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Abstract: Carrier frequency offset (CFO) estimation is a chal-
lenging task in Wi-MAX uplink as it uses orthogonal frequency
division multiple access (OFDMA) which demands extremely
accurate frequency synchronization. In OFDMA uplink, each
user may experience a different CFO relative to the base station
reference carrier and the estimation of them turn out to be a
multiple parameter estimation problem. In this paper, we pro-
pose two efficient null subcarrier based CFO estimation tech-
niques based on particle swam optimization (PSO) and artifi-
cial bee colony (ABC) techniques which performs the estima-
tion by minimizing a null subcarrier based cost function. As
compared to the classical null subcarrier based grid search al-
gorithm available in the literature, the computational complex-
ity of the proposed techniques are very low. The mean square
error of the CFO estimator and bit error rate performance of
the Wi-MAX base station receiver that employs the proposed
estimation methods are studied through computer simulations.
It has been shown that the proposed techniques achieve a better
performance than the grid search algorithm at low to medium
signal to noise ratio (SNR) where the algorithm reliability is ex-
tremely important.
Keywords: Orthogonal frequency division multiple access
(OFDMA), Carrier frequency offset (CFO), Particle swam
optimization (PSO), Artificial bee colony (ABC), Null subcarriers

I. Introduction

Worldwide Interoperability for Microwave Access (Wi-
MAX) has been receiving lots of attention recently due to
its ability to support high data rate wireless services with
varying quality of service (QoS) requirements at an afford-
able cost. The standardization activities of Wi-MAX is per-
formed by the IEEE 802.16 task groups [17]. The latest stan-
dard belonging to the IEEE 802.16 series is IEEE 802.16m
which is designed to support user mobility comparable to the
level of current cellular wireless systems and is designated
as mobile Wi-MAX. Orthogonal frequency division multi-
ple access (OFDMA) is adopted as the multiple access tech-
nique for the uplink of mobile Wi-MAX standard. OFDMA
divides the available subcarriers into several mutually exclu-
sive clusters and are allocated to different users for simulta-
neous transmission. OFDMA can provide protection against
multiple access interference (MAI) only if the carrier fre-
quency synchronization is perfectly achieved.
Mobile Wi-MAX systems are designed in such a way that the
first stage of carrier frequency offset (CFO) estimation takes
place in the downlink transmission where the subscriber sta-
tions (SS) estimate the frequency offset using the pilot sig-
nals transmitted by the base station (BS). Here the CFO will
be a unique offset between the BS and SS and the CFO es-
timation techniques available for orthogonal frequency divi-
sion multiplexing (OFDM) can be directly employed for es-
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timating it [1], [2]. The SS use these estimates as a reference
for the uplink transmission. But due to Doppler frequency
spread and oscillator phase noise, the signals received at the
BS from various SS will have small frequency offsets that
lies between −0.5 ≤ ∆f ≤ 0.5 where ∆f is the actual CFO
in Hz normalized by the subcarrier spacing. Hence the sec-
ond stage of synchronization is done at the BS by estimating
the frequency offsets between the various SS and the BS re-
ceiver. The major challenge of OFDMA arises in the uplink
where each user may have a distinct CFO which will affect
the orthogonality and causes MAI.
Synchronization issues in OFDMA systems are gaining mo-
mentum in the literature. A computationally intensive maxi-
mum likelihood (ML) technique for the timing and frequency
offset estimation in OFDMA system is proposed in [3]. An
iterative method with a slightly lower computational com-
plexity is proposed in [4], where timing and frequency off-
sets are estimated from the training blocks being transmitted
by each users at the start of the uplink frame. This results in
considerable wastage of bandwidth. A survey of most of the
early results in this domain has been compiled in an excel-
lent manner in [5]. One of the authors had proposed a null
subcarrier based grid search method [6] that is computation-
ally lighter as compared to [3]. However, its performance
is not satisfactory at low SNRs. A joint CFO and channel
estimation technique using the variable projection method is
proposed in [7]. Though it is computationally lighter, the al-
gorithm converge to a poor mean square error (MSE) which
can not be improved further. In [8], a low complexity pi-
lot aided synchronization technique is suggested but it as-
sumes a tile structure for pilot and data subcarriers which
may not support the wide quality of service (QoS) require-
ments in IEEE 802.16e/m based standards. CFO estimation
for Wi-MAX OFDMA is discussed in [9] but up to three
OFDMA symbols are required for the estimation. A con-
jugate gradient based algorithm for CFO estimation that is
applicable for OFDMA with interleaved carrier assignment
scheme (CAS) is proposed in [10]. We have proposed an
earlier version of this work in [11]. The method for frac-
tional carrier frequency synchronization of OFDM systems
is outlined in [12] does not incorporate the specifics of the
joint-estimation involved in an OFDMA uplink. The method
proposed in [13] makes use of the Zadoff-Chu sequences as
training sequences. There are certain issues related with the
dependence of the CFOs on the autocorrelation properties of
the sequences used as training preamble. The work given in
[14] handles only the CFO estimation problem and is appli-
cable only for an interleaved CAS system.
Literature review indicates that there is demand for novel,
computationally lighter, suboptimal approximations to the
basic maximum likelihood (ML) problem involved in the
CFO estimation, especially in a generalized CAS framework.
In the proposed work, we present two bandwidth and compu-
tationally efficient CFO estimation technique based on parti-
cle swam optimization (PSO) and artificial bee colony (ABC)
technique for the Wi-MAX uplink OFDMA system. PSO
belongs to the class of stochastic global optimization algo-
rithms, which simulates the social behavior of bird flocking
[15]. The PSO algorithm is easy to implement and is com-
putationally efficient, as its memory and CPU requirements

