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Abstract- Parallel Programming (PP) used to be an area is 

confined to scientific and cloud computing applications. 

However, with the proliferation of multicore processors, parallel 

programming has definitely become a mainstream of concern. To 

satisfy the requirement, one can leverage multi-core 

architectures to parallelize traffic monitoring so as to progress 

information processing capabilities over traditional 

uni-processor architectures. In this paper an effective scheduling 

framework for multi-core processors that strike a balance 

between control over the system and an effective network traffic 

control mechanism for high-performance computing is proposed. 

In the proposed Cache Fair Thread Scheduling (CFTS), 

information supplied by the user to guide threads scheduling and 

also, where necessary, gives the programmer fine control over 

thread placement. For this wait-free data structure are applied in 

lieu of conventional lock-based methods for accessing internal 

scheduler structure, alleviating to some extent serialization and 

hence the degree of contention. Cloud computing has recently 

received considerable attention, as a promising approach for 

delivering network traffic  services by improving the utilization 

of data centre resources. The primary goal of scheduling 

framework is to improve application throughput and overall 

system utilization in cloud applications. The resultant aim of the 

framework is to improve fairness so that each thread continues to 

make good forward progress. The experimental results show that 

the parallel CFTS-WF could not only increase the processing 

rate, but also keep a well performance on stability which is 

important for cloud computing. This makes, it an effective 

network traffic control mechanism for cloud computing. 

 

Keywords: Cache Fair Thread Scheduling, multi-core, wait free data 

structure, cloud computing, network traffic 

 

I. Introduction  

Cloud computing and multicore processor architecture is two 

emerging classes of execution environments that are rapidly 

becoming widely adopted for the deployment of Web services. 

Explicit parallel architectures require specification of parallel 

task along with their interactions. In cloud computing 

environment multicore network traffic analysis become 

challenge for several reasons. First,    packet capture 

applications are memory bound, but memory bandwidth does 

not seem to increase as fast as the number of core available [3]. 

Second, balancing the traffic among different processing units 

is challenging, as it is not possible to predict the nature of the 

incoming traffic. Exploiting the parallelism with 

general-purpose operating systems is even more difficult as 

they have not been designed for accelerating packet capture. 

During the last three decades, memory access has always been 

one of the worst cases of scalability and thus several solutions 

to this problem have been proposed .With the advent of 

Symmetric Multiprocessor Systems (SMP), multiple 

processors are connected to the same memory bus, hereby 

causing processors to compete for the same memory 

bandwidth. Integrating the memory controller inside the main 

processor is another approach for increasing the memory 

bandwidth. The main advantage of this architecture is fairly 

obvious: multiple memory modules can be attached to each 

processor, thus increasing bandwidth. In shared memory 

multiprocessors, such as SMP and NUMA (Non Uniform 

Memory Access), a cache coherence protocol [19] must be 

used in order to guarantee synchronization among processors. 

A multi-core processor is a processing system composed of 

two or more individual processors, called cores, integrated 

onto a single chip package. As a result, the inter-core 

bandwidth of multi-core processors can be many times greater 

than the one of SMP systems.  

For traffic monitoring and control applications, the most 

efficient approach to optimize the bandwidth utilization is to 

reduce the number of packet copies. In multi-core and 

multi-processor architectures, memory bandwidth can be 

wasted in many ways, including improper scheduling, wrong 

balancing of Interrupt ReQuests (IRQ) and subtle mechanisms 

such as false sharing [14]. For these reasons, squeezing 

performance out of those architectures require additional 

effort. Even though there is a lot of ongoing research in this 

area, most of the existing schedulers are unaware of 

architectural differences between cores; therefore the 

scheduling does not guarantee the best memory bandwidth 

utilization. This may happen when two threads using the same 

data set are scheduled on different processors, or on the same 

multi-core processors having separate cache domains. 

