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Abstract: The development of reliable biological models has 

become an important issue in systems biology. These models are 

constructed using differential algebraic equations to represent 

the dynamic perturbation of the biochemical quantities within 

the cells. However, these models heavily depend on the set of 

parameters that signify the physiology of the systems such as 

reaction rates and kinetic constants. These parameters are 

commonly difficult to be obtained using the experimental 

measurements. Due to the uncertainty of the measurements and 

the nonlinearity of the systems, advanced optimization methods 

are often necessary. In this paper, a new hybrid optimization 

method is introduced. The method, called Particle Swarm 

Evolutionary Optimization (PSEO), is proposed based on the 

combination of Particle Swarm Optimization (PSO) and 

Differential Evolution (DE) methods. The effectiveness of the 

proposed PSEO method on the parameter estimation problem is 

evaluated using two biological models, namely synthetic 

oscillator and microbial lactose operon models. The 

experimental results showed that the performances in term of 

better fitness value and computational speed of the proposed 

method have outperformed those produced by the existing 

methods like Particle Swarm Optimization (PSO), Differential 

Evolution (DE) and recently proposed hybrid Local 

Evolutionary PSO (LEPSO) methods.  

 
Keywords: Hybrid optimization method, Particle Swarm 

Optimization, Differential Evolution, parameter estimation, 

biological models.  

 

I. Introduction 

Computational modeling plays an important role in the 

understanding of systems biology [1]. In this study, models 

are used to represent the dynamic perturbation of the 

biochemical reactions within living cells [2]. The models are 

usually constructed using a set of coupled differential 

algebraic equations, mostly by using ordinary differential 

equations (ODEs), to signify the reactions over specific range 

of observed time steps. To ensure the accuracy of the 

prediction by using the model outputs, the models heavily 

relied on a set of parameters that characterize the physiology 

behaviors of systems, such as reaction rates and kinetic 

constants. However, these parameters are generally difficult 

to be extracted from experimental analyses [1-3]. Hence, the 

parameters are rather approximated based on the given 

experimental measurements. In most cases, the nonlinear least 

squares techniques are used to find optimal parameters that 

may produce model outputs which fit closely to the 

corresponding experiment measurements. This task is usually 

hampered by the nonlinearity of the systems as well as the 

incompleteness of the available experimental measurements 

[4-5, 32].       

The estimation of the parameters in the biological model is 

often formulated as an optimization problem. Formally, the 

objective function of the problem is usually intended to 

minimize the difference between the model outputs produced 

by the estimated parameters and the respective experimental 

measurements. As a result, the plausible solution, which is 

formed from the combination of parameter sets, may generate 

the model outputs that closely fit the experimental 

measurements. In the past few years, a number of previous 

methods have been proposed to solve this particular problem 

using maximum likelihood fitting [6], Bayesian estimation 

[7], and local optimization [8]. These methods frequently 

utilize derivative-based approach, mostly by transforming the 

problem into a linear problem and iteratively find the optimal 

parameters based on certain constraints. Among these 

methods, the improved methods that are based on the 

Extended Kalman Filter (EKF) method have been extensively 

exploited [9]. In general, the methods employ local-based 

optimization approach by using a set of initial values to 

estimate the parameters according to the state approximation 

techniques. Lillacci and Khammash [10] introduced an 

improved EFK method that incorporates continuous model 

outputs with discrete experimental measurements. On the 

other hand, Zheng and co-workers [11] proposed a new hybrid 

EKF method using switching Particle Swarm Optimization 

(PSO) [12] method to estimate these parameters. However, 

despite of the advantages in handling the noisy and 

incomplete experimental measurements, these methods 

frequently depend on further estimation refinements to avoid 
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the methods from being trapped into the local suboptimal 

solutions.    

Otherwise, the global optimization methods have shown 

potential achievements, especially in term of robustness on 

the initial values. The methods basically use stochastic 

population-based searching strategy to find the plausible 

solutions. Firstly, a set of randomly formed solutions is 

initialized. Then, these solutions are subjected for 

recombination operations to update the fitness values. These 

steps are repeated until a maximum number of iterations is 

reached or the specific fitness value is met. 

