
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 5 (2013) pp. 557-563

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Network Traffic Monitoring and Control for Multi

core processors in cloud computing applications

1

asradhamani@gmail.com

2

,

alanchybabu@gmail.com

Abstract- Parallel Programming (PP) used to be an area is

confined to scientific and cloud computing applications.

However, with the proliferation of multicore processors, parallel

programming has definitely become a mainstream of concern. To

satisfy the requirement, one can leverage multi-core

architectures to parallelize traffic monitoring so as to progress

information processing capabilities over traditional

uni-processor architectures. In this paper an effective scheduling

framework for multi-core processors that strike a balance

between control over the system and an effective network traffic

control mechanism for high-performance computing is proposed.

In the proposed Cache Fair Thread Scheduling (CFTS),

information supplied by the user to guide threads scheduling and

also, where necessary, gives the programmer fine control over

thread placement. For this wait-free data structure are applied in

lieu of conventional lock-based methods for accessing internal

scheduler structure, alleviating to some extent serialization and

hence the degree of contention. Cloud computing has recently

received considerable attention, as a promising approach for

delivering network traffic services by improving the utilization

of data centre resources. The primary goal of scheduling

framework is to improve application throughput and overall

system utilization in cloud applications. The resultant aim of the

framework is to improve fairness so that each thread continues to

make good forward progress. The experimental results show that

the parallel CFTS-WF could not only increase the processing

rate, but also keep a well performance on stability which is

important for cloud computing. This makes, it an effective

network traffic control mechanism for cloud computing.

Keywords: Cache Fair Thread Scheduling, multi-core, wait free data

structure, cloud computing, network traffic

I. Introduction

Cloud computing and multicore processor architecture is two

emerging classes of execution environments that are rapidly

becoming widely adopted for the deployment of Web services.

Explicit parallel architectures require specification of parallel

task along with their interactions. In cloud computing

environment multicore network traffic analysis become

challenge for several reasons. First, packet capture

applications are memory bound, but memory bandwidth does

not seem to increase as fast as the number of core available [3].

Second, balancing the traffic among different processing units

is challenging, as it is not possible to predict the nature of the

incoming traffic. Exploiting the parallelism with

general-purpose operating systems is even more difficult as

they have not been designed for accelerating packet capture.

During the last three decades, memory access has always been

one of the worst cases of scalability and thus several solutions

to this problem have been proposed .With the advent of

Symmetric Multiprocessor Systems (SMP), multiple

processors are connected to the same memory bus, hereby

causing processors to compete for the same memory

bandwidth. Integrating the memory controller inside the main

processor is another approach for increasing the memory

bandwidth. The main advantage of this architecture is fairly

obvious: multiple memory modules can be attached to each

processor, thus increasing bandwidth. In shared memory

multiprocessors, such as SMP and NUMA (Non Uniform

Memory Access), a cache coherence protocol [19] must be

used in order to guarantee synchronization among processors.

A multi-core processor is a processing system composed of

two or more individual processors, called cores, integrated

onto a single chip package. As a result, the inter-core

bandwidth of multi-core processors can be many times greater

than the one of SMP systems.

For traffic monitoring and control applications, the most

efficient approach to optimize the bandwidth utilization is to

reduce the number of packet copies. In multi-core and

multi-processor architectures, memory bandwidth can be

wasted in many ways, including improper scheduling, wrong

balancing of Interrupt ReQuests (IRQ) and subtle mechanisms

such as false sharing [14]. For these reasons, squeezing

performance out of those architectures require additional

effort. Even though there is a lot of ongoing research in this

area, most of the existing schedulers are unaware of

architectural differences between cores; therefore the

scheduling does not guarantee the best memory bandwidth

utilization. This may happen when two threads using the same

data set are scheduled on different processors, or on the same

multi-core processors having separate cache domains.

Therefore an effective software scheduler to better distribute

the workload among threads can substantially increase the

scalability is achieved by CFTS. In cloud computing software

A.S.Radhamani , E.Baburaj
1 2

Department of Computer Science and Engineering, Manonmanium Sundaranar University,
Research Scholar, Tirunelveli.

