithm (Figure 3), is a
<flow> constructor. The procedure enables to run simulta-
neously a set of activities. The response time T [a] of this
procedure is:

T [a] = max(T [a1],, T [an]) (2)

493 Gueye, Niang, Gueye and Deye

Furthermore, during the parsing of the BPEL file, if a key
constructor like <receive>, or <invoke>, or <reply> is
found we call the getResponseTime manager. Otherwise, if
the <sequence> constructor that specifies a sequential exe-
cution is found, we call the sequenceActivity manager.

3) “forEachActivity” manager

This manager is invoked if the current element, that we are
testing during the execution our algorithm (Figure 3), is a
<forEach> constructor. In such case, we should perform all
activities located in the sub-constructor <scope> exactly k
times, where k means the number of iterations specified in
the loop . The response time of this activity is given by:

T [a] = k × Tbody (3)

In order to determine k, we fetch the “parallel” attribute
value. If the value of the parallel attribute is set to “no”, then
the number of iterations ranges from <startCounterValue>
to <finalCounterValue> parameters which are defined in the
“forEach” constructor. Otherwise, If parallel attribute is set
to “yes”, then k is equals to 1 and all iterations should be
execute in parallel.
To determine Tbody , we call the sequenceActivity manager
that receives as input argument the <scope> sub-constructor.

4) “loopActivity” manager

This manager is invoked if the current element, that we are
testing during the execution our algorithm (Figure 3), is a
<while> or <repeatUntil> constructor. It should be noted
that for both constructors, the number of iterations is not
known in advance.
Therefore, previous works like [39, 40] have proposed to
give as response time the overall execution time of the loop.
They do not take into account the number of iterations inside
the loop. This approach presents several drawbacks in the
sense that the response time can be overestimated or under-
estimated.
To overcome the limitations of previous works, we propose
a new approach in order to estimate the response time. The
response time is obtained by:

T [a] = k × Tbody (4)

In our approach the value of k is related to the amount of
time specified in the QoS constraints. k’s value is not fixed
in contrast to previous works like [32, 41].
The values that k can take depend on the remaining execu-
tion time of the WSC. More the remaining execution time,
following QoS constraints, is high and more the value of k is
important. In such case, we should estimate the value of k in
order to estimate the response time.

5) “ifActivity” manager

This manager is invoked if the current element, that we are
testing during the execution our algorithm (Figure 3), is a
<if> constructor. Note that a “ifActivity” manager can have
the following branches <elseif> or/and <else>. Therefore,
the response time is equal to:

T [a] =

n∑
i=1

(T [ai] ∗ p[ci]) (5)

If this constructor presents several branches the response
time can be estimated as:

T [a] = max(T [a1],, T [an]) (6)

where T [ai] means the elapsed time during the block i.

6) “pickActivity” manager

This manager is invoked if the current element, that we are
testing during the execution of our algorithm (Figure 3), is a
<pick> constructor. The goal is to wait the first message de-
fined by the <onMessage> constructor or a signal marking
the end of a timer defined in <onAlarm> constructor.
The <pick> constructor is formed by several branches. Each
branch refers to an event that can occur. Therefore, the re-
sponse time can be estimated as follows:

T [a] =

n∑
i=1

(p[ci] ∗ (Twait + T [ai])) (7)

Since, it is not possible to know in advance when an event
will be triggered, the response time is obtained by:

T [a] = Twait +max(T [a1],, T [an]) (8)

7) “duration” manager

This manager is called either by a <wait> constructor, or a
<onAlarm> constructor.
The attribute for specifies the delay before the awakening
of the process (in the case of <wait>), or the triggering of
an alarm (in the case of <onAlarm>).
The date and the deadline are specified by assigning a value
to the until attribute.

8) “sequenceActivity” manager

This manager is called by other managers each time that a set
of activities should be run sequentially. The operating of this
manager is described by the algorithm defined in Figure 4.

REMARK: The goal of <eventHandlers> constructor is to
wait the first event <onEvent> or a signal marking the end
of a timer defined in <onAlarm>. If a given event does not
occur until the expiration of the deadline, then the associated
activities with respect to this <onAlarm> will be executed.
In this case, if the optional constructor <repeatEvery> is de-
fined, then the procedure will be repeated until the parent
scope of the <eventHandlers> activity remains active. The
response time expression is given by:

T [a] =

n∑
i=1

(p[ci]∗(Twait+k∗(TscopeAlarm+TrepeatEvery)))

(9)
where k is equal to [

TscopeParent−Twait

TscopeAlarm+TrepeatEvery
].