Rodriguez-Fernandez et al. [2] proposed a new method based 

on the Scatter Search [13] algorithm to estimate the 

parameters of several benchmark models. Recently, the 

evolutionary-based optimization methods have received an 

increasing attention for the problem solution as these methods 

are capable to handle measurement noise more effectively 

[14]. A real coded- Genetic Algorithm (RCGA) method is 

introduced and the performances in term of fitness evaluation 

and convergence speed for the parameter estimation problem 

are presented [15]. Conversely, Differential Evolution (DE) 

methods [16] have been broadly used. Nevertheless, these 

methods majorly lack of the use of computational cost due to 

the fact that these methods normally utilize a substantial 

amount of computational times to converge to better fitness 

values [17]. Moreover, there is no guarantee that these 

methods are capable to converge to the global best solutions 

[18, 30, 32]. 

Therefore, hybrid optimization methods are introduced to 

alleviate these challenges, in which several methods are 

combined so that the advantages of one method can be used to 

improve the limitations of the others [19-20]. Previously, 

Rodriguez-Fernandez et al. [21], Ashyraliyev et al. [22], and 

Fomekong-Nanfack et al. [23] had introduced hybrid 

optimization methods based on Stochastic Ranking 

Evolutionary Strategy (SRES) [24] to improve the local 

optimization methods. More recently, improved PSO 

methods, with the combination of local simplex search 

method and statistical inference [25], has been proposed to 

robustly estimate the parameters with the availability of a 

significant level of measurement noise. In addition, a 

cooperative based strategy is introduced to the standard DE 

method to control the behavior of evolutionary operations, 

thus utilizing the computational time more efficiently [19]. 

Abdullah et al. [3] introduced a new hybrid optimization 

method that is based on the Clonal Selection Algorithm 

(CSA) and DE methods to handle both measurement noise 

and incompleteness problems in the experimental 

measurements. This method is coupled with the statistical 

analysis to validate the consistency of the model outputs 

compared to the experimental measurements. 

In this paper, a new hybrid optimization method is 

introduced to estimate the parameters in the complex and 

nonlinear biological models. The proposed method, named 

Particle Swarm Evolutionary Optimization (PSEO), is 

proposed based on the combination of Particle Swarm 

Optimization (PSO) and Differential Evolution (DE) 

methods. Generally, the method employs the recombination 

strategy adopted from the DE method to enhance the 

neighboring searching strategy by the PSO method. In 

addition, selective technique is also introduced to discriminate 

the population of the solutions based on the fitness values. 

Thus, the approach is aimed to reduce the computational times 

substantially as only a number of solutions with potential 

fitness values are selected for the recombination process. On 

the other hand, the solutions with least substantial fitness 

values are subjected for separate recombination according to 

randomly chosen potential solutions so that the method is 

capable to escape the local suboptimal solutions more 

effectively. The effectiveness of the proposed method is 

evaluated using two biological models: synthetic oscillator 

and microbial lactose operon models. The synthetic oscillator 

model [26] is proposed based on the cell-free concept which 

neglects the necessity of experimental measurements. Instead, 

the microbial lactose operon model [27] contains a large 

number of parameters and involves noisy and incomplete 

experimental measurements. The performances of the 

methods in term of finding better fitness values and the use of 

computational cost are compared with those generated by the 

existing PSO, DE and hybrid Local Evolutionary PSO 

(LEPSO) [19] methods. In addition, statistical analysis is also 

employed to evaluate the reliability of the model outputs 

produced by using the estimated parameters over the given 

experimental measurements. 

The outline of the paper is presented as follow. The Method 

section explains the problem formulation, standard PSO, DE, 

and the proposed PSEO methods. Furthermore, statistical 

analysis, used to evaluate the reliability of the model outputs 

produced by the estimated parameters, is also presented. 

Then, the Experimental Results section describes the results 

of the performances in term of convergence behaviors and 

computational cost from the proposed HCSR method. These 

performances are later compared with the performances of the 

existing PSO, DE, and hybrid LEPSO methods. Next, the 

contribution of this work is discussed in the Discussion 

section. 