Professor , Nagercoil

Department of Computer Science and Engineering, Sun College of Engineering and Technology,

 558

services are provided in the cloud and not on the local

computer. In a multicore processor, several processor cores

are placed on the same chip. These cores can be utilized to

either execute several independent programs at the same time

or execute a single program faster. In the cloud, all the

resources including infrastructure, platform and software are

delivered as services, which are available to customers in a

pay-peruse model. In this way, cloud computing gains

advantages such as cost savings, high availability, and easy

scalability [15]. Cloud must guarantee all resources as a

service and provide them to users by means of customized

System Level Architectures (SLAs). However, in the cloud,

there might be tens of thousands or even more users accessing

resource simultaneously, which give an extremely high

pressure on the cloud. When all users are requiring service

from the cloud, the out traffic from data center will be

tremendous and the network bandwidth must be managed

effectively to serve all users [23]. So, it is necessary to control

the data streams and make a better utilization of free network

resources in the cloud.

In this paper, a network traffic monitoring and control for

multi core processors based on cloud is proposed. Also it

monitors the application behavior at run-time, analyze the

collected information, and optimize multi-core architectures

for cloud computing resources. The traditional operations on

traffic packet structures are modified to reduce the strong

dependency in the sequential code. Then wait-free data

structures are applied selectively to make multi-core

parallelization easier and manageable. Based on this, the

parallel network traffic controller can run in a 1- way 2-stage

pipelined fashion on a multi-core processor, which not only

increases the processing speed significantly, but also performs

well in stability. The scheduling framework is implemented

such that it first compares the existing deadline monotonic

without wait free data structure and with wait free data

structure. Similarly for parallel applications like cloud

computing the CFTS is also compared with and without wait

free data structure. The remainder of this paper is organized as

follows. After the related work in Section 2, Section 3 gives

description of the problem for multi core systems in cloud

applications using Cache Fair Thread Scheduling algorithm

and Section 4 describes problem evaluation and section 5

provides results and discussions, followed by conclusion.

II. Related Work

To characterize scientific and transactional applications in

Cloud infrastructures - IaaS, identifying the best virtual

machine configuration in terms of the optimal processor

allocation for executing parallel and distributed applications

are proposed in [6]. A self-organized architecture for a

Cooperative Scheduling System considering that it must be

able to perform scheduling in highly dynamic environments

where there is incomplete information and changes often occur

is implemented in [2].The effect of heterogeneous data on the

scheduling mechanisms of the cloud technologies and a

comparison of performance of the cloud technologies under

virtual and nonvirtual hardware platforms are given in [7]. The

number of cores which fit on a single chip is growing at an

exponential rate while off-chip main memory bandwidth is

growing at a linear rate at best. This core count to off-chip

bandwidth disparity causes per-core memory bandwidth to

decrease as process technology advances. An analytic model

to study the tradeoffs of utilizing increased chip area for larger

caches versus more cores is introduced in [1]. In [18], different

scheduling policies for multicore processor with wait free data

structure are evaluated in cloud computing applications. The

idea of treating clouds and multi cores as a single computing

environment has been introduced by DavidWentzlaff et al.

within the contest of the Fos Operating System [20]. They

propose the development of a modern Operating System to

target at the same time and in parallel the two different

computing platforms, using a well defined service based

architecture. As cloud computing is a relatively new concept, it

is still at the early stage of research. Most of the published

works focuses on general description of cloud, such as its

definition, advantages, challenges, and future [4] and [10]. In

detail, security is a very popular and important research field

in cloud computing. Some researches focus on the data

confidentiality and integrity in cloud computing, and some

analyze security problems in cloud computing from different

points of view, such as network, servers, storage, system

management and application layer [22]. Besides security,

another hot topic in cloud computing is virtualization

technologies. A security Private Virtual Infrastructure [PVI]