If the “repeatEvery” is undefined (i.e, TrepeatEvery = 0) then
k = 1.
Note that “eventHandlers” activities are invoked in parallel
with other activities during the processing phase. It’s the rea-
son why we do not take into account this constructor during
the computation of the response time. In fact, the execution
of this constructor is embedded inside other key constructors.

QoS4WSC: A Framework for Web Services Composition based on QoS constraints 494

Figure. 4: Algorithm for parsing sequenceActivity manager.

V. The impact of QoS4WSC in the life cycle of
web services composition

According to [42], the life cycle of web services composition
is based on the analysis and design of six activities. Never-
theless, from our point of view two activities, like Wrapping
native services and Setting outsourcing agreement, can be
seen as included in the life cycle of an elementary service.
However, the last four activities such as Assembling com-
posite services, Execution services, Monitoring services, and
Evolving services take part according to our definition of a
life cycle of web services composition. Therefore, these four
activities plus our framework QoS4WSC form the five ele-
ments that constitute the life cycle of a WSC (Figure 5).
The various activities and transitions illustrated in Figure 5
are described as follows:

1. “Assembling composite services”: This activity enables
to describe the overall classes of service that one should
compose in order to propose a WSC. This assembly in-
cludes an identification phase of the service categories
and the specification of their interactions. This activity
is triggered by the initial request (1) which is sent either
by a user or by a software. It should be noted that this
request is transmitted to the web services orchestration
engine.

2. “QoS4WSC”: The goal of this activity is to seek if the

Figure. 5: Impact of QoS4WSC in the life cycle of a WSC

composition, as defined in the Assembling composite
services (2) meets a given QoS constraint. In this re-
spect:

• If the constraint is met, we proceeded to the next
execution level of the composition by following
the branch labelled 3;

• Otherwise, we return to the previous state (branch
3’) in order to modify the constraint, or to change
the service composition.

3. “Execution services”: This activity executes the speci-
fications of the composition defined above by checking
whether the fixed constraints between each web service
are satisfied. Afterwards, the orchestration engine starts
to execute the first tasks of the composition defined in
Assembling composite services.

4. “Monitoring services”: This activity supervises the ex-
ecution of the composition by checking the access to
the different services and the exchanged messages. This
control is done in order to measure the performance
of the called services as well as to manage the execu-
tion in case of failures (branch 4). If all services have
been called successfully and the composition has been
achieved, the composition engine returns the composi-
tion result to the user (e.g., human or software) that has
sent the original request (branch 5).

5. “Evolving services”: This activity enables to evolve the
service composition by removing the failed services and
then promotes the use of new service. If the “Evolving
services module” fails, we have the possibility either to
readjust the QoS constraints according to a given task
(branch 6), or to redefine the service composite (branch
7) by allowing a new service in place of the one which
fails before from the “Assembling composite services”,

VI. Implementation and results

We implemented our framework with the programming lan-
guage Java (JDK 1.6) and the Eclipse IDE v.3.4.2. To make
this practical environment, we used the plugins WTP (Web
Tools Platform) version 3.2, EMF (Eclipse Modeling Frame-

495 Gueye, Niang, Gueye and Deye

work), GEF (Graphical Editing Framework), GMF (Graphical
Modeling Framework) and BPEL Visual Designer.
We considered the following tools such as Tomcat (version
6.0.20), Axis2, PostgreSQL (version 8.4), Apache ODE (Or-
chestration Director Engine) with 1.3.4 version, and JDOM
parser (version 1.6.1) which is an open source Java API
whose purpose to manipulate an XML document.
To evaluate our proposal, we consider the BPEL process of
a travel plan which is described in Figure 6. We use this
example in order to evaluate and compare our proposal with
respect to related work. We use as QoS metric the response
time of a web service composition.

Figure. 6: Travel Plan process.