II. Methods 

A. Problem Formulation 

The parameter estimation of biological models can be 

formulated as a nonlinear optimization problem. Suppose the 

concentration of a component in the model is given as 

, in which  is the set of  

model parameters,  is the input signal, and  is the observed 

time step. Hence, the reaction rate of the involved 

concentration is given as follows 

 

                  (1) 

 

where  is the nonlinear function. The concentration is 

used to simulate the output, , as follows 

 

                      (2) 

 

where  is another nonlinear function and  is the 

measurement noise superimposed in the model to represent 

the actual noise exhibited in the actual experimental data, 

. In general, the parameter estimation problem is aimed to 

find the optimal parameter set that minimizes the difference 

between the model output and its corresponding experimental 
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data, represented as the following equation 

 

        (3) 

 

where  is the solution 

provided by the optimization methods that contains a set of  

optimal parameters, and  and  are the total numbers of 

involved concentrations in the model and samples observed, 

respectively. 

 

B. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic 

population-based optimization method [12]. The main idea of 

this method is generally inspired based on the natural 

behavior of animal foraging activity. PSO promotes the 

movement of possible solutions, called particles, around the 

search space. Each particle travels in a specific dimensional 

space based on the previous experiences of finding the local 

best solutions, by itself or its neighbors. The movement of a 

particle, i, is based on its velocity, , and position, , derived 

as followings [12]: 

 

           (4) 

 

                             (5) 

 

where w is weight constant, Ca is exploitation coefficient, Cb 

is exploration coefficient, R1 and R2 are random numbers 

between 0 and 1, while xlbest and xgbest are current local best 

particle and current global best particle at iteration t, 

respectively. The termination criteria are satisfied when either 

a maximum number of iteration is reached or an acceptable 

fitness value is met. The current global best position is taken 

as the best solution for the particular run. 

 

C. Differential Evolution 

The Differential Evolution (DE) algorithm is also a stochastic 

population-based optimization method [16], developed based 

on evolutionary operation similar to Genetic Algorithm (GA). 

However, in DE, mutation is performed to create a trivial 

population and this population is crossover with its original 

counterpart in order to produce offspring population. DE 

starts with a population of d dimension search vectors, or 

called chromosomes. Thus, the ith chromosome, X, of the 

whole population at specific generation t is given by the 

following form: 

 

                      (6) 

 

where  is the total number of dimension. For each generation, a 

range of search space has to be set for finding good solution. 

Thus, at initial generation or t equal to 0, each chromosome is 

initialized, with lower and upper bound, xj
L
 and xj

U
 

respectively, for jth dimension, as the following equation: 

 

                       (7) 

 

where R is a random number generated between 0 and 1. 

 In DE, mutation operation is used to create a trivial 

chromosome, vij. The mutation operation is based on the 

differentiation of neighborhood chromosome and is executed 

as the following: 

 

                   (8) 

 

where xbest(t) denotes the current best chromosome, F is scaling 

factor, xr1(t) and xr2(t) are randomly chosen chromosomes. 

Using this trivial chromosome, a new offspring chromosome, 

yij, is created by performing a crossover operation between the 

trivial and parent chromosomes. The crossover operation is 

accomplished using the following rule: 

 

                        (9) 

 

where CR is crossover constant and R is a random number 

between 0 and 1. Hence, the number of offspring 

chromosomes is the same with the number of parent 

chromosomes. In order to keep population number constant, a 

simple selection is executed to decide which chromosome will 

survive in the next generation. The selection is performed 

based on the calculated fitness value of each chromosome as 

the following rule:  

 

             (10) 

 

This rule implies that if the offspring chromosome produces a 

better fitness value, the current parent chromosome will be 

replaced. Otherwise, the parent chromosome will remain in 

the population for the next generation. 

 

D. Local Evolution Particle Swarm Optimization 

In this section, the local evolutionary PSO (LEPSO) method 

[19] is described. The aim of this work is to improve local best 

particle searching. The evolutionary operations of DE are 

employed into local particle searching in PSO so that the 

neighborhood solutions of the particles can be utilized 

efficiently. In addition, greedy selection performed by DE is 

used to find better solutions from the existing particles. Thus, 

gradient-based searching can be performed within the 

population of local best particles. The outline of the proposed 

method is illustrated in Figure 1. Suppose the searching space 

is a finite d dimensional and p particles in a population. The 

ith particle denotes a vector Xi, giving a fitness function as the 

following: 

 

                          (11) 

 

In this paper, minimization problem is considered. Thus, the 

global optimum is given by lowest fitness value produced by 

the global best particle. In the proposed method, DE 

evolutionary operations are used to improve the current local 

best particles. For ith particle, the current local best vector, Xli, 

is denoted as: 

 

                        (12) 
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Figure 1. LEPSO Algorithm. 