and the architecture that cryptographically secures each virtual

machine are proposed in [12]. A virtual machine image

management system is introduced in [20], and a real-time

protection solution for virtual machine is given in [5]. A

Run-Time Monitor (RTM) which is a system software to

monitor the characteristics of applications at run-time, analyze

the collected information, and optimize resources on a cloud

node which consists of multi-core processors are described in

[16]. In this study on constructing many core architectures

well suited for the emerging application space of cloud

computing where many independent applications are

consolidated onto a single chip is described. Nevertheless,

both computing platforms require the software to correctly use

a very large and potentially heterogeneous pool of available

execution resources. For instance, in the near future multicore

machines with more than 64 cores will become main stream

[17]. On such a computing platform, the correct usage of each

core will become a relevant issue not only affecting the overall

performance of the service, but also impacting its power

consumption.
To make CFTS capable for cloud computing, parallelization

technology on multi-core processor is required. A research

trend on multi-core parallelization is wait-free data structures.

A general introduction to the wait free data structures is given

in [8].

III. Problem Statement

This section first describes CFTS in detail by comparing it

with static scheduling algorithm (deadline monotonic) for

multi core systems while running cloud applications. The

scheduling primitives must support a wide variety of

parallelization requirements. Moreover, some applications

need different scheduling strategies for different program

phases. In deadline monotonic, the time that a program takes to

run will not depend only on its computation requirements but

also on the ones of its co-runners. Therefore, the scheduler not

only must select the task to be launched (e.g., a critical task)

but also the appropriate core. The core must be selected

according to the computational requirements of the tasks

already running in each core. Therefore it is measured as time

 Radhaman and Baburaj

 559

consuming for cloud applications. Also, as the number of tasks

(traffic) increases, the static scheduling system employed by a

traditional OS will no longer guarantee optimal execution of

tasks. Therefore proposed CFTS reduces the effects of

unequal CPU cache sharing that occur on these processors and

cause unfair CPU sharing, priority inversion, and inadequate

CPU accounting. CFTS attempts to minimize the effect of

thread level data dependencies and maintain efficient

execution of all threads in the processor without excessive

overhead for scheduling computation. In our work thread

scheduling performs in parallel with CPU operation by

utilizing resources and thereby minimizing the amount of time

spent in the OS. In order to schedule the CFTS threads

effectively, it must have information regarding the current

state of all threads currently executing in the processor. To do

gain this knowledge wait free data structures are implemented

to store threads and maintain information about their current

status. Therefore on parallelizing CFTS by applying wait-free

design principles can be used for the allocation and

management of shared network resources among different

classes of traffic streams with a wide range of performance

requirements and traffic characteristics in high-speed

packet-switched network architectures. The proposed CFTS

maximizes the throughput, and can then be used for efficient

bandwidth management and traffic control in order to achieve

high utilization of network resources while maintaining the

desired level of service for cloud computing by CFTS

scheduling in multi core systems.

A. Description of Cache Fair Thread scheduling algorithm

CFTS is suitable for cloud computing for its idea of bandwidth

borrowing. It can not only control the bandwidth of all users,

guaranteeing that all users could be given different levels of

basic service by their payment, but also make more effective

usage of free resource and make a better user experience. In

the cloud, there could be different kinds of leaf users, e.g.

2Mbps, 5Mbps, regarding different service levels. Because

CFTS is a dynamic traffic control mechanism, classes can be

added or removed dynamically. This makes CFTS scalable

enough for cloud computing.

On real hardware, it is possible to run only a single task at

once, so while that one task runs, the other tasks that are

waiting for the CPU are at a disadvantage - the current task

gets an unfair amount of CPU time. In CFTS this fairness

imbalance is expressed and tracked via the per-task

p->wait_runtime (nanosec-unit) value. "wait_runtime" is the

amount of time the task should now run on the CPU for it to

become completely fair and balanced. CFTS's task picking

logic is based on this p->wait_runtime value and it is thus very

simple: it always tries to run the task with the largest

p->wait_runtime value. So CFTS always tries to split up CPU

time between runnable tasks as close to ‘ideal multitasking

hardware' as possible. This algorithm redistributes CPU time

to threads to account for unequal cache sharing: if a thread’s

performance decreases due to unequal cache sharing it gets

more time, and vice versa. The challenge in implementing this

algorithm is determining how a thread’s performance is

affected by unequal cache sharing using limited information

from the hardware. The cache-fair scheduling algorithm does

not establish a new CPU sharing policy but helps enforce

existing policies. The key part of our algorithm is correctly

computing the adjustment to the thread's CPU quantum. The

given four-steps are used to compute the cache-fair scheduling

algorithm adjustment.

