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Abstract: There are many clustering algorithms for gene
expression data in the literature that are robust against noise
and outliers. The limitation with many of these algorithms is
that they cannot identify the overlapping and intersecting
clusters. This paper presents an algorithm for clustering gene
expression data using the concepts of common neighbors and
fuzzy clustering for detecting intersecting and overlapping
clusters. On comparison of the algorithm to the existing popular
approaches it was found that our algorithm gives good results in
terms of z-score measure of cluster validity and p-value and
Q-value measures.
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. Introduction

For the past few years, microarrays has emerged as a widely
used technology for the monitoring of the expression levels of
thousands of genes during various biological processes and
functions. Extracting the hidden information in this huge
volume of gene expression data is quite difficult, and,
therefore the need for computationally efficient methods to
mine this data is a thrust area for the research community.
According to [1], “the large number of genes and the
complexity of biological networks greatly increase the
challenges of comprehending and interpreting the resulting
mass of data, which often consists of millions of
measurements”. Several data mining techniques have been
used to address this challenge and clustering techniques is
one of the most popular tools found capable towards attaining
this goal. Clustering techniques identify the inherent natural
structures and the interesting patterns in the dataset.
Clustering techniques cluster genes with similar
expression patterns (co-expressed genes) into the same cluster
and helps in understanding gene function, gene regulation,
cellular processes, and sub types of cells. Therefore a cluster
consists of subsets of genes that behave similarly. Over the
last few decades, a very rich literature on Cluster Analysis of
Gene Expression Data has evolved [1]. Three approaches can
be found in gene data clustering: (i) Gene based clustering,
(ii) Sample based clustering and (iii) Subspace clustering.
Gene-based clustering considers the genes as data objects and
the samples as features. Sample-based clustering considers

the samples as data objects to be clustered, while the genes are
considered as features. In subspace clustering either genes or
samples can be regarded as objects or features. All the three
categories namely: gene-based, sample-based, and subspace
clustering have different challenges, and different
computational strategies are adopted for each of them.

In this paper we investigate the problems of identification
of coherent patterns by clustering technique using gene based
approach. The proposed method, is based on the concept of
common nearest neighbor clustering approach as in [2] and
uses a fuzzy membership function as in [3] to identify the
overlapping clusters as well.

The organization of the paper is as follows. In Section II,
we review some of the important existing clustering methods
in the context of clustering gene expression data. In Section
I11, the background of our work is given and in section 1V, we
discuss our algorithm, FLBC-1. A previous version of the
algorithm was presented in [3]. In FLBC-I, the cluster
expansion process is improved. In Section V, we report the
experimental results and finally the conclusions and future
works are presented in Section VI.

Il. Related Work

Clustering methods for gene expression data should be
capable of revealing the inherent structure of the data,
extracting useful features from even noisy data, identifying
the highly connected and embedded patterns in the data [4]
and finding the relationships between the clusters and their
sub-clusters. k-means [5] is a pioneering partition-based
clustering algorithm that partitions the dataset into some
pre-defined number of clusters by optimizing a predefined
criterion. However, specification of the number of clusters,
noise sensitivity, unsuitability in detecting arbitrary shaped
clusters and inconsistency in yielding the same result on
different runs of the algorithm are considered as its major
demerits. In [4], the authors propose the Density-based
Hierarchical Clustering method (DHC) that uses a
density-based approach to identify co-expressed gene groups
from gene expression data. DHC is suitable for detecting
highly connected clusters but is computationally expensive
and is dependent on two global parameters. Jarvis and Patrick
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[6] first introduced the idea of defining the similarity of points
in terms of their shared nearest neighbors. In [7], a k-nearest
neighbor based density estimation technique has been
exploited. Another density based algorithm proposed by [7]
works in three phases: density estimation for each gene, rough
clustering using core genes and cluster refinement using
border genes. In [8], the authors present a density and shared
nearest neighbor based clustering method. The similarity
measure used is that of Pearson’s correlation and the density
of a gene is given by the sum of its similarities with its
neighbors. The use of shared nearest neighbor measure is
justified by the fact that the presence of shared neighbors
between two dense genes means that the density around the
dense genes is similar and hence should be included in the
same cluster along with their neighbors. In [2], a common
nearest neighbor-based clustering technique (CNNC) for
finding clusters over gene expression data is reported. CNNC
attempts to find all the clusters over gene expression data
qualitatively using a nearest neighbour-based approach and
uses a regulation-based module for finding the sub clusters. A
subspace clustering algorithm, CLIC, is proposed in [9].
CLIC first clusters the genes in individual dimensions and the
ordinal labels of clusters in each dimension are then used for
further full dimension-wide clustering. CLIC also finds the
sub-clusters of the clusters detected in the first round of
clustering which helps in finding more homogeneous groups
in the data. Fuzzy clustering approaches have received
considerable focus recently because of their capability to
assign one gene to more than one cluster (fuzzy assignment),
which may allow capturing genes involved in multiple
transcriptional programs and biological processes. Fuzzy
C-means (FCM), is an extension of K-means clustering and
bases the fuzzy assignment of an object to a cluster on the
relative distance between the object and all cluster centroids
[10]. Many variants of FCM have been proposed in the past
years, including a fuzzy clustering approach, FLAME [10],
which detects dataset-specific structures by defining
neighborhood  relations and  then  neighborhood
approximation of fuzzy memberships are used so that
non-globular and nonlinear clusters are also captured. In [3],
a fuzzy link based clustering (FLBC) is presented which uses
the common nearest neighbor concept and uses the fuzzy
membership function to cluster genes. The advantage of
FLBC is that it is capable of detecting overlapping and
interesting clusters. In [11], the authors discuss a gene
analysis method called the LEAveone- out Forward selection
method (LEAF) for discovering informative genes embedded
in expression data. LEAF is an iterative forward selection
method incorporating the concept of leave-one-out cross
validation (LOOCYV) and can identify genes that correspond
to known biomarkers.