Therefore an effective   software scheduler to better distribute 

the workload among threads can substantially increase the 

scalability is achieved by CFTS. In cloud computing software 
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services are provided in the cloud and not on the local 

computer.  In a multicore processor, several processor cores 

are placed on the same chip. These cores can be utilized to 

either execute several independent programs at the same time 

or execute a single program faster. In the cloud, all the 

resources including infrastructure, platform and software are 

delivered as services, which are available to customers in a 

pay-peruse model. In this way, cloud computing gains 

advantages such as cost savings, high availability, and easy 

scalability [15]. Cloud must guarantee all resources as a 

service and provide them to users by means of customized 

System Level Architectures (SLAs). However, in the cloud, 

there might be tens of thousands or even more users accessing 

resource simultaneously, which give an extremely high 

pressure on the cloud. When all users are requiring service 

from the cloud, the out traffic from data center will be 

tremendous and the network bandwidth must be managed 

effectively to serve all users [23]. So, it is necessary to control 

the data streams and make a better utilization of free network 

resources in the cloud. 

In this paper, a network traffic monitoring and control for 

multi core processors based on cloud is proposed. Also it 

monitors the application behavior at run-time, analyze the 

collected information, and optimize multi-core architectures 

for cloud computing resources. The traditional operations on 

traffic packet structures are modified to reduce the strong 

dependency in the sequential code. Then wait-free data 

structures are applied selectively to make multi-core 

parallelization easier and manageable. Based on this, the 

parallel network traffic controller can run in a 1- way 2-stage 

pipelined fashion on a multi-core processor, which not only 

increases the processing speed significantly, but also performs 

well in stability. The scheduling framework is implemented 

such that it first compares the existing deadline monotonic 

without wait free data structure and with wait free data 

structure. Similarly for parallel applications like cloud 

computing the CFTS is also compared with and without wait 

free data structure.  The remainder of this paper is organized as 

follows. After the related work in Section 2, Section 3 gives 

description of the problem for multi core systems in cloud 

applications using Cache Fair Thread Scheduling algorithm 

and Section 4 describes problem evaluation and section 5 

provides results and discussions, followed by conclusion. 

II. Related Work 

To characterize scientific and transactional applications in 

Cloud infrastructures - IaaS, identifying the best virtual 

machine configuration in terms of the optimal processor 

allocation for executing parallel and distributed applications 

are proposed in [6]. A self-organized architecture for a 

Cooperative Scheduling System considering that it must be 

able to perform scheduling in highly dynamic environments 

where there is incomplete information and changes often occur 

is implemented in [2].The effect of heterogeneous data on the 

scheduling mechanisms of the cloud technologies and a 

comparison of performance of the cloud technologies under 

virtual and nonvirtual hardware platforms are given in [7]. The 

number of cores which fit on a single chip is growing at an 

exponential rate while off-chip main memory bandwidth is 

growing at a linear rate at best. This core count to off-chip 

bandwidth disparity causes per-core memory bandwidth to 

decrease as process technology advances. An analytic model 

to study the tradeoffs of utilizing increased chip area for larger 

caches versus more cores is introduced in [1]. In [18], different 

scheduling policies for multicore processor with wait free data 

structure are    evaluated in cloud computing applications. The 

idea of treating clouds and multi cores as a single computing 

environment has been introduced by DavidWentzlaff et al. 

within the contest of the Fos Operating System [20]. They 

propose the development of a modern Operating System to 

target at the same time and in parallel the two different 

computing platforms, using a well defined service based 

architecture. As cloud computing is a relatively new concept, it 

is still at the early stage of research. Most of the published 

works focuses on general description of cloud, such as its 

definition, advantages, challenges, and future [4] and [10]. In 

detail, security is a very popular and important research field 

in cloud computing. Some researches focus on the data 

confidentiality and integrity in cloud computing, and some 

analyze security problems in cloud computing from different 

points of view, such as network, servers, storage, system 

management and application layer [22]. Besides security, 

another hot topic in cloud computing is virtualization 

technologies. A security Private Virtual Infrastructure [PVI] 

and the architecture that cryptographically secures each virtual 

machine are proposed in [12]. A virtual machine image 

management system is introduced in [20], and a real-time 

protection solution for virtual machine is given in [5].  A 

Run-Time Monitor (RTM) which is a system software to 

monitor the characteristics of applications at run-time, analyze 

the collected information, and optimize resources on a cloud 

node which consists of multi-core processors are described in 

[16]. In this study on constructing many core architectures 

well suited for the emerging application space of cloud 

computing where many independent applications are 

consolidated onto a single chip is described. Nevertheless, 

both computing platforms require the software to correctly use 

a very large and potentially heterogeneous pool of available 

execution resources. For instance, in the near future multicore 

machines with more than 64 cores will become main stream 

[17]. On such a computing platform, the correct usage of each 

core will become a relevant issue not only affecting the overall 

performance of the service, but also impacting its power 

consumption. 
To make CFTS capable for cloud computing, parallelization 

technology on multi-core processor is required. A research 

trend on multi-core parallelization is wait-free data structures. 