1. Determine a thread’s fair L2 cache miss rate – a miss rate

that the thread would experience under equal cache sharing.

2. Compute the thread’s fair CPI rate – the cycles per

instruction under the fair cache miss rate.

3. Estimate the fair number of instructions – the number of

instructions the thread would have completed under the

existing scheduling policy if it ran at its fair CPI rate (divide

the number of cycles by the fair CPI). Then measure the actual

number of instructions completed.

4. Estimate how many CPU cycles to give or take away to

compensate for the difference between the actual and the fair

number of instructions. Adjust the thread’s CPU quantum

accordingly.

The algorithm works in two phases:

1. Searching phase:

The scheduler computes the fair L2 cache miss rate for each

thread.

2. Calibration phase:

A single calibration consists of computing the adjustment to

the thread’s CPU quantum and then selecting a thread from the

best effort class whose CPU quantum is adjusted to offset the

adjustment to the cache-fair thread’s quantum. Calibrations

are repeated periodically.

The challenge in implementing this algorithm is that in order

to correctly compute adjustments to the CPU quanta and need

to determine a thread’s fair CPI ratio using only limited

information from hardware counters [13]. This algorithm

reduces L2 contention by avoiding the simultaneous

scheduling of problematic threads while still ensuring

real-time constraints.

B. Description of Static Algorithm (Deadline Monotonic)

To meet hard deadlines implies constraints upon the way in

which system resources are allocated at runtime. This includes

both physical and logical resources. Conventionally, resource

allocation is performed by scheduling algorithms whose

purpose is to interleave the executions of processes in the

system to achieve a pre-determined goal. For hard real-time

systems the obvious goal is that no deadline is missed. One

scheduling method that has been proposed for hard real-time

systems is a type of deadline monotonic algorithm [11] .This is

a static priority based algorithm for periodic processes in

which the priority of a process is related to its period. With this

algorithm, several useful properties, including a schedulability

test that is sufficient and necessary the constraints that it

imposes on the process system are severe: processes must be

periodic, independent and have deadline equal to period. The

processes to be scheduled are characterized by the following

relationship:

 Computation time < deadline < period

 Based on this each core is characterized by:

1) The frequency of each core, fj, given in cycles per unit time.

With DVS, fj can vary from fj min to fj max, where 0 < fj min <

fj max. From frequency it is easy to obtain the speed of the

core, Sj, which is simply the inverse of the frequency.

2) The specific architecture of a core, A(corej), includes the

type the core, its speed in GHz, I/O,

local cache and/or memory in Bytes.

Network Traffic Monitoring and Control for Multi core processors in cloud computing applications

Tasks: Consider a parallel application, T = {t1, t2, …, tn},

where ti is a task. Each task is characterized by:

1) The computational cycles, ci, that it needs to complete. (The

assumption here is that the ci is

known a priori.)

2) The specific core architecture type, A(ti), that it needs to

complete its execution.

3) The deadline, di, before each task has to complete its

execution.

 The application, T, also has a deadline, D, which is met if and

only if the deadlines of all its tasks are met. Here, the deadline

can be larger than the minimum execution time and represents

the time that the user is willing to tolerate because of the

performance-energy trade-offs. The number of computational

cycles required by ti to execute on corej is a finite positive

number, denoted by cij. The execution time of ti under a

constant speed Sij, given in cycles per second is ,

 tij = cij/Sij.

C. Description of Wait free data structure

A wait-free data structure is a lock-free data structure with the

additional property that every thread accessing the data

structure can make complete its operation within a bounded

number of steps, regardless of the behaviour of other threads.