A. Discussion

From our selected survey, we observe that most of the
algorithms are dependent on several input parameters which
are difficult to estimate. Gene expression data are usually
high dimensional whereas, most of the existing algorithms
are found to be costly with the increase in dimension. There is
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also interconnection between genes and hence a shared
nearest neighbor approach as in [2] would greatly help in
identifying such interconnected genes. Gene expression data
also contains intersecting and overlapping clusters, the
identification of which is very important. This aspect has been
explored in FLBC [3], and in this paper we are going to
incorporate a cluster expansion step during clustering.

!
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Figure. 1: (a) The Neighbor Graph (b) Link Graph (i and

have a link between them)

I11. Background of the Work

Our algorithm is based on the concept of links. Our link based
clustering deals with clustering among genes which are
intensely associated to each other through common neighbor
genes. The clustering is done on the genes on the basis of links
(defined later in this section) existing between them. Following
are some of the key concepts based on [2] which have been used
in our approach.

Definition 111.1 Neighbor: A gene g; is a neighbor of another
gene g; if the similarity between them i.e., Sim(gi, g;) > where
Sim(g;, g;) refers to the Pearson’s correlation coefficient [1] and
d a user defined threshold.

Definition 111.2 Common Neighbor: A gene g; is said to be a
common neighbor of another gene g; if both g; and g; have at
least one shared or common neighbor between them i.e., g; has
at least one neighbor which is also a neighbor of g;.

CN(g;,9;) ={9:,9;..-, 9 Jwhere
Sim(g;,9,) >6,Sim(g;,9,) = 9,.....,.5Im(g;, g, ) = d and

Sin‘(gj,gl)ZcS,Sin‘(gj,gz)ZcS, ..... ,Sin‘(gj,gk)ZcS

Here, |CN(g;,g;)>1. In other words CN value is the number of
shared or common nearest neighbors shared by two genes g;, g;.

Definition 111.3 Link: Two genes g;, g; have a link between
them if link(gi, 9;) = {ICN(gi, gj)l> « }, where « is a user
defined parameter. An example scenario is shown in Fig. 1.
Here in the neighbor graph each of the nodes represent genes
and the edges in Fig. 1 (a) represent the neighbor connections
i.e., two nodes will have an edge between them if they are
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neighbors. The edge in Fig. 1 (b) represents the link connection
i.e, two genes will have an edge between them in the link graph
if the number of common neighbors is at least « . In this
example, a = 3.