A. Discussion

The techniques proposed by Haddad et al. in [35, 37] do
not allow to estimate the response time of the composition
depicted in Figure 6. In fact, they do not take into account
the existence of loop constructor. Therefore, we argue that
their proposed techniques in [35, 37] work only if the WSC
is formed by the following constructors: sequence, flow and
switch. However, if a composition consider only these three
constructors, the estimated response time will be done man-
ually. Nevertheless, for complex services composition it is
not possible to do it manually.
Rud et al. [33] proposed to estimate the response time of
this composition (Figure 6) by using a manual approach due
to the lack of models and tools. In so doing, they aggregate
the different activities manually. For a complex WSC, this
solution is not appropriate due to high response time.
With our QoS4WSC approach, we can automatically find in
a few seconds the response time of a given WSC.
We performed our tests with a computer with a Core Duo
2.16 GHz frequency and 2 GB of RAM. With this example

of composition, despite all of parsing details we obtained a
response time of 6 seconds.
Note that our proposed middleware is generic in the sense
that it can handle any type of composition, and regardless of
its complexity and the number used constructors.

VII. Conclusions

Nowadays, it is mandatory to take into account QoS con-
straints in WSC. Therefore, in order to achieve a high qual-
ity delivery of service composition, we proposed QoS4WSC
which is a middleware for QoS verification constraints.
The main goal of QoS4WSC is to allow WSC’s providers to
evaluate the response time of their compositions. In such
case, we can achieve better efficiency with respect to the
amount of time that is need to retrieve the results of a given
WSC. In addition, the proposed tools can help designers or
suppliers in decision-making when such agreements are es-
tablished. Furthermore, QoS4WSC allow to these actors to
respect the contracted SLA (e.g, reduce or avoid QoS con-
straints violation).
As future works, our framework can be improved by devel-
oping a plug-in that can inherit all features of our QoS con-
straints solution. The objective is to integrate this plug-in in
the palette to create a BPEL process. On the other hand, the
introduction of the formal semantic in the life cycle of web
services composition can be considered.

References

[1] S. Dustdar and Wolfgang Schreiner,“A survey on web
services composition”, Int. J. Web and Grid Services,
Vol. 1, No. 1, 1, pp. 1–30, 2005.

[2] B. Gueye, I. Niang, B. Gueye, M. O. Deye, Y. Slimani,
“Constraints-Based Response Time For Efficient QoS
in Web Services Composition”, in Proceedings of the
7th IEEE International Conference on Next Generation
Web Services Practices, pp. 141 – 146, 2011.

[3] F. Cubera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, “Unraveling the web services :
An introduction to SOAP, WSDL, and UDDI”, vol. 6,
no 2, pp. 86–93, July 2006.

[4] Y. Tao, and Z. Yue, L. Kwei-Jay. “Efficient algorithms
for Web services selection with end-to-end QoS con-
straints”, ACM Trans. Web, Vol. 1, No. 1, Article 6,
May 2007, 26 pages.

[5] R. Chinnici, J.-J. Moreau, S. Weerawarana, and R.
Arthur, “Web Services Description Language (WSDL)
version 2.0”. W3C Recommendation 26, June 2007.

[6] L. Clement, Systinet, A. Hately, C. Von Riegen and
T. Rogers, “Computer Associates. UDDI version 3.0.2,
OASIS Specification”, October 2004.

[7] M. Gudgin, M. Hadley, J. Jacques Moreau, and
H. Frystyk Nielsen, “Simple Object Access Protocol
(SOAP) Version 1.2. W3C”. July 2001.

QoS4WSC: A Framework for Web Services Composition based on QoS constraints 496

[8] P. F. Pires and M. Benevides and M. Mattoso. “WEB-
TRANSACT: a Framework For Specifying And Coor-
dinating Reliable Web Services Compositions”. Tech-
nical report, 2002.

[9] “Web Services Business Process Execution Language
(BPEL4WS) version 2.0”, OASIS standard, April 2007.

[10] L. J. Jin, V. Machiraju, and A. Sahai, “Analysis of Ser-
vice Level Agreement for web services”, HPL-2002-
180, Tech. Rep., 2002.

[11] E. Marilly, et al, “SLAs: A Main Challenge for Next
Generation Networks”, 2nd European Conference on
Universal Multiservice Networks”, April 2002.

[12] A. D. Menasce, “Mapping Service Level Agreements
(SLA) in distributed applications”, IEEE Internet Com-
puting, pages 100–102., September-October 2004.

[13] M. Godese, U. Bellur, R. Sonar. “Automating QoS
Based Service Selection”, IEEE International Confer-
ence On Web Services, pages 534–541, 2010.