Each thread is guaranteed to be progressed itself or a

cooperative thread [9]. This property means that high-priority

threads accessing the data structure never have to wait for

low-priority threads to complete their operations on the data

structure, and every thread will always be able to make

progress when it is scheduled to run by the OS. For real-time

or semi-real-time systems this can be an essential property, as

the indefinite wait-periods of blocking or non-wait-free

lock-free data structures do not allow their use within

time-limited operations. A wait-free data structure has the

maximum potential for true concurrent access, without the

possibility of busy waits.

IV. Problem Evaluation

The advent of Cloud computing platforms and the growing

pervasiveness of multicore processor architectures have

revealed the inadequateness of traditional programming

models based on sequential computations, opening up many

challenges for research on parallel programming models for

building distributed, service-oriented systems.

To investigate the effects of different scheduler configurations

on the performance of multicore processor, implementation is

a suite of MATLAB simulation. Parallel Computing Toolbox

provides several high-level programming constructs that help

us to convert our applications to take advantage of computers

equipped with multi core processors. Parallel programming

improves performance by breaking down a problem into

smaller sub problems that are distributed to multiple

processors. Thus, the benefits are two-fold. First, the total

amount of computation performed by each individual

processor is reduced, resulting in faster computation. Second,

the size of the problem can be increased by using more

memory available on multiple processors.

A parfor (parallel for) loop is useful in situations that require

many loop iterations of a simple calculation, is used. As

maxNumCompThreads() controls the parallelism of the

multithreading approach, the matlabpool command controls

the parallel behavior of the parfor syntax. matlabpool sets up a

task-parallel execution environment in which parallel

for-loops can be executed interactively from the MATLAB

command prompt. The iterations of parfor loops are executed

on labs (MATLAB sessions that communicate with each

other). As a result, they can run on separate computers

connected via a network. In the proposed work we only need to

know that Parallel Computing Toolbox makes parfor work

efficiently on a single multicore system.

EffThread=Nthread(index);

 s=[];

e=1;

t=0;

 limit=numel(EffThread);

 tStart=tic;

while(limit>e)

for k=1:CacheMemory

 for i=1:NrMultiCore

 if(limit<=e)

 break;

 end

 t=EffThread(e);

 e=e+1;

 if(limit<=e)

 break;

 end

 if(i>1)

 t1=EffThread(e);

 if(t==t1)

 s(k,i)=EffThread(e);%same core

 pause(.002)

 else

 s(k,i)=EffThread(e);%Other cores

 pause(.002)

 end

 end

 end

 % pause(.05);

end

if(limit<=e)

 break;

end

 pause(.12)

 end

te=toc(tStart);

Table 1 .CFTS Algorithm

The main function of the deadline monotonic scheduling phase

is to coordinate the execution order of tasks. Based on this the

execution priority assignments are assigned by each task and

are arranged in the descending order, and then be executed.

For CFTS in the implementation it is assumed that the a

multicore platform consisting of M cores and A cache

partitions, and a set of т independent tasks whose numbers of

cache partitions (cache space size needed) and Ei ,

WCET(Worst Case Execution Time) are known for the

platform , and further it is assumed that тi = (Ai,Ei, Di,Ti) to

denote a task where Ai is the cache space size, Ei is the

worst-case execution time (WCET), Di ≤ Ti is the relative

deadline for each release, and Ti is the minimum inter-arrival

separation time also referred to as the period of the task. We

further assumed that all tasks are ordered by priorities, i.e., тi

560 Radhaman and Baburaj

has higher priority than тj iff i<j. The utilization of a task тi is

Ui = Ei/Ti and its relaxation Ri = Di - Ei, which is the longest

delay allowed before actually running without missing its

deadline. In the system design phase, one can adjust tasks L2

cache space sizes (and therefore their WCETs) to improve the

system real-time performance, which can be built upon the

schedulability analysis techniques. Also in the CFTS

algorithm at any time, at any two running tasks cache spaces

are non-overlapped. A task can get to execute only if it gets an

idle core as well as enough space (not necessarily continuous)

on the shared cache. The first technical contribution is a

sufficient schedulability test for multicores with shared L2

cache, for eight different applications (coop, imrec, ood,

games, plros, zip, wpro, vlsi). To improve its scalability,

second schedulability test for network traffic in clouds is

implemented. To evaluate the performance and scalability of

our techniques, we use randomly generated task sets. The

following part of Matlab code that describes the effective

thread, cache and core allocation.