 

 

Then, a new particle, Vli, is produced by performing mutation 

operation. The operation is executed using two randomly 

selected neighbor particles, xr1 and xr2, and the current global 

best particle, xgbest, as follow: 

 

                 (13) 

 

                       (14) 

 

where F is the scaling factor. After the new particle is 

generated, the offspring particle, Yli, of ith particle is created, 

based on the following rule: 

 

                      (15) 

 

where  is a crossover constant and  is a random number 

between 0 and 1. Conventionally, the values of  and  are 

predefined in the initialization step. Finding the suitable 

values of these parameters is a challenging task especially 

when the tradeoff between reliability and efficiency is 

concerned [29]. In this work, values between 0.4 to 0.9 for  

and 0.4 to 1.0 for  are used [17].  

In order to keep the population size constant, a selection of 

better particles among parent and offspring particles is 

executed. The proposed method implements a greedy 

selection by comparing the fitness value of every original 

particle with its corresponding offspring given by the 

following rule: 

 

               (16) 

 

As a result, particles that produce better fitness value may 

survive and will be used in the next generation. A set of local 

best particle is collected based on the best fitness values 

achieved so far by each particle personally. The best fitness 

values among these particles are then selected as the current 

global best. The particle that produces this value is chosen as 

the current global best particle. The positions of local and 

global particle are used to update the velocity and position of 

each particle in the population using Equation 4 and 5, 

respectively. The whole process is iteratively executed until 

the maximum number of iterations is reached. 

 

E. Proposed Particle Evolutionary Swarm Optimization 

This paper presents a new hybrid optimization method which 

is based on the PSO and DE methods. The proposed Particle 

Evolutionary Swarm Optimization (PSEO) method starts with 

the vector update based on the swarm searching strategy 

adopted from the standard PSO method. The update is 

performed as in Equation 4 and 5. Uniquely, the proposed 

method employs two stages of evolutionary operations 

adopted from the DE method to enhance the swarm based 

searching strategy utilized by the PSO method. The first stage 

involves two important steps: population ranking and 

evolutionary improvement. The population ranking step starts 

with the evaluation of the fitness value of each solution in the 

population. Next, these solutions are sorted based on the 

fitness values. The sorted population is later separated into 

two groups, namely potential and weak sub-populations. The 

potential sub-population consists of the solutions that hold 

substantial fitness values. For th solutions in the potential 

population, the sub-population is given as follows: 

 

               (17) 

 

On the other hand, the weak sub-population contains the 

solutions that yield low fitness values. The th solutions in the 

weak population is given as follows: 

 

                   (18) 

 

The potential sub-population is used to undergo the next 

evolutionary improvement step adopted from the DE method. 

The step involves mutation and crossover operations. The 

mutation operation is performed by using the following 

equation: 

 

     (19) 

 

which may produce a new population of offspring solutions, 

, that are used for the crossover operation given by 

the following rule 

 

                  (20) 

 

In order to keep the sub-population size constant, a selection 

is performed to choose which solutions are plausible. The 

selection operation is executed based on the following rule: 

 

     (21) 

 

Alternatively, the second stage involves weak solution 

1: Begin 

2: Initiate population, Xi ={X1,X2,X3,…,XN} 

3: Evaluate fitness of each particle, f(Xi)={x1,x2,x3,…,xp} 

4: For t < maximum number of generations { 

6:     For i = 1 to N number of particles { 

8:           Xlbest = find_local_best(Xi); //find local best 

9:           Vi = mutate(Xlbest); //perform mutation 
10:         Yi =crossover(Vi, Xlbest); //perform crossover 

11:        Evaluate f(Yi)={y1,y2,y3,…,yp} 

12:        if f(Xlbest)≥ f(Yi){ 
14:    Xlbest = replace(Xlbest, Yi); //replace Xlbest with Yi 