Definition 111.4 Interconnected genes: Interconnected
genes are a set consisting of ordered pairs of genes such that
there is a link between every gene in the ordered pairs and there
is a chain of links between the ordered pairs. For example, let
us consider the genes i and j. Let there be a link between i and
j. Let the set of interconnected genes be {(i, j), (i1, i2), (i3, 94),
ooy (1, J2)s U3y Ja), ---} where genes i, j has a link between
them; i; has a link with i, i, has a link with i; and so on.
Similarly, j; has a link with j, j, has a link with j; and so on.
The scenario is depicted in Fig. 2. The set of all interconnected
genes form an interconnection network.

t3 ii i

! j
Figure. 2: The interconnection network

Definition 111.5 Initial Cluster: An initial cluster IC; is
defined
as a set of interconnected genes .

Definition 111.6 Core genes: The gene with the highest
number of links in a cluster is known as a core gene.

Definition 111.7 Reachability: A gene g; is said to be
reachable from a core gene g;, if g; belongs to the set of
interconnected genes of g;.

Definition 111.8 Fuzzy Reachability: A gene g; is said to be
fuzzy-reachable from a core gene g;, if maxu; ;> f, where, j =
1, 2,..., kand k is the total number of initial clusters.

Definition 111.9 Cluster: A cluster C; is the set of all the
reachable and fuzzy reachable genes.

Definition 111.10 Noise: Those genes which do not belong to
any cluster are called noise genes.

Link based clustering adopts a recursive approach for
efficient clustering. The aim of the clustering is to expand the
neighbors of a gene to check if a link exists. As soon as a gene
finds a link, its cluster_id is assigned and termed as classified.
Classified genes are not further taken into consideration for
expansion.

IV. FLBC-I

Our Fuzzy Link Based Clustering (FLBC-I) identifies the
initial clusters by using a common nearest neighbor based
approach (Step 1) and then finds the overlapped and
intersecting clusters by a fuzzy based approach to obtain the
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final clustering of the data (Step 2). Step 1 of FLBC-I
proceeds by first finding the neighbors for each gene based on
definition
I11.1. For finding the neighbors we use the Pearson’s
Correlation measure as the similarity metric. Next, the
common neighbors are found by using Definition [11.2.
Cluster expansion starts with a pair of genes g;, g; that have a
link between them. In FLBC [3], all the common neighbors of
that pair of genes are also classified with the same cluster id as
gi, gj and cluster expansion proceeds by finding the link of
each of the common neighbors in a depth first manner.
FLBC-1 on the other hand sets a higher bar for inclusion of
common neighbors into the cluster. Here, instead of assigning
the same cluster_id to the common neighbors of g;, g;, the
common neighbors are recursively checked if they in turn
fulfil the link property w.r.t. g, g;. The working of FLBC-I is
discussed next.

A. Procedure of FLBC-I

FLBC-I starts with an unclassified gene g; and searches for
another unclassified gene g; with which it has a link (as
defined in Definition 111.3). Both g;, g; are assigned to cluster,
say Ceurrent- Then each of the unclassified common neighbors
of genes gj, gj is checked to ascertain if they may be assigned
to Ccurrent. Let {da, Ob, Jc, 9o} be the common neighbors of
0i, g;. For inclusion of g, into Ceyrrent, 9 Should have a link to
any of the genes in cluster Cgyrent. An example scenario is
shown in Fig. 3. Let the link threshold be a = 4. Then
according to the neighbor list of gj, g;, there are at least four
common neighbors to both and hence they are inserted into
cluster Ceurrent- Next, the first common neighbor (ga) to both
gi, gj is chosen for finding if it can be inserted into the cluster.
The neighbor list of g, is checked to see if it forms a link with
any of the genes in cluster Cgyrent. It Can be seen from the
figure that g, has a link to g; as well as g;i.e., the number of
common neighbors it shares with any of the genes already
included in the cluster > a. Therefore, g, is inserted into the
Ceurrent-  The same rule applies for rest of the common
neighbors. The whole process is repeated till no more
unclassified gene can be inserted into this cluster, Ceyrrent.
Cluster expansion then starts forming the next cluster with
the next pair of unclassified genes with a link between them.

This process is iterated till no more genes can be classified
or no more links are found. The step-wise representation of
step 1 of FLBC-I is given next:

Let G, be the set of all genes, C.yrent be the current cluster
under consideration and G, be the set of classified genes.