[14] A. Agarwal, A. Arkin. The BPML specification. BPML
Working Draft 0.4, March 2001.

[15] S. Thatte. XLANG: Web services for business process
design. Technical report, Microsoft Corporation, 2001.

[16] F. Leymann, “Web Services Flow Language (WSFL
version 1.0)”, IBM Software Group, May 2001.

[17] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K.
Govindarajan, A. Karp, H. Kuno, M. Lemon, G. Pogos-
siants, S. Sharma, and S. Williams. “Web Service Con-
versation Language (WSCL)”, 1.0. W3C, March 2002.

[18] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K.
Kawaguchi, D. Orchard, S. Pogliani, K. Riemer, S.
Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek.
“Web service choreography interface (WSCI)” 1.0.
W3C Note, August 2002.

[19] R. Aggarwal, K. Verma, J. A. Miller, and W. Mil-
nor. “Constraint driven web service composition in
METEOR-S”. In IEEE SCC, pages 23-30, 2004.

[20] A. Charfi, B. Schmeling, A. Heizenreder, and M.
Mezini. “Reliable, secure, and transacted web ser-
vice compositions with AO4BPEL”. In Proceedings of
the 4th IEEE European Conference on Web Services
(ECOWS), December 2006.

[21] L. Baresi and S. Guinea. “Dynamo and self-healing
bpel compositions”. In proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE ’07).
IEEE Computer Society. pages 69-70, Washington DC,
USA, 2007.

[22] A. Erradi, V. Tosic, and P. Maheshwari. “MASC -
netbased middleware for adaptive composite web ser-
vices”. In International Conference on Web Services.
IEEE Computer Society, pages 727–734, 2007.

[23] H.Q Yu, S. Dietze, C. Pedrinaci, and D. Liu. “A linked
data compliant framework for dynamic and web-scale
consumption of web services”. International Journal of
Computer Information Systems and Industrial Manage-
ment Applications, Volume 3, page 796–803, Dynamic
Publisher USA, 2011.

[24] A. K. Tripathy and M. R. Patra. “Service Based Sys-
tem Monitoring Framework”. In International Journal
of Computer Information Systems and Industrial Man-
agement Applications: IJCISIM, Volume 3, Page 924–
931, Dynamic Publisher USA, 2011.

[25] H. Ludwig, A. Dan, and R. K. Cremona. “An archi-
tecture and library for creation and monitoring of ws-
agreements”. Proceedings of the 2nd international con-
ference on Service oriented computing, pages 65-74,
New York, NY, USA, 2004. ACM Press.

[26] A. Keller and H. Ludwig. “The WSLA Framework:
Specifying and Monitoring Service Level Agreements
for Web Services”. Journal of Network and Systems
Management, Vol. 11, No. 1, pp : 57-81, March 2003.

[27] D. D. Lamanna, J. Skene, and W. Emmerich. “Slang:
A language for defining service level agreements”. In
9th IEEE Workshop on Future Trends in Computing
Systems, pages 100-106, San Juan, Puerto Rico, 2003.
IEEE Computer Society Press.

[28] M. C. Jaeger, G. R. Goldmann, and G. Muhl, “QoS
aggregation for web service composition using work-
flow patterns”, in Proceedings Eighth IEEE Interna-
tional Enterprise Distributed Object Computing Con-
ference, pp. 149–159, 2004.

[29] G. Kiczales, “Aspect Oriented Programming”, ACM
Computer. Surv., pp. 154, 1996.

[30] V. Der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski,
and A.P. Barros, “Workow patterns”, Technical report
FIT-TR-2002-2, Faculty of IT, Queensland University
of Technology, July 2002.

[31] M. U. Bhatti, S. Youcef, L. Mokdad and V. Menfort,
“Simulation-based Response Time Analysis of com-
posite Web Services”, In Proceedings 10th IEEE inter-
national Multitopic conference, pp. 1–7, juin 2006.

[32] J. Cardoso, A. Sheth, J. Miller, J. Arnord, and K.
Kochut, “Modeling quality of service for workflows
and web service processes”, Web Semantics Journal:
Science, Services and Agents on the World Wide Web
Journal 1 (3), pp. 281–308, 2004.

[33] D. Rud, M. Kunz, A. Schmietendorf and R. Dumke,
“Performance Analysis in WS-BPEL Based Infrastruc-
tures”. In 23rd UK Performance Engineering Work-
shop, 2007.