Typically, a separate set of performance counters is available

for each core, and can be programmed to track events

originating from that core. In this implementation a counter is

programmed at each core to track lower-level (shared) cache

misses. Since jobs execute sequentially, one can measure the

number of cache misses incurred for a job by resetting the

counter to zero at the start of execution, and recording the total

misses observed by the counter upon completion. The

observed misses can then be used to calculate a per-job ET

estimate. Computed ET estimates are cached to minimize

computation.

V. Results and Discussion

In the proposed work the time that it takes to complete its work

segments in the Cache Fair Thread Scheduler with Wait Free

data structures (CFTS-WF) and Cache Fair Thread Scheduler

(CFTS) schedules are compared. This quantity is referred to as

completion time. When running with a static scheduler, the

difference between completion times is larger, but when

running with the cache fair scheduler, it is significantly

smaller. Figure 1 demonstrates normalized completion times

with the static scheduler and Figure 2 demonstrates

normalized completion times with the Cache Fair Thread

scheduler. Figure 3 shows the Performance variability of

different types of schedulers with variations in the cache and

core sizes for the different applications and the table shows the

average completion time for different applications with

various schedulers. From the performance analysis and

comparison made it is clear that, CFTS-WF provides

maximum speed up, load balancing among all scheduling

strategies used to obtain a minimum processing time.

Hence the CFTS-WF seek to maximize the use of concurrency

by mapping independent tasks on different threads, so that to

minimize the total completion time by ensuring that processes

are available to execute the tasks on the critical path as soon as

such tasks become executable, and it should seek to minimize

interaction among processes by mapping tasks with a high

degree of mutual interaction onto the same process.

 Static Scheduler

Figure 1 Performance Variability with Static scheduler

Cache Fair Thread scheduler

Figure 2 Performance variability with Cache fair Thread

Scheduler

Figure 3(a). Performance Variability with core-2, cache-2

Figure 3(b). Performance Variability with core-4, cache-2

Figure 3(c). Performance Variability with core-8, cache-4

Games imrec zi coo Wpro plro oo Vlsi
0

0.5

1

1.5

2

2.5

3

Tasks

Completion Time

Completion Time(core-8,Cache-4

DM

DMWF

CFTS

CFTS-W

Games imrec zi

Wpro plro oo Vlsi

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Tasks

Completion Time

Completion Time(core-4,Cache-2

 DM

DMWF

CFTS

CFTS-W

Games imrec zip coop Wpro plros ood Vls
0

1

2

3

4

5

6

Tasks

Completion Time

Completion Time(Core-2,Cache-2)

 DM

DMWF

CFTS

CFTS-WF

0

0.

0.

0.

0.

1

1.

1.

1.

coo imre oo plro gam zi wpr vls

DM WF

D

561Network Traffic Monitoring and Control for Multi core processors in cloud computing applications

Figure 3(d). Performance Variability with core-32,cache -4

Algorithm

Core2,

cache 2

(Average

completio

n Time in

Sec)

Core4,

cache 4

(Average

completion

Time in

Sec)

Core8,

cache 4

(Average

completio

n Time in

Sec)

Core32,

cache 4

(Average

completi

on Time

in Sec)

DM 5.9 2.6 1.7 1.6

DMWF 3.8 1.9 1.4 1.5

CFTS 1.9 1.7 2.0 1.7

CFTSWF 1.3 1.2 1.3 1.4

Table 2. Average Completion time (in sec) for different

Algorithms

 Figure 4. Output traffic rate of total traffic

 Figure 5 .Output traffic rate of a selected user

 It is again designed to test whether the wait –free based CFTS

could be competent for cloud scenario described in section 3

under extremely high traffic pressure. Figure 4 and Figure 5

shows the output rate sampling at a certain time interval for

both the total CFTS and a random selected user. To make the

results more accurate, different time interval for total traffic

and user traffic is used, because their rates are at different

levels. It is understood that the wait-free FIFO based

CFTS-WF performs traffic control quite stable, and the

resulting rate lines are nearly smooth, indicating the traffic

rates are accurately retained. The stability is important for

cloud computing because it might face tens of thousands users

at the same time.