15:        } // end if 

16:     }// end for 
17:      

18:     Xgbest = find_global_best(Xi); //find global best 

20: 

21:     For i = 1 to N number of particles { 

22:          Update velocity; 

23:          Update position;           

24:      }// end for 

25:     t = t + 1; 

26: } // end for 

27: End Begin 
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enhancement by using random vector update. This is 

performed to avoid the method from being trapped into the 

suboptimal solutions. The random vector update is executed 

using the following equation: 

 

              (22) 

 

where  is a random number between 0 and 1, while 

 and  are vectors of two randomly choosen 

solutions from the potential sub-population. By doing this, the 

weak solutions are improved using the information gathered 

from the potential sub-population. After that, the potential and 

weak sub-population is merged back to produce an improved 

population. These stages are repeated and the whole 

procedure is iterated until the maximum number of iterations 

is reached. The outline of the proposed PSEO method is given 

in the Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. PSEO Algorithm. 

 

III. Results 

A. Synthetic Oscillator 

In this paper, a synthetic oscillator model is used to evaluate 

the performance of the proposed method in estimating small 

numbers of model parameters. The model is proposed by [26] 

to simulate the nonlinearity of the deoxyribonucleic acid 

(DNA) regulatory. This model is designed to modularly fit the 

synthetic circuit, which allows the model to be used without 

the dependency on the experimental measurements [26]. The 

model includes the ribonucleic acid (RNA) activation and 

inhibition, whereas the gene switches include ON switch 

Sw21 and Sw12. The following equations are constructed to 

represent the involved reactions in the model [26]: 

 

       (23) 

 

           (24) 

 

          (25) 

 

             (26) 

 

where , , , , and  are the model parameters with 

the values of  0.57, 1.5, 2.5, 6.5, and 6.5, respectively [26]. 

Table 1 presents the comparative results on the average fitness 

values found by using the existing PSO, DE, LEPSO and 

proposed PSEO methods. For this experiment, each method is 

executed 100 times independently and the average best fitness 

value, accompanying the corresponding standard deviation, is 

recorded. The population size and the maximum number of 

iterations are 50 and 200, respectively. For PSO, LEPSO, and 

PSEO methods, the inertia weight is tuned to 0.5, while the 

self-exploitation and swarm-exploration rates are both set to 

3.5. On the other hand, for the DE, LEPSO, and PSEO 

methods, the mutation rate is set to 0.7. 

 

 PSO DE LEPSO PSEO 

Average Best 

Fitness 

 

1.74×10-3 

 

5.04×10-4 

 

2.20×10-5 

 

1.52×10-7 

Standard 

Deviation 

 

2.12×10-3 

 

7.21×10-3 

 

2.19×10-4 

 

2.11×10-7 

Computational 

Time (s) 

 

115.3 

 

91.1 

 

210.7 

 

79.3 

Table 1. Comparison of average best fitness values and 

computational costs. 

 

According to the table, the average fitness value for the 

proposed PSEO method is smaller compared to the other 

methods. This shows that the proposed method is capable to 

find a solution that yields better fitness values than those 

found by using the other methods. Furthermore, the standard 

deviation of the average best fitness value found by using the 

PSEO method is relatively small. This suggests that the 

method can consistently find the best fitness values toward 

different runs. Figure 3 presents the convergence behavior of 

the method.  Based on this figure, it is suggested that the 

proposed method is also capable to escape the suboptimal 

solution more effective compared to the other methods. This 

is important to ensure that the method is reliable in searching 

better fitness values toward the iterations, thus avoiding the 

method to find least substantial solutions. 