A general introduction to the wait free data structures is given 

in [8].  

III. Problem Statement 

This section first describes CFTS in detail by comparing it 

with static scheduling algorithm (deadline monotonic) for 

multi core systems while running cloud applications. The 

scheduling primitives must support a wide variety of 

parallelization requirements. Moreover, some applications 

need different scheduling strategies for different program 

phases. In deadline monotonic, the time that a program takes to 

run will not depend only on its computation requirements but 

also on the ones of its co-runners. Therefore, the scheduler not 

only must select the task to be launched (e.g., a critical task) 

but also the appropriate core. The core must be selected 

according to the computational requirements of the tasks 

already running in each core. Therefore it is measured as time 
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consuming for cloud applications. Also, as the number of tasks 

(traffic) increases, the static scheduling system employed by a 

traditional OS will no longer guarantee optimal execution of 

tasks. Therefore proposed CFTS reduces the effects of 

unequal CPU cache sharing that occur on these processors and 

cause unfair CPU sharing, priority inversion, and inadequate 

CPU accounting. CFTS attempts to minimize the effect of 

thread level data dependencies and maintain efficient 

execution of all threads in the processor without excessive 

overhead for scheduling computation. In our work thread 

scheduling performs in parallel with CPU operation by 

utilizing resources and thereby minimizing the amount of time 

spent in the OS. In order to schedule the CFTS threads 

effectively, it must have information regarding the current 

state of all threads currently executing in the processor. To do 

gain this knowledge wait free data structures are implemented 

to store threads and maintain information about their current 

status. Therefore on parallelizing CFTS by applying wait-free 

design principles can be used for the allocation and 

management of shared network resources among different 

classes of traffic streams with a wide range of performance 

requirements and traffic characteristics in high-speed 

packet-switched network architectures. The proposed CFTS 

maximizes the throughput, and can then be used for efficient 

bandwidth management and traffic control in order to achieve 

high utilization of network resources while maintaining the 

desired level of service for cloud computing by CFTS 

scheduling in multi core systems. 

 

A. Description of Cache Fair Thread scheduling algorithm 

CFTS is suitable for cloud computing for its idea of bandwidth 

borrowing. It can not only control the bandwidth of all users, 

guaranteeing that all users could be given different levels of 

basic service by their payment, but also make more effective 

usage of free resource and make a better user experience. In 

the cloud, there could be different kinds of leaf users, e.g. 

2Mbps, 5Mbps, regarding different service levels. Because 

CFTS is a dynamic traffic control mechanism, classes can be 

added or removed dynamically. This makes CFTS scalable 

enough for cloud computing.  

On real hardware, it is possible to run only a single task at 

once, so while that     one task runs, the other tasks that are 

waiting for the CPU are at a disadvantage - the current task 

gets an unfair amount of CPU time. In CFTS this fairness 

imbalance is expressed and tracked via the per-task 

p->wait_runtime (nanosec-unit) value. "wait_runtime" is the 

amount of time the task should now run on the CPU for it to 

become completely fair and balanced. CFTS's task picking 

logic is based on this p->wait_runtime value and it is thus very 

simple: it always tries to run the task with the largest 

p->wait_runtime value. So CFTS always tries to split up CPU 

time between runnable tasks as close to ‘ideal multitasking 

hardware' as possible. This algorithm redistributes CPU time 

to threads to account for unequal cache sharing: if a thread’s 

performance decreases due to unequal cache sharing it gets 

more time, and vice versa. The challenge in implementing this 

algorithm is determining how a thread’s performance is 

affected by unequal cache sharing using limited information 

from the hardware.    The cache-fair scheduling algorithm does 

not establish a new CPU sharing policy but helps enforce 

existing policies. The key part of our algorithm is correctly 

computing the adjustment to the thread's CPU quantum. The 

given four-steps are used to compute the cache-fair scheduling 

algorithm adjustment. 

1. Determine a thread’s fair L2 cache miss rate – a miss rate 

that the thread would experience under equal cache sharing.  

2. Compute the thread’s fair CPI rate – the cycles per 

instruction under the fair cache miss rate.  