VI. Conclusion

A significant body of the performance modeling research

literature has focused on various aspects of the parallel

computer scheduling problem and the allocation of computing

resources among the parallel jobs submitted for

execution. Several classes of scheduling strategies have been

proposed for such computing environments, each differing in

the way the parallel resources are shared among the jobs. This

includes the class of space-sharing strategies that share the

processors in space by partitioning them among different

parallel jobs, the class of time-sharing strategies that share the

processors by rotating them among a set of jobs in time, and

the class of scheduling strategies that combine both

space-sharing and time-sharing. In this paper, a wait free

based parallel CFTS is implemented for effective and stable

traffic control in the cloud. Based on the algorithms on

accessing data structures and the usage of wait free FIFO, the

parallel CFTS can run a pipelined fashion. The experimental

analysis and evaluation results both indicate that parallel

CFTS WF is more suitable for cloud computing, due to its

excellent performance on both line rate and stability.

Moreover, parallel network application based on multi-core

processor is cheaper and more scalable than special hardware

and explore its more effective usage in cloud computing. This

scheduler is a good solution to achieve the best VM (Virtual

Machine) environment for running applications under Cloud

Computing environments. In future CFTS-WF can be

experimented can be executed under a cluster with more

processor scalability to allocate and deallocate cores in the VM

in heterogeneous communication and computation

environment.

 References

[1] Agarwal, Anant; Miller, Jason; Beckmann, Nathan;

Wentzlaff, David,” Core Count vs Cache Size for

Manycore Architectures in the Cloud”, CSAIL

Technical Reports, Volume 6568/2011, pp.39-50.

[2] Ana Madureira and Ivo Pereira, “Intelligent

Bio-Inspired System for Manufacturing Scheduling

under Uncertainties” International Journal of

Computer Information Systems and Industrial

Management Applications, Volume 3 (2011)

pp.072-079

[3] K. Asanovic and others, The landscape of parallel

computing research: A view from Berkley. Technical

Report UCB/EECS-2006-183, EECS Department,

University of California, Berkley, December (2006).

[4] R. Buyya, “Market-Oriented Cloud Computing:

Vision, Hype, and Reality of Delivering Computing

as the 5th Utility”, Proc. of 9th IEEE/ACM

International Symposium on Cluster Computing and

the Grid (CCGRID’09), Shanghai, China, May,

2009, pp. 1-6, doi: 10.1109/CCGRID.2009.97.

[5] M. Christodorescu, R. Sailer. D. L. Schales, D.

Sgandurra and D. Zamboni, “Cloud Security Is Not

(Just) Virtualization Security”, Proc. of the ACM

workshop on Cloud computing security 2009,

Games imrec zi coo Wpro plro oo Vlsi
0

0.5

1

1.5

2

2.5

3

3.5

Tasks

Completion Time

Completion Time(core-32,Cache-4

 DM

DMWF

CFTS

CFTS-W

562 Radhaman and Baburaj

Chicago, IL,US, 2009, pp.97-102, doi:

10.1145/1655008.1655022.

[6] Denis R. Ogura, Edson T. Midorikawa,

"Characterization of Scientific and Transactional

Applications under Multi-core Architectures on

Cloud Computing Environment," IEEE International

Conference on Computational Science and

Engineering, pp. 314-320, 2010.

[7] Ekanayake, J.; Gunarathne, T.; Qiu, J,” Cloud

Technologies for Bioinformatics Applications” ,

IEEE Transactions on Parallel and Distributed

Systems, Volume: 22,pp 998 – 1011.

[8] K. Fraser and T. Harris, “Concurrent programming

without locks”, ACM Transactions on Computer

Systems, vol. 25 (2), May 2007.

[9] J. Giacomoni, T. Moseley, and M. Vachharajani,

“Fastforward for efficient pipeline parallelism: A

cache-optimized concurrent lock free queue”, Proc.

of PPoPP’08, <ew York, <Y, USA, February 2008,

pp.43-52.