[34] F. V. Breugel and M. Koshkina, “Models and verifica-
tion of BPEL”, September 2006.

497 Gueye, Niang, Gueye and Deye

[35] S. Haddad, L. Mokdad, and S. Youcef, “Response-Time
analysis of composite web services”, In Proceedings ,
Communication Systems, Networks and Digital Signal
Processing (CSNDSP’2008), IEEE Computer Society,
23–25 July 2008, Austria.

[36] A. D. Menasce, “Response-Time analysis of composite
web services”, IEEE Internet computing, vol. 8, No. 1,
pages 90–92, 2004.

[37] S. Haddad, L. Mokdad, and S. Youcef, “Response Time
of BPEL4WS constructors”, in Proceedings of the 15th
IEEE Symposium on Computers and Communications
(ISCC’10). pages 695-700, June 2010.

[38] U. Vallamsetty, K. Kant, and P. Mohapatra, “Charac-
terization of ecommerce traffic”, Electronic Commerce
Research, vol. 3, no. 1-2, pp. 167–192, 2003.

[39] L. Zeng, B. Bennatallah, H. Anne Ngu, H. Chang,
M. Dumas, and J. Kalagnanam, H. Chang, “QoS-
aware middleware for web services composition”.
IEEE Transactions on Software Engineering vol. 30 (5),
pages 311–327, 2004.

[40] G. Canfora, M. Di Penta, R. Esposito, and L. Millani,
“A Framework for QoS-aware binding and re-binding
of composite web services”, Journal of Systems and
Software, vol. 81(10), pp. 414–417, 2008.

[41] F. Baligand, N. Rivierre, and T. Ledoux, “A declarative
approach for QoS - aware web service compositions”,
Fifth International Conference on Service-Oriented
Computing (ICSOC), volume 47–49 of LNCS, pages
422–428. Springer, 2007.

[42] B. Benatallah, M. Dumas, M.C. Fauvet, F.A. Rabhi,
Q.Z. Sheng, “Overview of Some Patterns for Archi-
tecting and Managing Composite Web Services”. ACM
SIGecom Exchanges, 2002, vol. 3, No 3, pp.9-16.

Author Biographies

Bassirou Gueye received his bach-
elor in Computer Science in 2007.
He received the M. Sc. in Com-
puter Science with a major in dis-
tributed systems in 2010 at Univer-
sité Cheikh Anta Diop de Dakar
(UCAD), Senegal. He is currently
a PhD student in under joint super-
vision between Université Cheikh
Anta Diop de Dakar (UCAD) and

Université de Reims Champagne-Ardenne (URCA), France.
His research topics concern Grid computing, Web services

Ibrahima NIANG is an Asso-
ciate Professor in Computer Sci-
ence at the Faculty of Sciences
and Technology of the Univer-
sité Cheikh Anta Diop de Dakar
(UCAD), Senegal. He received the
Ph.D. degree in computer science in
2002. His research activities con-
cern QoS, mobility and security in

wireless networks and distributed systems (P2PSIP). In re-
cent years, he worked on research and development related
to water management using biosensor networks.

Bamba Gueye received the B.Sc.
in Computer Science from the Uni-
versité Cheikh Anta Diop de Dakar
(UCAD), Senegal. He received the
M.Sc. degree in Networking in
2003 and the Ph.D. degree in com-
puter science in 2006, both from
the Université Pierre et Marie Curie
(UPMC), France. He is currently an
Associate Professor at the Univer-

sité Cheikh Anta Diop de Dakar. Between 2007 and 2010, he
was Research Assistant with the Université de Liège (ULg,
Belgium), Electrical Engineering and Computer Science De-
partment. He was a visiting scientist at Université du Quebec
à Montréal (UQAM), Canada during the 2011/12 academic
year. His current research interests include network virtual-
ization, green cloud computing, wireless networks, and In-
ternet measurements.

Mohamed Ould Deye is an Assis-
tant Professor at the Department of
mathematics and computer science
at Université Cheikh Anta Diop
de Dakar (UCAD), Senegal. Cur-
rently, he is preparing a Ph.D. the-
sis in Computer Science at Tunis El
Manar University. His areas of in-
terest are Cloud Computing, Web
Services and performance evalua-

tion of distributed systems.

QoS4WSC: A Framework for Web Services Composition based on QoS constraints 498

and Peer-to-Peer networks.