3. Estimate the fair number of instructions – the number of 

instructions the thread would have completed under the 

existing scheduling policy if it ran at its fair CPI rate (divide 

the number of cycles by the fair CPI). Then measure the actual 

number of instructions completed. 

4. Estimate how many CPU cycles to give or take away to 

compensate for the difference between the actual and the fair 

number of instructions. Adjust the thread’s CPU quantum 

accordingly. 

The algorithm works in two phases: 

1. Searching phase:  

The scheduler computes the fair L2 cache miss rate for each 

thread. 

2. Calibration phase:  

A single calibration consists of computing the adjustment to 

the thread’s CPU quantum and then selecting a thread from the 

best effort class whose CPU quantum is adjusted to offset the 

adjustment to the cache-fair thread’s quantum. Calibrations 

are repeated periodically. 

The challenge in implementing this algorithm is that in order 

to correctly compute adjustments to the CPU quanta and need 

to determine a thread’s fair CPI ratio using only limited 

information from hardware counters [13]. This algorithm 

reduces L2 contention by avoiding the simultaneous 

scheduling of problematic threads while still ensuring 

real-time constraints. 

B. Description of Static Algorithm (Deadline Monotonic) 

To meet hard deadlines implies constraints upon the way in 

which system resources are allocated at runtime. This includes 

both physical and logical resources. Conventionally, resource 

allocation is performed by scheduling algorithms whose 

purpose is to interleave the executions of processes in the 

system to achieve a pre-determined goal. For hard real-time 

systems the obvious goal is that no deadline is missed. One 

scheduling method that has been proposed for hard real-time 

systems is a type of deadline monotonic algorithm [11] .This is 

a static priority based algorithm for periodic processes in 

which the priority of a process is related to its period. With this 

algorithm, several useful properties, including a schedulability 

test that is sufficient and necessary the constraints that it 

imposes on the process system are severe: processes must be 

periodic, independent and have deadline equal to period. The 

processes to be scheduled are characterized by the following 

relationship: 

 Computation time < deadline < period 

 Based on this each core is characterized by: 

1) The frequency of each core, fj, given in cycles per unit time. 

With DVS, fj can vary from fj min to fj max, where 0 < fj min < 

fj max. From frequency it is easy to obtain the speed of the 

core, Sj, which is simply the inverse of the frequency. 

2) The specific architecture of a core, A(corej), includes the 

type the core, its speed in GHz, I/O, 

local cache and/or memory in Bytes. 

 

Network Traffic Monitoring and Control for Multi core processors in cloud computing applications 



 

Tasks: Consider a parallel application, T = {t1, t2, …, tn}, 

where ti is a task. Each task is characterized by: 

1) The computational cycles, ci, that it needs to complete. (The 

assumption here is that the ci is 

known a priori.) 

2) The specific core architecture type, A(ti), that it needs to 

complete its execution. 

3) The deadline, di, before each task has to complete its 

execution.  

 The application, T, also has a deadline, D, which is met if and 

only if the deadlines of all its tasks are met. Here, the deadline 

can be larger than the minimum execution time and represents 

the time that the user is willing to tolerate because of the 

performance-energy trade-offs. The number of computational 

cycles required by ti  to execute on corej is a finite positive 

number, denoted by cij. The execution time of ti under a 

constant speed Sij, given in cycles per second is , 

                             tij = cij/Sij. 

C. Description of Wait free data structure 

A wait-free data structure is a lock-free data structure with the 

additional property that every thread accessing the data 

structure can make complete its operation within a bounded 

number of steps, regardless of the behaviour of other threads. 

Each thread is guaranteed to be progressed itself or a 

cooperative thread [9].  This property means that high-priority 

threads accessing the data structure never have to wait for 

low-priority threads to complete their operations on the data 

structure, and every thread will always be able to make 

progress when it is scheduled to run by the OS. For real-time 

or semi-real-time systems this can be an essential property, as 

the indefinite wait-periods of blocking or non-wait-free 

lock-free data structures do not allow their use within 

time-limited operations. A wait-free data structure has the 

maximum potential for true concurrent access, without the 

possibility of busy waits. 

IV. Problem Evaluation 

The advent of Cloud computing platforms and the growing 

pervasiveness of multicore processor architectures have 

revealed the inadequateness of traditional programming 

models based on sequential computations, opening up many 

challenges for research on parallel programming models for 

building distributed, service-oriented systems. 