are low. ABC algorithm, similar to PSO, uses only common
control parameters such as colony size and maximum cycle
number. In ABC system, artificial bees fly around in a multi-
dimensional search space and some(employed and onlooker
bees) choose food sources depending on the experience of
themselves and their nest mates, and adjust their positions
[16]. In the proposed work, the cost function for both the
techniques are formulated by utilizing a few null subcarriers
introduced in just one training preamble, making them band-
width efficient and thus attractive for Wi-MAX applications.
Moreover, the proposed CFO estimation scheme does not re-
quire the knowledge of fading channel coefficients. Hence
channel estimation can be decoupled from the CFO estima-
tion resulting in simple receiver design.
Rest of the paper is organized as follows. Section II presents
the base band model of the uplink OFDMA system and also
the CAS schemes used in OFDMA systems. Development of
cost function for the ML estimation of CFO is presented in
Section III. Proposed CFO estimation techniques using PSO
and ABC techniques are presented respectively in Section
IV-A and B. Section V illustrates the computational com-
plexities and bandwidth overheads associated with the esti-
mators. Section VI provides a detailed account of the sim-
ulation studies conducted for the performance evaluation of
proposed techniques. Concluding remarks are given in Sec-
tion VII.

II. Baseband Model of the Uplink OFDMA
System

A. System Model

One of the main differences between OFDM and OFDMA is
that in the case of later, the available N subcarriers are di-
vided among the M users. Since the carriers allocated to
the M users are to be distinct, Ik ∩ Ij = ∅ for k ̸= j,
where Ik and Ij are the sets of subcarriers allocated to kth

and jth users respectively. The baseband signal model of
the OFDMA uplink where the individual users communicate
with the BS using the subcarriers allocated to them is shown
in Fig. 2. For each user, a block qm of Q data symbols is fed
to the CAS unit and mapped to the Q subcarriers assigned
to that particular user. Zeros are padded to the locations of
remaining subcarriers. In the training preamble symbol, a set
of Zm subcarriers denoted as ΓZm among the Q subcarriers
assigned to the mth user are imposed as null subcarriers for
estimating the mth CFO, ϕm. Remaining Wm = Q − Zm

subcarriers as well as Q subcarriers in other OFDMA sym-
bols are used for data transmission of the mth user.
The N × 1 block of frequency domain samples fed to the
IDFT modulator can be expressed as