Initially all genes are unclassified.
1. Consider an arbitrary unclassified gene g; from G,.
2. Consider another unclassified gene g; from {G,—Gc}.
3. Check if g; and g; satisfies the link property, then classify g;
and g; into cluster Ceyrrent.
4. Check if any of the genes gy, from the set of common
neighbors of the genes in Cgyrent, Satisfies the link property
with any of the genes in Cgyrent, then classify gy into Ceyrrent.
5. Repeat steps 2 to 4 till no more genes can be included into
Ccurrent-
6. Repeat steps 1 to 5 till no more genes may be assigned to
any cluster.
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Figure. 3: An example of the expansion of common
neighbors

The Step 1 of FLBC-I algorithm uses the concept of link to
support crisp and clear decision on the membership of a gene
in a cluster. For two genes to be linked there has to be a
number of common neighbors, which depicts that the two
genes must have an intense similarity to many common
neighbors. It is efficient even in presence of noise. But Step 1
of FLBC-I suffers from the disadvantage that it is not effective
in detecting overlapping and intersecting clusters. With
higher value of CN threshold, «, the algorithm gives clusters
which are highly interconnected with a high degree of
similarity i.e. highly coherent gene clusters. In step 2, a fuzzy
approach is used to detect the intersecting and embedded
clusters. The Step 2 of FLBC-I is based on the cluster result of
Step 1 and also uses the concept of fuzzy membership to find
the clusters. Fuzzy link based clustering applies the concepts
of fuzzy clustering and link based clustering for deciding the
coherency of genes. The algorithm for this approach makes
use of Link based clustering to detect genes with higher
degree of similarity. The Step 1 of FLBC-I is executed with a
high value of « to obtain the highly coherent clusters. Here, a
lot of genes which are in the bordering area of the clusters are
not classified. These genes (also known as candidate genes)
may be assigned to the clusters using a fuzzy approach to
avoid this loss of useful information. From the clusters
obtained by Step 1, the core genes of the clusters are
computed. We use another parameter G, to incorporate these
candidate genes into a cluster. We use the fuzzy membership
function given in [12], to find the degree of membership of
every candidate gene to each of the k clusters detected in Step
1. The membership function is given next.

1
ucivgj = 2 1)

[d(C,,g,) ]
2 4G,
=dC9)
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where g; is a candidate gene, k is the number of clusters
detected in Step 1, u is the fuzzy membership matrix such that
uij € [0, 1] is the membership degree of g; to cluster C;. C =
{C1,C,, ... ,C}istheset of initial clusters and C; is the current
cluster for which the membership of g; is to be determined and
C, are the initial clusters present, d is a distance measure
between the core gene of an initial cluster and a candidate
gene. The factor my is called fuzziness and is usually equal to
2 [12]. The membership for each of the candidate genes is
computed and assigned to that cluster for which it has the
highest value according to Definition 111.8.
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Figure. 4: Results of FLBC-I on Dataset 1

The cluster expansion in Step 2 checks if a gene is a candidate
gene and finds if its highest membership value to a core gene
isalso greater than g3, then it is assigned the same cluster_id of
the core gene to which it is fuzzy reachable. For those
candidate genes which have similar membership value to
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more than one core gene are assigned to both the clusters and
thus have more than one cluster_id. These are the genes
which give the overlapping and intersecting clusters. This
step is repeated until all candidate genes are assigned
cluster_id or noise_id.

V. Performance Evaluation

The performance of the proposed technique was evaluated in
light of three real-life datasets. We used a Pentium IV
machine of 2.4GHz speed with 2.00 GB RAM. The
implementation was done in Java in windows platform. The
datasets used and their characteristics are given in Table 1.
The results of FLBC-1 on Dataset 1 and Dataset 2 are given in
Figures 4 and 5. The black lines in each of the cluster graphs
show the result of FLBC-I step 1. After step 2 of FLBC-I some
more genes are added to the clusters and those genes are
shown in red dotted lines. It can be seen that FLBC-I gives
clusters of coherent genes. The clusters obtained by FLBC-I
on Dataset 3 are illustrated in Fig. 6.

Table 1: Datasets used for evaluating CNNC

Seria | Dataset No. of | No of
| genes | condition
No. S

1 Subset of Yeast Cell Cycle [13] | 384 17

2 Rat CNS [14] 112 9

3 Yeast Diauxic Shift [15] 6089 7

g |

Figure. 5: Results of FLBC-I on Dataset 2

A. Cluster Quality

For wvalidating our clustering result, we employ the
homogeneity, separation measures as given in [1] and z-score
measure of [16]. The Homogeneity and separation values for
FLBC-I for different datasets as given in Table 2 show that the
clusters obtained are quite homogeneous.