1: Begin 

2: Initiate population, Xi ={X1,X2,X3,…,XN}  
3: Evaluate fitness of each particle, f(Xi)={x1,x2,x3,…,xp}  

4: For t < maximum number of iterations { 

6:     For i = 1 to N number of solutions { 
8:    Xi = evaluate_fitness(); 

9:     }// end for       

10:         
11:    Xgbest = find_global_best(Xi); //find global best 

12:   sort (Xi )     //sort population based on the fitness 

14:  Xpotential = split(X, Npotential); 

15:  Xweak = split(X, Nweak); 

16:  

17:     For i = 1 to Npotential { 

18:             Update velocity; 

20:             Update position;           

21:              ˆ X i( t +1)

potential
= mutate (X i( t )

potential
) 

22:      ˆ X i( t +1)

potential = crossover ( ˆ X i( t +1)

potential , X i( t )

potential )  

23:      X i( t+1)

potential
= select( ˆ X i(t+1)

potential
, X i( t )

potential
) 

24:      }// end for 

25:  

26:     For i = 1 to Nweak { 

27:   
X i( t+1)

weak
= xid ( t )

weak
+ rand • xr1(t )

potential
− xr2(t )

potential( ){ } 

28:      }// end for       
29:       

30:  X = merge(Xpotential, Xweak); 

31:    t = t + 1; 
32: } // end for      

33:  

34: End Begin 
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Figure 3. Convergence behavior of the PSO, DE, LEPSO and 

PSEO methods. 

 

 

 RNA 

activation 

RNA 

inhibition 

ON switch 

Sw21 

ON switch 

Sw12 

Real 
Point 

 

1.29×10-1 1.46×10-2 1.12×10-1 9.21×10-2 

Error 
Variance 

Point 

 

1.29×10-1 1.47×10-2 1.13×10-1 9.23×10-2 

Error 

Variance 

Intervals 

[1.12×10-1, 

1.45×10-1] 

[1.28×10-2, 

1.69×10-2] 

[9.90×10-2, 

1.31×10-1] 

[8.08×10-2, 

1.06×10-1] 

χ2 test Valid 

Table 2. Statistical validation of the model outputs and the 

experimental measurements. 

 

 

To demonstrate the effectiveness of the parameters 

estimated by the proposed method, the model outputs 

produced by the estimated parameters are compared with the 

incomplete and noisy experimental measurements and the 

original model. Table 2 presents the statistical analysis 

computed using error variance point and intervals based on 

the model output produced by the estimated parameters and 

the corresponding experimental measurements [3, 10]. For 

this validation, a significant level of 95% is used [3]. The 

results show that the error variance point of each 

concentration is close to the real point and most importantly, 

these points lie within the intervals. This provides an evidence 

that the model outputs produced by the estimated parameters 

are valid based on the experimental measurements with a 

significant level of 95%.  It is clearly shown that the method is 

capable to estimate parameters that are reliable and consistent 

to those from the original models even though with the 

presence of the incomplete and noisy experimental 

measurements. This supports the evidence that the method is 

robust to the measurement noise. Figure 4 to 7 illustrate the 

data fit of the model outputs produced by the reconstructed 

model using the estimated parameters, the original model, and 

the respective experimental measurements. 

 

 

 

 
 

Figure 4. The RNA activation concentration. 

 

 

 
 

Figure 5. The RNA inhibition concentration. 

 

 

 
 

Figure 6. The ON switch Sw21 concentration. 

 

 

 
 

Figure 7. The ON switch Sw12 concentration. 
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B. Microbial Lactose Operon 

To show the effectiveness of the proposed method in dealing 

with a huge number of model parameters, a model of 

microbial lactose operon is used. The model is developed by 

[27] to simulate the feedback regulation of lactose operon in 

the Escherichia coli bacteria. This model represents the 

cellular metabolism without the presence of glucose. 

Fundamentally, the lactose is fed into the cell by the permease 

enzyme, in which is extracted by the β-galactosidase to 

produce allolactose. Later, the allolactose is bonded onto the 

lactose repressor to permit the transcription process by the 

messenger RNA (mRNA). In general, the model is 

constructed by using the following reaction: 

 

        (27) 

 

                (28) 

 

        (29) 

 

              (30) 

 

where , , , , , , and  are the 

concentrations of β-galactosidase, allolactose, permease, 

partial mRNA, partial β-galactosidase,  lactose internal, and 

partial permease, respectively. The parameter , , , , 

, , , , , , , , and are set to the values 

of  0.000000725, 0.411, 0.0226, 0.1, 2.0, 0.000833, 17600, 

0.97, 21500, 1.95, 0.52, 0.83, and 0.65,  respectively [27]. 