sm = Vmqm (1)

where qm is the Wm×1 vector of symbols transmitted on the
active subcarriers and Vm is an N×Wm permutation matrix,
whose (n, j)th entry is 1 if the jth data symbol is transmitted
on the nth subcarrier and zero otherwise. For the OFDMA
blocks other than the first one, qm will be a Q× 1 vector as
all the subcarriers are used for data transmission. The symbol
vector sm is then pre-coded using the IDFT matrix (F) to
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Figure. 1: Block schematic of the OFDMA uplink transmit-
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Figure. 2: Block schematic of the OFDMA uplink receiver

generate the time domain symbol of the mth user

um = Fsm (2)

Then a cyclic prefix (CP) of L samples is appended to the
vector um to form em of size (N + L) × 1. This OFDMA
block is transmitted after RF processing.
The transmitted signals from various subscriber stations
(SSs), which are synchronized through a common control
signal from the BS, will travel through different fading chan-
nels and experience distinct CFOs and timing offsets due
to the differences in their local oscillator drifts and Doppler
spreads. All the transmitted signals will get implicitly com-
bined at the BS and the sampled baseband received signal is
denoted as r(d). It is converted to a parallel stream of sam-
ples and the CP is removed. Then the individual CFOs are
estimated and corrected, before taking the DFT. Timing off-
sets can be absorbed in to the channel by assuming a quasi-
synchronous scenario where the CP duration is designed to
be greater than timing offsets and propagation delay. The
subcarrier being received from the different users are sepa-
rated at the DFT output according to the CAS rules used and
are subjected to the remaining receiver processing.
Upon removing the CP samples and by using the vector-
matrix notation, the received time domain signal at the BS
can be represented as

y =
M∑

m=1

P(ϕm)HmFsm + z (3)

where P(ϕm) = Diag(1, exp(ȷ 2πN ϕm), . . . , exp(ȷ 2πN (N −
1)ϕm) contains the CFO experienced by each sample of the
mth user and Hm is the channel matrix between mth SS and
BS which is circulant with [Hm]k,l = (h(k − l) mod N).
Additive channel noise z is assumed to be zero mean circular
Gaussian with covariance matrix σ2I .
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Figure. 3: A pictorial example of the carrier assignment
schemes used in OFDMA system (N=24, B=C=4, and Q=6)

B. Career Assignment Schemes

Three methods are used for the subcarrier assignment in
OFDMA systems [5]. In subband CAS, a group of P con-
tiguous subcarriers are allocated to each of the users. Adja-
cent users are usually separated by means of a guard band.
Even though this is the easiest allocation policy on a system
design point of view, its performance may deteriorate in fad-
ing channels at times as it does not exploit the frequency di-
versity offered by multipath channels. A deep fade can affect
large number of subcarriers of a specific user. A better alloca-
tion policy is interleaved CAS where the subcarriers of each
user are uniformly spaced over the OFDM bandwidth with
a separation of R subcarriers from each user. But this lacks
flexibility for providing variable data rates to the demand-
ing users, which is one of the principal goals of an OFDMA
system. Hence the most promising subcarrier allocation pol-
icy is the generalized CAS which supports dynamic band-
width allocation where subcarriers are allocated anywhere in
the OFDM spectrum, and usually users select the subcarriers
with best SNRs. But this enhances the complexity of CFO
estimation task. A pictorial representation of the three CAS
schemes are shown in Fig. 3 for a total of 24 subcarriers
with 4 users in the system allocated with 4 subcarriers/user
(N = 24, Q = 6, and B = C = 4). No guard bands are
shown. Here an arrow represents one subcarrier and each
arrow type represents the subcarriers allocated to a specific
user.