[10] J. Heiser and M. Nicolett, “Accessing the Security

Risks of Cloud Computing”, Gartner Inc., Stanford,

CT,2008,http://www.gartner.com/.

[11] Ishfaq Ahmad, Sanjay Ranka, Sanjay Ranka, “Using

Game Theory for Scheduling Tasks on Multi- Core

Processors for Simultaneous Optimization of

Performance and Energy”, 2008.pp. 1-6.

[12] F.J. Krautheim, “Private Virtual Infrastructure for

Cloud Computing”, in HotCloud’09, San Diego, CA,

USA, June, 2009.

[13] S. Kim, D. Chandra and Y. Solihin. “Fair Cache

Sharing and Partitioning in a Chip Multiprocessor

Architecture”, In Intl. Conference on Parallel

Architectures and Compilation Techniques (PACT),

2004,pp.111-122

[14] C. Leiserson and I. Mirman, “How to Survive the

Multi-core Software Revolution”, Cilk Arts, (2009).

[15] Lizhe Wang, Jie Tao, Gregor von Laszewski, Holger

Marten,” Multicores in Cloud Computing: Research

Challenges for Applications”, Journal of computers,

vol. 5, no. 6, june 2010.

[16] Mikyung Kang , Dong-In Kang, Stephen P. Crago,

Gyung-Leen Park and Junghoon Lee , “Design and

Development of a Run-Time Monitor for Multi-Core

Architectures in Cloud Computing” , Sensors 2011,

pp. 3595-3610.

[17] Patterson. “The Trouble with Multi-core”. Spectrum,

IEEE, 47(7):pp.28–32, 2010.

[18] A.S.Radhamani and E.Baburaj ,” Implementation of

Cache Fair Thread Scheduling for multi core

processors using wait free data structures in cloud

computing applications”, Proc of 2011 World

Congress on Information and Communication

Technologies , ©2011, IEEE,pp.604-609.

[19] T. Tartalja and V. Milutinovich, “The Cache

Coherence Problem in Shared-Memory

Multiprocessors”, Software Solutions, ISBN:

978-0-8186-7096-1, (1996).

[20] D. Wentzlaff and A. Agarwal. “Factored Operating

Systems (FOS): the Case for a Scalable Operating

System for Multicores”. ACM SIGOPS Operating

Systems Review, 43(2):76–85, 2009.(10)

[21] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning,

“Managing security of virtual machine images in a

cloud environment”, Proc. Of the ACM workshop on

Cloud computing security 2009, Chicago, IL,US,

2009, pp.91-96, doi: 10.1145/1655008.1655021.

[22] M. Yildiz, J. Abawajy, T. Ercan, and A. Bernoth, “A

Layered security Approach for Cloud Computing

Infrastructure”, Proc. of the 10th International

Symposium on Pervasive Systems, Algorithms, and

<etworks, 2009, pp.763-767, doi:

10.1109/I-SPAN.2009.157.

[23] Zheng Li, Nenghai Yu, Zhuo Hao,” A Novel Parallel

Traffic Control Mechanism for Cloud Computing,

2nd IEEE International Conference on Cloud

Computing Technology and

Science,2010.pp.376-382

Author Biographies

A.S.Radhamani has received her Under Graduate degree in Electronics and

Communication Engineering from Bharathiyar University and Master’s

Degree in Computer Science and Engineering from Manonmanium

Sundaranar University in 1995 and 2004 respectively. She is the author of six

publications. She is currently pursuing her PhD Degree at MSU, Tirunelveli.

She is an active researcher and her research interest includes multi core

computing, parallel and distributed processing and cloud computing.

E. Baburaj has received his Under Graduate and Post Graduate in Computer

Science and Engineering from Madurai Kamaraj Univesity. He has obtained

his Doctoral Degree in Computer Science and Engineering from Anna

University Chennai. Currently, he is the Dean of PG studies and Research of

the Computer Science and Engineering Department, SCET, Nagercoil. His

main research focuses on High Performance and Computer Networks. More

than 20 publications are credited to his name.

563Network Traffic Monitoring and Control for Multi core processors in cloud computing applications