To investigate the effects of different scheduler configurations 

on the performance of multicore processor, implementation is 

a suite of MATLAB simulation.  Parallel Computing Toolbox 

provides several high-level programming constructs that help 

us to convert our applications to take advantage of computers 

equipped with multi core processors. Parallel programming 

improves performance by breaking down a problem into 

smaller sub problems that are distributed to multiple 

processors. Thus, the benefits are two-fold. First, the total 

amount of computation performed by each individual 

processor is reduced, resulting in faster computation. Second, 

the size of the problem can be increased by using more 

memory available on multiple processors. 

A parfor (parallel for) loop is useful in situations that require 

many loop iterations of a simple calculation, is used. As 

maxNumCompThreads() controls the parallelism of the 

multithreading approach, the matlabpool command controls 

the parallel behavior of the parfor syntax. matlabpool sets up a 

task-parallel execution environment in which parallel 

for-loops can be executed interactively from the MATLAB 

command prompt. The iterations of parfor loops are executed 

on labs (MATLAB sessions that communicate with each 

other). As a result, they can run on separate computers 

connected via a network. In the proposed work we only need to 

know that Parallel Computing Toolbox makes parfor work 

efficiently on a single multicore system.  

 

EffThread=Nthread(index); 

 s=[]; 

e=1; 

t=0; 

 limit=numel(EffThread); 

  tStart=tic; 

while(limit>e) 

for k=1:CacheMemory 

    for i=1:NrMultiCore 

                if(limit<=e) 

            break; 

        end 

            t=EffThread(e); 

        e=e+1; 

                if(limit<=e) 

            break; 

        end 

             if(i>1) 

         t1=EffThread(e); 

                  if(t==t1) 

             s(k,i)=EffThread(e);%same core 

             pause(.002) 

         else 

              s(k,i)=EffThread(e);%Other cores 

              pause(.002) 

                 end                

  end 

      end 

   % pause(.05); 

end 

if(limit<=e) 

    break; 

end 

 pause(.12) 

    end 

te=toc(tStart); 

 

Table  1 .CFTS Algorithm  

The main function of the deadline monotonic scheduling phase 

is to coordinate the execution order of tasks. Based on this the 

execution priority assignments are assigned by each task and 

are arranged in the descending order, and then be executed. 

For CFTS in the implementation it is  assumed  that the a 

multicore platform consisting of M cores and A cache 

partitions, and a set  of  т independent  tasks whose numbers of 

cache partitions (cache space size needed) and  Ei , 

WCET(Worst Case Execution Time) are known for the 

platform , and further it is assumed  that тi = (Ai,Ei, Di,Ti) to 

denote a task where Ai is the cache space size, Ei is the 

worst-case execution time (WCET), Di ≤ Ti  is the relative 

deadline for each release, and Ti is the minimum inter-arrival 

separation time also referred to as the period of the task. We 

further assumed that all tasks are ordered by priorities, i.e., тi   
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has higher priority than тj iff  i<j. The utilization of a task тi is 

Ui = Ei/Ti and its relaxation Ri = Di - Ei, which is the longest 

delay allowed before actually running without missing its 

deadline. In the system design phase, one can adjust tasks L2 

cache space sizes (and therefore their WCETs) to improve the 

system real-time performance, which can be built upon the 

schedulability analysis techniques. Also in the CFTS 

algorithm at any time, at any two running tasks cache spaces 

are non-overlapped. A task can get to execute only if it gets an 

idle core as well as enough space (not necessarily continuous) 

on the shared cache. The first technical contribution is a 

sufficient schedulability test for multicores with shared L2 

cache, for eight different applications (coop, imrec, ood, 

games, plros, zip, wpro, vlsi). To improve its scalability, 

second schedulability test for network traffic in clouds is 

implemented. To evaluate the performance and scalability of 

our techniques, we use randomly generated task sets. The 

following part of Matlab code that describes the effective 

thread, cache and core allocation. 

Typically, a separate set of performance counters is available 

for each core, and can be programmed to track events 

originating from that core. In this implementation a counter is 

programmed at each core to track lower-level (shared) cache 

misses. Since jobs execute sequentially, one can measure the 

number of cache misses incurred for a job by resetting the 

counter to zero at the start of execution, and recording the total 

misses observed by the counter upon completion. The 

observed misses can then be used to calculate a per-job ET 

estimate. Computed ET estimates are cached to minimize 

computation. 