 

 

 PSO DE LEPSO PSEO 

Average Best 

Fitness 

 

3.11×10-3 2.57×10-4 2.15×10-5 1.21×10-6 

Standard 

Deviation 

 

5.35×10-3 1.10×10-3 1.21×10-4 5.05×10-6 

Computational 

Time (s) 
150.3 113.2 201.7 95.5 

Table 3. Comparison of average best fitness values and 

computational costs. 

 

Table 3 shows the comparative results on the average 

fitness values found by using the methods. Similar to the first 

experiment, each method is executed 100 times independently 

and the average best fitness value, accompanying the 

corresponding standard deviation, is recorded. The population 

size and the maximum number of iterations are 50 and 200, 

respectively. For PSO, LEPSO, and PSEO methods, the 

inertia weight is altered to 0.7, while the self-exploitation and 

swarm-exploration rates are both changed to 4.5. Conversely, 

for the DE, LEPSO, and PSEO methods, the mutation rate is 

raised to 0.9. The results for this experiment present that the 

proposed PSEO method report the smallest average best 

fitness value than the other methods. Similarly, the standard 

deviation value is also small, which suggests that the method 

is still capable to consistently find plausible solutions in 

different runs.  Furthermore, the results show that the 

computational cost used by the proposed method is relatively 

smaller than the other methods. This suggests that the method 

is practical in utilizing the computational cost more 

effectively compared to the other methods.  Figure 8 presents 

the convergence behavior of the proposed methods with the 

existing PSO, DE, and PSEO methods. Generally, the method 

shows a capability in escaping the suboptimal solution, 

similar with the result that has been presented in the first 

experiment. 

 

 
 

Figure 8. Convergence behavior of the PSO, DE, LEPSO, 

and PSEO methods. 

 

 

 Table 4 demonstrates the statistical analysis that shows the 

consistency of the model outputs produced by the estimated 

parameters based on the experimental measurements. Similar 

with the first experiment, a significant level of 95% is also 

used. The results present that the error variance points 

generally lie within the given intervals, which proves that the 

estimated parameters may produce valid model outputs for the 

experimental measurements with a 95% significant level. 

Figure 9 to 12 show the data fit of the model outputs produced 

by the estimated parameters, the original model, and the 

experimental measurements. Overall, the results advise that 

the proposed PSEO method is capable to estimate parameters 

reliably and robustly using the incomplete and noisy 

experimental measurements. 

 

 

 mRNA β-galactosidase Allolactose Permease 

Real 

Point 

 

1.21×10-7 6.58×10-9 3.18×10-2 2.08×10-5 

Error 

Variance 

Point 

 

1.22×10-7 6.57×10-9 3.18×10-2 2.09×10-5 

Error 
Variance 

Intervals 

 

[1.09×10-7, 

1.37×10-7] 

[5.88×10-9, 

7.38×10-9] 

[2.85×10-2, 

3.58×10-2] 
[1.87×10-5, 

2.35×10-5] 

χ2 test Pass 

Table 4. Statistical validation of the model outputs and the 

experimental measurements. 
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Figure 9. The mRNA concentration. 

 

 

 
 

Figure 10. The β-galactosidase concentration. 

 

 

 
 

Figure 11. The allolactose concentration. 

 

 

 
Figure 12. The permease concentration. 

IV. Discussion 

Parameter estimation problem has become an important key 

in the development of the biological models. The problem is 

focused on finding optimal parameters that can minimize the 

difference between the experimental measurements and the 

model outputs. Due to the nonlinearity of the model, it is very 

difficult to extract the parameters through in vivo experiments 

[1-3]. Therefore, in most cases, the problem is formulated as a 

nonlinear optimization problem, in which metaheuristics 

methods have been initiated and shown as a prospective 

approach lately [2-3]. However, these methods are commonly 

hindered by the need of a substantially huge amount of 

computational time and in some cases, the methods do not 

guarantee to converge to the global optimum solutions [17, 

30]. This may lead to the inconsistency of finding better 

solutions. As a result, the estimation may provide parameters 

that may not be plausible to the given experimental 

measurements [31].  