III. Cost Function for CFO Estimation

A cost function needs to be formulated for the estimation of
CFO using the PSO and ABC techniques. The PSO tech-
nique employs a set of feasible solutions called a “swarm of
particles” that are populated in the search space with random
initial locations. The values of the cost function correspond-
ing to the particle locations are evaluated. Then the parti-
cles are moved in the search space obeying rules inspired by
bird flocking behavior. Each particle is moved towards a ran-
domly weighted average of the best position that the particle
has come across so far (pb) and the best position encountered
by the entire particle population (gb). In ABC algorithm used
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here, the position of a food source represents a possible so-
lution to the estimation of CFO value of a particular user and
the nectar amount of a food source corresponds to the qual-
ity of the solution assessed through the term ”fitness”, where
fitness is calculated from the cost function. The proposed
method uses a cost function that tries to minimize the total
inter carrier interference (ICI) power at the null subcarrier
locations due to the CFO. Firstly we shall formulate the cost
function mathematically and later on explain the PSO and
ABC based implementations of it.
In (3), if we diagonalize the channel circulant matrix by pre-
multiplying and post multiplying it by DFT and IDFT matri-
ces, we get

y =
M∑

m=1

P(ϕm)FD(Hm)sm + z (4)

where D(Hm) = Diag(Hm(0), Hm(1), . . . , Hm(N − 1))
contains the frequency domain channel coefficients with
Hm(k) =

∑L−1
l=0 hm(l) exp(− ȷ2πkl

N ) denoting the fre-
quency response of the channel at frequency 2πk

N between
mth SS and BS. The impact of a frequency selective channel
on the OFDM symbol can be completely absorbed in to the
data symbols by multiplying them with the channel coeffi-
cients at the specified subcarrier frequencies. Hence (4) can
be re-written as

y =
M∑

m=1

P(ϕm)FWmxm + z (5)

where FWm = FVm is an N×Wm matrix with [FWm ]n,k =
1√
N
exp( ȷ2πN (n − 1)k) and xm ≡ D(HWm)qm with

D(HWm) representing the Wm ×Wm diagonal matrix con-
taining the actual excited channel coefficients between mth

SS and BS corresponding to the Wm data symbols transmit-
ted on the first OFDMA symbol in a frame.
A cost function for the ML estimation of ϕm can be con-
structed using (5) as,

J(ϕ́m) =
∑

r∈ΓZm

vrm
HPH(ϕ́m)yyHP(ϕ́m)vrm (6)

where ϕ́m represents the trial value of CFO for
the mth user, vrm is an N × 1 vector given by
1√
N

[
1, exp(−ȷ2π

N rm), . . . , exp(−ȷ2π
N (N − 1)rm)

]T
and

ΓZm is the set containing the indices of null subcarriers
imposed in the first OFDMA symbol of mth user. This
cost function computes the total energy spilled over to the
preassigned null subcarriers due to the ICI introduced by
CFO. Thus the minimization of (6) over the possible trial
CFO values will lead to the estimation of true CFO of mth

user.

A. CFO Estimation by Grid Search Algorithm

Grid search algorithm is an optimization technique used with
null subcarrier based CFO estimation techniques[6]. Here
the cost function J(ϕ́m) in (6) is computed for each trial frac-
tional offset value in the range of −0.5 ≤ ϕ́m ≤ 0.5, with
increments of 1/Nf by initializing P(ϕ́m) each time with the
corresponding trial value. Here Nf refers to the number of

fractional points for which the cost function is computed. If
it is decided to have a resolution of 0.001, the cost function
has to be computed 1000 times for each user. The estimated
value of CFO experienced by the mth user is that value of ϕ́m

which results in the minimum cost function magnitude when
put into (6). Similarly the CFO experienced by other (M−1)
users of the OFDMA system are estimated by using the spe-
cific set of null subcarriers {ΓZm} for m = 1, 2 . . . ,M − 1.
This results in an exorbitantly high computational complex-
ity. In the proposed work, we suggest two feasible solutions
to this problem by applying the PSO and ABC algorithms.