V. Results and Discussion 

In the proposed work the time that it takes to complete its work 

segments in the Cache Fair Thread Scheduler with Wait Free 

data structures (CFTS-WF) and Cache Fair Thread Scheduler 

(CFTS) schedules are compared. This quantity is referred to as 

completion time. When running with a static scheduler, the 

difference between completion times is larger, but when 

running with the cache fair scheduler, it is significantly 

smaller. Figure 1 demonstrates normalized completion times 

with the static scheduler and Figure 2 demonstrates 

normalized completion times with the Cache Fair Thread 

scheduler. Figure 3 shows the Performance variability of 

different types of schedulers with variations in the cache and 

core sizes for the different applications and the table shows the 

average completion time for different applications with 

various schedulers. From the performance analysis and 

comparison made it is clear that, CFTS-WF provides 

maximum speed up, load balancing among all scheduling 

strategies used to obtain a minimum processing time. 

Hence the CFTS-WF seek to maximize the use of concurrency 

by mapping independent tasks on different threads, so that to 

minimize the total completion time by ensuring that processes 

are available to execute the tasks on the critical path as soon as 

such tasks become executable, and it should seek to minimize 

interaction among processes by mapping tasks with a high 

degree of mutual interaction onto the same process. 
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Figure 1  Performance Variability with Static scheduler 
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Figure 2 Performance variability with Cache fair Thread    

Scheduler 

   
Figure 3(a). Performance Variability with core-2, cache-2   

 

 
Figure 3(b).  Performance Variability with core-4, cache-2              

 
Figure 3(c). Performance Variability with core-8, cache-4              
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Figure 3(d). Performance Variability with core-32,cache -4     
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DM 5.9 2.6 1.7 1.6 

DMWF 3.8 1.9 1.4 1.5 

CFTS 1.9 1.7 2.0 1.7 

CFTSWF 1.3 1.2 1.3 1.4 

Table 2. Average Completion time ( in sec) for different 

Algorithms 

 

 
 

 Figure 4. Output traffic rate of total traffic 

 

 

 
 Figure 5 .Output traffic rate of a selected user 

                       

 It is again designed to test whether the wait –free based CFTS 

could be competent for cloud scenario described in section 3 

under extremely high traffic pressure. Figure 4 and Figure 5 

shows the output rate sampling at a certain time interval for 

both the total CFTS and a random selected user. To make the 

results more accurate, different time interval for total traffic 

and user traffic is used, because their rates are at different 

levels. It is understood  that the wait-free FIFO based 

CFTS-WF performs traffic control quite stable, and the 

resulting rate lines are nearly smooth, indicating the traffic 

rates are accurately retained. The stability is important for 

cloud computing because it might face tens of thousands users 

at the same time. 

VI. Conclusion  

A significant body of the performance modeling research 

literature has focused on various aspects of the parallel 

computer scheduling problem and the allocation of computing 

resources among the parallel jobs submitted for 

execution.  Several classes of scheduling strategies have been 

proposed for such computing environments, each differing in 

the way the parallel resources are shared among the jobs.  This 

includes the class of space-sharing strategies that share the 

processors in space by partitioning them among different 

parallel jobs, the class of time-sharing strategies that share the 

processors by rotating them among a set of jobs in time, and 

the class of scheduling strategies that combine both 

space-sharing and time-sharing.  In this paper, a wait free 

based parallel CFTS is implemented for effective and stable 

traffic control in the cloud. Based on the algorithms on 

accessing data structures and the usage of wait free FIFO, the 

parallel CFTS can run a pipelined fashion. The experimental 

analysis and evaluation results both indicate that parallel 

CFTS WF is more suitable for cloud computing, due to its 

excellent performance on both line rate and stability. 

Moreover, parallel network application based on multi-core 

processor is cheaper and more scalable than special hardware 

and explore its more effective usage in cloud computing. This 

scheduler is a good solution to achieve the best VM (Virtual 

Machine) environment for running applications under Cloud 

Computing environments. In future CFTS-WF can be 

experimented can be executed under a cluster with more 

processor scalability to allocate and deallocate cores in the VM 

in heterogeneous communication and computation 

environment. 
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