1) Z-score

Z-score is calculated by taking into account the relationship
between the clustering result and the functional annotation of
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the genes in that cluster. The Gibbons ClusterJudge [16] tool
has been used here to calculate the z-score. A higher z-score
indicates the clustering result is more biologically relevant.
To test the performance of the clustering algorithm, we
compare the clusters identified by FLBC-I with the results
from k-means [5], FCM [12] and CNNC [2]. In this paper, the
reported z-score is averaged over 50 repeated experiments.
The result of applying the z-score on Dataset 1 is shown in
Table 3, which clearly shows that FLBC-I outperforms
k-means, and FCM w.r.t. the cluster quality. However, the
performance of FLBC-1 is less than CNNC for both Dataset 1
and Dataset 3 (Table 4). This is due to the fact that CNNC
gives disjoint clusters but there are also overlapping clusters
in FLBC-I.

2) P-value

To evaluate the statistical significance of the genes in a
cluster, we compute the p-value for each GO category.
P-value represents the probability of observing the number of
genes from a specific GO functional category within each
cluster. A low p-value indicates the genes belonging to the
enriched functional categories are biologically significant in
the corresponding clusters. We have obtained p-value using
the software FuncAssociate [17], which is a web-based tool
that accepts as input a list of genes, and returns a list of GO
attributes that are over- (or under-) represented among the
genes in the input list. The enriched functional categories for
some of the clusters obtained by FLBC-1 on Dataset 3 are
listed in Table 6. To restrict the size of the paper, we have
reported only a part of the results and p-values less than e-07.
The functional enrichment of each GO category in each of the
clusters is calculated by its p-value.

3) Q-value

The Q value for a particular gene is the proportion of false
positives among all genes that are as or more extremely
differentially expressed. Q-value is also defined as the
minimal False Discovery Rate (FDR) at which this gene
appears significant. The GO categories and Q-values from a
FDR corrected hyper geometric test for enrichment are
reported in GeneMANIA. The estimation of Q-values is done
using the Benjamini Hochberg procedure [18]. We have used
GeneMANIA [19] which is a web interface for generating
hypotheses about gene function, analyzing gene lists and
prioritizing genes for functional assays. GeneMANIA
extends the list of query genes with functionally similar genes
that it identifies using available genomics and proteomics
data. GeneMANIA displays results as an interactive network,
illustrating the functional relatedness of the query and
retrieved genes. The different networks supported by
GeneMania are co-expression, physical interaction, genetic
interaction and co-localization. On the query set of genes,
GeneMANIA assigns a percentage weight to each of these
networks.

The genes in each of the clusters obtained by FLBC-I were
given as the list of query genes to GeneMania and the
different GO categories of the clusters along with their
Q-values are displayed for some of the clusters of Dataset 1
are listed in Table 7. The corresponding networks for cluster
11 and 20 for Dataset 1 are shown in Fig. 7 and 8. The
percentages of the different networks are also given in figures.
The values are obtained by choosing the default network
weighting option, i.e., automatically selected weighting
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method. The networks for cluster 4 and 18 of Dataset 3 are
given in Fig. 9 and 10. We can conclude from the tables and
figures that FLBC-I generates clusters of highly enriched GO  Table 2: Homogeneity and Separation values for FLBC-I

categories. Datasets | No. of Clusters Homogeneity | Separation
Cluster 0 Cluster 1 Cluster 2 Dataset 1 | 18 0.94 0.09
Dataset 2 | 06 0.90 0.15
Dataset 3 | 14 0.95 -0.08
Table 3: z-scores for FLBC-I and its counterparts for Dataset 1
Method Applied No. of Clusters z-score
k-means 18 2.48
Cluster 3 FCM 18 2.49
. CNNC 15 3.04
FLBC-I 18 2.59

Table 4: z-scores for FLBC-I and its counterparts for Dataset 3
Method Applied No. of Clusters z-score

Cluster 6 Cluster 7 Cluster 8 k-means 14 16.08
FCM 14 13.98
CNNC 14 14.24
FLBC-I 14 13.77

Our Fuzzy link based clustering approach combines the
classical as well as the fuzzy set theory approach to clustering
genes. It provides a better precise solution for handling the
imprecise data i.e. any gene that might belong to different
clusters with different degree of membership. A gene is
assigned to a cluster with which it has the highest
membership value. Similar membership values for genes
w.r.t. different clusters helps in the detection of overlapped
clusters. Even after fuzzy clustering for genes, it is still good
enough for detecting noise genes which could not obtain a
membership in any cluster because of the threshold f used for
deciding membership in a cluster.