IV. Proposed CFO Estimation Methods

A. CFO estimation using the PSO Algorithm

PSO conducts its solution searching in a non-linear fashion
by employing a population of particle swarms where each
particle represents a potential solution (trial value for CFO
estimation). The single particle will keep track of the posi-
tion of its individual best solution (pb) and the global best
solution(gb) among the achieved pbs of all swarms. The par-
ticles are accelerated towards pb and gb over the iterations, by
combining the cognition model and social model. The cogni-
tion model represents private thinking from its own previous
experience/memory of the particle itself toward pb. On the
other hand, the social model represents collaboration of all
the particles toward gb, according to the belief of the best
experience of the population.
The basic elements of PSO algorithm for the CFO estimation
of a particular user can be defined as following.

1. Population size NP: It will give us the number of the
particle swarms employed in PSO.

2. Particle xi
k: Let the kth particle position at the ith itera-

tion is denoted as xi
k and each particle is one of the trial

value of CFO of a particular user.

3. Particle velocity vik : Let the velocity of the kth particle
at the ith iteration is denoted as vik and it is used for the
movement of particles.

4. Inertia weight wi: It will control the impact of the ve-
locity of previous iterations on the velocity of current it-
eration. For the initial stage of the search process, large
inertia weight is recommended to enhance the global ex-
ploration, whereas for the later stage, the inertia weight
is reduced for better local exploration.

5. Cost function F: Here the energy on the null subcarriers
is taken as cost function. The problem addressed here
is to find the particle position xi

k that minimizes the ob-
jective function given in (6)

6. Individual Particle Best pbik: The individual best posi-
tion of the kth particle at the ith iteration is denoted as
pbik, which is determined by J(pbik) ≤ J(xj

k) for all
j ≤ i.

7. Global Best gbi: It is the global best particle position
among all the individual best particle positions pbik at
the ith iteration such that J(gbi) ≤ J(pbik) for k =
1, 2, . . . , Np.
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Based on the ingredient knowledge of PSO algorithm, the
steps of PSO-based CFO estimation of a particular user can
be described as follows.

1) Initialization and Evaluation

First we will set the iteration counter as i = 0 and the ini-
tial position x0

k (k = 1, 2, . . . , Np) is randomly generated
from the range [−0.5, 0.5]. Next set pb0k = x0

k and evaluate
J(pb0k). Let pb0min is denoted as the individual best posi-
tion such that J(pb0min) ≤ J(pb0k) for k = 1, 2, . . . , Np. Set
gb0 = pb0min. The initial velocity v0k is also randomly chosen
from range [−0.5, 0.5].

2) Swarm Update

Firstly, we update the inertia weight wi (in accordance with
step-4) and then the velocity of the kth particle at the ith

iteration is then changed by

vik = wi×vi−1
k +c1×r1×(pbi−1

k −xi−1
k )+c2×r2×(gbi−1−xi−1

k )
(7)

In (7), the first term accounts for the influence of the previ-
ous velocity to the current velocity. The second term corre-
sponds to the cognition part, and the third term is the social
part. Thus, (7) calculates the particle’s current velocity ac-
cording to its previous velocity, the distance of its current
particle position from its own individual best particle posi-
tion pb, and the global best particle position gb. Both r1 and
r2 are random numbers that are uniformly distributed in the
interval [0, 1]. c1 and c2 are the acceleration coefficients, re-
spectively corresponding to the weighting of the stochastic
acceleration terms to pull the particle to pb and gb. A com-
monly adopted strategy is to set both c1 and c2 to a constant.
In our case, both c1 and c2 can be appropriately set to 1.
Each particle will update its position based on vik by using
following relation

xi
k = xi−1

k + vik (8)

3) Fitness Update

After finding the new particle positions, evaluate them using
the objective function shown in (6). If J(xi

k) < J(pbi−1
k ),

then set pbik = xi
k. Else, if J(xi

k) ≥ J(pbi−1
k ), then set

pbik = pbi−1
k . Set gbi = pbimin if J(pbimin) < J(gbi−1).

Else, if J(pbimin) ≥ J(gbi−1), then set gbi = gbi−1.

4) Termination Condition Check

Let I denote the maximum number of iterations. If the num-
ber of iterations reach I , terminate the search algorithm with
the gbI ; otherwise, set i = i+ 1 and repeat Step -B.