In this paper, a new hybrid optimization method called 

PSEO method is introduced. The method is developed based 

on the combination of the PSO and DE methods. Compared to 

the recently proposed LEPSO method, the present method 

incorporates a selective process during the iterations. The 

process involves the solutions to be ranked based on the 

fitness values. Then, the ranked population is separated to 

produce two sub-populations. The first sub-population 

consists of a set of solutions that yield potential fitness value, 

whereas the second sub-population contains the solutions that 

hold least plausible fitness values. The first sub-population, 

namely the potential sub-population, is subjected for 

neighboring improvement using the evolutionary operations 

adopted from the DE method. The improvement involves a 

mutation of each solution and the crossover with two 

neighboring solutions in the sub-population. Thus, only a 

certain number of solution is considered to be evaluated, 

which may be useful in utilizing the computational time. On 

the other hand, the second sub-population, named the weak 

sub-population, is used for random update. This strategy is to 

improve the weak solutions and at the same time to permit the 

method to escape the suboptimal solutions more effectively. 

To demonstrate the effectiveness of the method, two 

biological models have been selected for parameter estimation 

problem. These models, namely the synthetic oscillator and 

microbial lactose operon models, are used to evaluate the 

potential of the method in dealing with the incomplete and 

noisy experimental measurements, as well as to observe the 

capability of the method in handling both small and large 

number of model parameters. 

The experimental results show that the proposed method is 

capable to estimate parameters in both models. The method 

had found better average best fitness value for 100 

independent runs. The result present that the standard 

deviations of the best fitness values found by the method are 

relatively small, which suggested that the method can 

consistently find these values compared to the existing PSO, 

DE, and LEPSO methods. More interestingly, the method 

only requires a small amount of computational time to 

estimate the parameters. This provided an evidence that the 

method can utilize the computational cost more efficiently by 

using the proposed searching strategy. Moreover, the 
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convergence behaviors presented by both experiments show 

that the method is capable to escape the suboptimal solution 

more effectively than the other methods. To present the 

effectiveness of the estimated parameters in order to produce 

model outputs that are acceptable to the given experimental 

measurements, a statistical analysis based on the error 

variance points and intervals is utilized. The analysis shows 

that the error variance points of the model outputs produced 

by the estimated parameters lie within the intervals. This 

proves that the estimated parameters are valid for the given 

experimental measurements. Furthermore, the data fit 

between the experimental measurements, original model and 

the reconstructed model using the estimated parameters are 

presented. Generally, the estimated parameters generate 

model outputs that are consistent to the original model while 

using incomplete and noisy experimental measurements.  

The proposed PSEO method has presented a potential 

achievement on estimating parameters using incomplete and 

noisy measurement noise.  More likely, the proposed selective 

searching strategy has shown practicality for estimating 

parameters in the models that have both small and large 

number of parameters. However, another important issue in 

the development of biological models is not addressed in the 

experiments, which to show the effectiveness of the method 

for handling practical non-identifiable parameters. This 

problem is crucial due to the fact that each parameter in the 

model may produce unique stimulation according to the 

provided experimental measurements [28]. This issue will 

eventually lead to model selection problem [10]. Therefore, in 

the future, the proposed PSEO method will be used to 

evaluate the non-identifiable parameters and then will be 

verified for selecting plausible models using these parameters. 

V. Conclusion 

In this paper, a new hybrid optimization method based on 

PSO and DE methods is presented. The proposed method, 

called PSEO method, is used to find plausible parameters in 

the biological models according to the given noisy and 

incomplete experimental measurements. The PSEO method is 

developed based on the idea of introducing the evolutionary 

operations such as selection, mutation, and crossover applied 

in the standard DE method to the swarm-based searching 

strategy adopted by the original PSO method. Different from 

the other hybrid optimization methods, the PSEO method 

employs selective sub-population to enhance the current 

solutions for the next iterations. The experimental results 

showed that the proposed method is effective in estimating the 

parameters in the biological models by fitting the model 

prediction with the corresponding experimental 

measurements. Besides the overcoming the premature 

convergence suffered by the standard counterparts, the 

proposed method also improves the convergence speed 

compared to another recently proposed LEPSO method. More 

importantly, the proposed PSEO method is capable to handle 

the incompleteness of the experimental measurements during 

the estimation statistically.       
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