The FLBC-I clustering provides good results for clustering
in two steps. In the first step it finds highly coherent genes. In
the second step it applies a fuzzy clustering on the genes
which have not been classified in the first step. For assigning
the membership of such genes we have used another
parameter 3, which serves as the threshold for a gene to be
qualified as a member of a cluster. A comparatively higher
value of g, ensures that the algorithm is still successful in
detecting the noise genes.

Performance of fuzzy link based clustering is almost
comparable to CNNC [2]. Nevertheless, this approach of
clustering decreases the quality of the clusters because the
incorporation of some of the candidate genes might decrease
the coherency of the cluster. The algorithm gives clusters
which are dense with higher value of CN, with a good degree
of similarity. These genes represent a very fine level of
clustering or it gives the set of highly coherent patterns. We
note here that some of the algorithms require an input
parameter to be specified i.e. number of clusters as in k-means
and FCM, and this input parameter severely affects the
clustering as revealed by the variation in cluster validity
measures with change of values for these parameters. On the
other hand the proposed method FLBC-I do not require the
number of clusters apriori and has been found to yield quite

Figure. 6: Results of FLBC-1 on Dataset 3 comparable results.
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V1. Conclusion

This paper discusses an effective technique for clustering
gene expression data using a common neighbor and fuzzy
based approach. The values of the tuning parameters, ¢ and a,
play a key role in the improvement of the performance of the
proposed technique. An appropriate value for the tuning
parameter 6 may be selected by cross validation. Based on our
experiments, it has been observed that the value of § within
0.8-0.95 gives excellent results for the tested datasets. It
should be noted that higher the value of ¢, better is the
coherence. However, work is going on to develop a heuristic
method for adaptive selection of the tuning parameter « and .
Performance evaluation over real data show that the proposed
method significantly improves the performance over some of
the traditional methods such as FCM and kmeans even in
presence of outliers. Also significantly good z-, p- and g-
values establish the effectiveness of the proposed FLBC-I
while comparing with its other counterparts. FLBC-I may be
modified to make it parameter independent and to detect
intrinsic and embedded cluster.

Co-expression 91.20 %
Genglic interactions 4.41 %
Physical interactions 2.82%
Predicted 1.03 %
Other 0.29%
Co-localization 0.25%

Figure. 7: The network for cluster 11 of Dataset 1. We used
the default query, using all default parameters. The weights
of each of the networks are also given.
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Table 5: P-values of Dataset 1