B. CFO estimation using the ABC Algorithm

In ABC algorithm, the colony of artificial bees consists of
three groups of bees: employed bees, onlookers and scouts.
First half of the colony consists of the employed artificial
bees and the second half includes the onlookers. An em-
ployed bee whose food source has been abandoned by the on-
looker bees becomes a scout. In the first step, the algorithm
generates a randomly distributed initial population contain-
ing S solutions where S is the number of food sources and it

is equal to the number of employed bees. An onlooker bee
chooses a food source depending on the probability value pi
associated with that food source given by

pi =
fiti∑S

n=1 fitn
(9)

where fiti is the fitness value of the ith solution which is
proportional to the nectar amount of the food source in the
position i. A new candidate solution vi from an old solution
xi can be generated as

vi = xi + φi(xi − xk) (10)

where k ∈ 1, 2, . . . , S is a randomly chosen index which has
to be different from i; and φi is a random number in the range
[−1, 1].
After each candidate source position is produced and evalu-
ated by the artificial bee, its performance is compared with
that of its old one. If the new food source has equal or bet-
ter quality than the old source, then the old one is replaced
by the new one. Otherwise the old position is retained. If
a position cannot be improved further through a predeter-
mined number of cycles, then that food source is assumed
to be abandoned. The corresponding employed bee becomes
a scout. The abandoned position will be replaced with the
position of a new food source found by the scout. Assuming
that the abandoned source is xi, and then the scout discovers
a new food source as

xi = xmin + rand(0, 1)(xmax − xmin) (11)

where xmax and xmin are the upper and lower bounds of the
variable xi.
Based on the fundamental knowledge of ABC algorithm, the
steps of ABC-based CFO estimation of a particular user can
be described as follows.

1. Initialize the population of solutions xi for i =
1, 2, . . . , S

2. Evaluate the population

3. set cycle=1

4. repeat

5. Produce new solutions vi for the employed bees by us-
ing (10) and evaluate them

6. Apply the greedy selection process

7. Calculate the probability values pi for the solutions xi

by means of (9)

8. Produce the new solutions vi for the onlookers from the
solutions xi selected depending on pi and evaluate them

9. Apply the greedy selection process

10. Determine the abandoned solution for the scout, if ex-
ists, and replace it with a new randomly produced solu-
tion xi by using (11)

11. Memorize the best solution achieved so far

12. set cycle=cycle+1

13. until cycle=MNC, where MNC is the maximum number
of cycles
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V. Computational Complexity and Bandwidth
Overhead

The computational complexity of the proposed PSO and
ABC based algorithms and that of the classical null subcar-
rier based grid search method are compared in this section
in terms of the required number of real multiplications (RM)
and real additions (RA). The number of subcarriers used is
N and null subcarriers is Z. The number of trials in grid
search method is taken as T . The population size in PSO
is taken as P and the number of iterations as C. In ABC
algorithm, the food number is denoted as P and maximum
number of cycles as C. For the grid search method, compu-
tation of cost function magnitude for one trial value of CFO
requires 2NZ complex multiplications, 2Z RM, Z(N − 1)
complex additions and (2Z − 1) RA. By converting com-
plex operations into equivalent real operations, it requires
Z(8N + 2) RM and (6NZ − 1) RA for one iteration and
T times these figures are required for the complete itera-
tion. In the PSO based algorithm, the cost function is evalu-
ated P (C + 1) times and it requires (P (C + 1)Z(8N + 2))
RM and (P (C + 1)(6NZ − 1)) RA whereas in ABC based
algorithm, the cost function is evaluated (C(P + 1) + P )
times and it requires (C(P + 1) + P )Z(8N + 2)) RM and
(C(P + 1) + P )(6NZ − 1)) RA.
As an illustrative example, consider a typical specification
like N = 512 and Z = 11 used in the simulation studies
reported in Section VI. For the PSO based algorithm, a pop-
ulation size of P = 20 and number of iterations C = 20 are
used. The food number is taken as P = 20 and maximum
number of cycles as C = 20 for the ABC based algorithm.
For a comparable performance, the number of trial values
used in grid search technique is T = 1000. For these val-
ues, the proposed PSO algorithm requires 18, 935, 160 RM
and 14, 194, 220 RA and ABC algorithm needs 19, 834, 320
RM and 14, 868, 040 RA only. This is very low as compared
to the grid search approach which requires 45, 078, 000 RM
and 33, 791, 000 RA.
Apart from the computational efficiency, the proposed meth-
ods are advantageous in terms of the bandwidth overhead re-
quired for CFO estimation as compared to methods like [4],
[9]. The only overhead required for the proposed method is
that of a few null subcarriers imposed in the first OFDMA
block of each user in a frame. This is an attractive feature of
the proposed techniques in the context of bandwidth starving
wireless communication applications.