Cluster| P-value GO number GO category
€1 1.1e-14 (G0:0042555 | MCM complex
5.7e-12 GO:0005656 | pre-replicative complex
5.7e-12 GO:0006267 | pre-replicative complex assembly
1.6e-11 GO:0000084 | S phase of mitotic cell cycle
3.9e-11 GO:0031261 | DNA replication preinitiation complex
3.9e-11 GO:0043596 | nuclear replication fork
3.9e-11 GO:0051320 | S phase
1.2e-10 G0:0003688 | DNA replication origin binding
4.5e-10 GO:0006271 | DNA strand elongation during DNA
replication
4.5e-10 GO:0022616 | DNA strand elongation
6.Te-10 GO:0005657 | replication fork
7.1e-10 (G0:0006270 | DNA replication initiation
8.2e-10 GO:0008094 | DNA-dependent ATPase activity
4e-09 GO:0051329 | interphase of mitotic cell cycle
4.2e-09 GO:0051325 | interphase
5.4e-09 GO:0043565 | sequence-specific DNA binding
9.2e-09 GO:0009378 | four-way junction helicase activity
Cl1 8.6e-21 (G0:0006259 | DNA metabolic process
3.5e-19 GO:0006260 | DNA replication
7.2e-17 GO:0005694 | chromosome
8.2e-17 GO:0007049 | cell cycle
4.4e-16 GO:0006281 | DNA repair
7.3e-16 GO:0044427 | chromosomal part
1.3c-14 GO:0006974 | response to DNA damage stimulus
2.8e-14 GO:0006261 | DNA-dependent DNA replication
3.4e-14 GO:0009719 | response to endogenous stimulus
6.4e-14 GO:0051276 | chromosome organization and biogen-
esis
4.4e-12 GO:0007064 | milotic sister chromatid cohesion
4.9e-12 GO:0022403 | cell cycle phase
5.3e-12 G0:0022402 | cell cycle process
Te-11 GO:0005634 | nucleus
le-10 GO:0006139 | nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process
Te-10 GO:0007062 | sister chromatid cohesion
3e-10 GO:0005657 | replication fork
1.9e-09 GO:0000228 | nuclear chromosome
2.4e-09 GO:0000819 | sister chromatid segregation
3.3e-09 GO:0000278 | mitotic cell cycle
6.8¢-09 GO:0006273 | lagging strand elongation
1.8¢-08 CO:0051052 | regulation of DNA metabolic process
1.9¢-08 GO:0006950 | response to stress
2.4e-08 GO:0000070 | mitotic sister chromatid segregation
2.6e-08 G0:0044454 | nuclear chromosome part
C20 1.1e-13 GO:0005819 | spindle
1.2e-12 CO:0015630 | microtubule cytoskeleton
1.5e-12 GO:0007017 | microtubule-based process
1.8e-11 G0:0000226 | microtubule cytoskeleton organization
and biogenesis
4.4e-11 GO:0005874 | microtubule
1.8e-10 GO:0000775 | chromosome, pericentric region
3.Te-10 GO:0044430 | cytoskeletal part
Te-09 GO:0005856 | cytoskeleton
1.4e-09 GO:0000780 | condensed nuclear chromosome, peri-
centric region
1.5e-09 GO:0007010 | cytoskeleton organization and biogen-
esis
1.7e-09 GO:0005876 | spindle microtubule
1.7e-09 GO:0007020 | microtubule nucleation
2e-09 GO:0000779 | condensed chromosome, pericentric
region
2e-09 GO:0005200 | structural constituent of cytoskeleton
2.9e-09 GO:0000776 | kinetochore
2.4e-08 (C0:0000278 | mitotic cell cycle
2.4e-08 GO:0007059 | chromosome segregation
3e-08 GO:0000794 | condensed nuclear chromosome
5.3e-08 GO:0000778 | condensed nuclear chromosome Kine-
tochore
6.7e-08 GO:0000793 | condensed chromosome
7.6e-08 GO:0000777 | condensed chromosome Kinetochore
C30 1.8e-14 GO:0005933 | cellular bud
1.3e-12 GO:0030427 | site of polarized growth
7.8e-12 GO:0005935 | cellular bud neck
1.8e-11 GO:0051301 | cell division
2.3e-08 GO:0007049 | cell cycle
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Table 6: P-values of Dataset 3 Table 7: Q-values of Dataset 1 obtained for some clusters
Cluster| P-value GO number GO category Cluster GO Annotation Q value
Co 3.2e-11 (G0:0042254 | ribosome biogenesis and assembly Cll1 DNA repair 3.47e-24
[.1e-10 G0O:0022613 ribonucleoprotein complex biogenesis response to DNA damage stimulus A Te-24
and assembly DNA replication 3.88e-20
1.8e-08 G0:0005730 | nucleolus DNA-dependent DNA replication 1.9e-17
CI 3.1e-12 GO:0006099 | tricarboxylic acid cycle replication fork 7 13e-17
3.1e-12 GO:0046356 | acety[-CoA catabolic process nuclear replication fork 0.5%e-16
8.3e-12 G0:0006084 | acetyl-CoA metabolic process mitotic sister chromatid cohesion 3.56e-15
8.3e-12 GO:00091I09 | coenzyme catabolic process double-strand break repair 7546-15
le-T1 GO:005T187 | cofactor catabolic process htclear chromosoie T11e-14
2de-11 GO:0009060 | aerobic respiration sister chromatid cohesion [.13e-13
3.1e-11 GO:0045333 | cellular resplra.uon o DNA recombination 168613
8.9e-10 GO:0015980 energy tlerjvatlcin by oxidation of or- mitofic cell cycle T 7612
ganic compounds o = 5
6.2e-09 G0:0006091 generalif)n of precursor metabolites si[;1]ecrlil]l:rg:i:tli]glossggn;:ggtail([)n 2.11?7;111
: and EUETEY. mitotic sister chromatid segregation 1.74e-10
1.3e-08 G0:0005739 | mitochondrion ationoE DN A sielaholic protess II7o10
Cc2 1.7e-18 GO:0006099 | tricarboxylic acid cycle restation g I\‘[A et I -
. i et i 1 phase 9.26e-10
1.7e-18 GO:0046356 | acetyl-CoA catabolic process T30 e 15637
6.6e-18 GO:0006084 | acety[-CoA metabolic process . 11'.llL‘]0[l| ULE Cyloskaleton =D
6.6e-18 GO:0009109 | coenzyme catabolic process nucrolubuleﬂ)ased PIOGESS 3.46e-32
Je-18 GO:005T187 | cofactor catabolic process 2 spindle — 3.37e-30
14e13 GO0009060 | aerobic respiration microtubule cytoskeleton organization 8.97e-30
5.7e-13 GO:0045333 | cellular respiration cyloskeletal part 3.89e-26
7.8e-12 GO:0006732 | coenzyme metabolic process cytoskeleton 9.37e-26
1.7e-11 GO:0015980 | energy derivation by oxidation of or- kinetochore 1.05e-22
ganic compounds condensed chromosome kinetochore 5.51e-22
6.de-11 GO:0051186 | cofactor metabolic process cyloskelelon organization 6.7e-22
1.3e-10 GO:000609T | generation of precursor metabolites condensed nuclear chromosome, centromeric region | 8.77e-22
and energy chromosome, centromeric region 1.19e-21
C4 2e-18 (G0:0042254 | ribosome hiogenesis and assembly chromosome segregation 1.83e-21
3.4e-18 GO0:0022613 | ribonucleoprotein complex biogenesis condensed chromosome, centromeric region 1.83e-21
and assembly mitotic cell cycle 4.88e-21
1.5e-15 G0:0005730 | nucleolus condensed nuclear chromosome kinetochore 8.78e-21
2.9e-12 GO:0016072 | tRNA metabolic process M phase 1.84e-19
1.7e-11 GO:0006364 | rRNA processing structural constituent of cytoskeleton 1.89¢-18
3.5e-11 G0:0043228 | non-membrane-bounded organelle microtubule 2.G6e-18
3.0e-11 G0:0043232 | intracellular non-membrane-bounded spindle pole 1Ale-17
organelle condensed nuclear chromosome 2.03e-17
6.9¢-10 GO:003198T | nuclear lumen condensed chromosome 1.11e-16
2.7e-08 GO:0006396 | RNA processing spindle pole body 2670-16
Ci8 1.2e-29 G0:0022626 | cytosolic ribosome microtubule organizing center 2.67e-16
L.2e-27 GO:0044445 [ cytosolic part mitotic spindle organization 475e-16
4.4e-26 G0:0005840 | rihosome _ _ spindle organization [.64e-15
3.7e-23 G0:0003735 sF1*l|c11.||'al consm_uem of ribosome sister chromaid segregation 28715
5.1e 23 G0:0033279 | ribosomal subunit milotic sister chromatid segregation 5.94e-14
Oe-21 G0:0030529 | ribonucleoprotein complex e T T 197613
7.6e-17 GO:0005198 | structural molecule activity Moh IO Cell ovele 10813
[.3e-16 G0:0043228 | non-membrane-bounded organelle it Bl bl e, 3'04 3
I.3e-16 GO:004323Z | intracellular non-membrane-bounded nucl::rtzsi"lision 3'?3513
organelle = i s
4.7e-15 GO:0022627 | cytosolic small ribosomal subunit organelle fission TR
9.3e-15 GO:0009059 | macromolecule hiosynthetic process | nuclear Chm‘“?’some part 3.0Ze-12
le-14 GO:0022625 | cytosolic large ribosomal subunit microtubule associated complex 8.98e-12
[Te-1d | GO0006412 | translation ____ nuclear chromosome bjaedl
13c.14 GO:0032991 | macramolecular complex mitotic spindle organization in nucleus E.He—ll
36012 CO.0005829 | cytosol cyloplasmic microtubule 5.26e-11
5.7e-12 GO:0015935 | small ribosomal subunit
1.2e-11 GO:0015934 | Targe ribosomal subunit
1.5e-11 GO:0009058 | biosynthetic process References
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Co-expression 63.93 %
Co-ocalization 22.05%
Genetic i.nteractions 8.90 %
Physical interactions 319 %
Predicted 1.53 %
Shared protein domains 0.40 %

Figure. 8: The network for cluster 20 of Dataset 1. We used the default query, using all default parameters. The weights of each
of the networks are also given.
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Figure. 9: The network for cluster 4 of Dataset 3.
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Figure. 10: The network for cluster 18 of Dataset 3.
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