VI. Simulation Studies and Discussion

Performance of the proposed CFO estimators have been stud-
ied through computer simulation of an OFDMA uplink. An
OFDMA system with 512 subcarriers and a subcarrier spac-
ing (∆F ) of 10.9375 kHz, which meets one of the specifica-
tions of IEEE 802.16m Wi-MAX standard is considered for
the simulation [17]. We assume that four users are present
in the system and 128 subcarriers are allocated to each user.
In the first OFDMA symbol of a frame, 11 subcarriers are
imposed as nulls to aid the CFO estimation. All simula-
tions are conducted under simultaneous presence of AWGN
and multipath fading channels. SUI-5 channel model pro-
posed by the IEEE 802.16 broadband wireless access work-

ing group for the performance evaluation of Wi-MAX trans-
mission schemes is considered for the realization of the mul-
tipath fading channel [18]. We assume a quasi-synchronous
scenario with a CP length of 32 samples. Subcarriers are al-
located to the users by employing generalized career assign-
ment scheme. The null subcarrier pattern information can be
transmitted to the BS through the uplink control channels.
The normalized CFOs of four users considered for the simu-
lation are [0.45, 0.2, -0.3, 0.4].
In the grid search method [6], which is shown for the sake of
comparison, CFO is estimated using one dimensional search
over a range of [-0.5, 0.5] for 1000 number of trials. In PSO,
we have taken a population size of 20 and maximum number
of iterations of 20. The constant factor for the vector in the
direction of the local best, c1, is set to 1. The constant factor
for the vector in the direction of the global best, c2, is set
to 1. In ABC algorithm, we have taken the food number as
20 and maximum number of cycles as 20. 500 Monte-Carlo
iterations were used for each SNR values.
Figure 4 shows the mean square error (MSE) performance of
the proposed PSO and ABC based techniques and that of the
grid search method. At low to medium SNRs, performance
of the proposed algorithms is much superior to [6]. They
achieve an MSE better than 10−4 from 7-8dB onwards. The
typical accuracy requirement of the CFO estimator for prac-
tical implementations is 1-2% of subcarrier spacing. While
PSO based algorithm yields a better performance than ABC
at low SNRs, ABC consistently performs better than PSO
from medium to high SNRs. At very high SNRs, [6] per-
forms better than the proposed methods. But at these SNRs,
marginal differences in MSE will not contribute a notable
difference in bit error rate (BER) performance as illustrated
in the next figure. Also the proposed methods achieve this
better performance with lesser computational complexity as
that of [6].
The uncoded BER performances of the uplink OFDMA sys-
tem with the proposed CFO estimation schemes are shown
in Fig. 5. The modulation scheme used is QPSK with per-
fect channel estimation and zero forcing equalization. The
assumption of ideal channel estimation takes the focus on to
studying of the impact of synchronization errors introduced
by various estimators under consideration. PSO and ABC
methods achieve a BER of 10−3 at SNRs of 13.5dB and 13
dB respectively. It is approximately better than 4dB as com-
pared to [6] for the same BER level. This performance can
be further improved by applying suitable forward error con-
trol coding schemes. Although there is a flattening at high
SNRs as compared to the grid search method, the better per-
formance at low to medium SNRs will make the proposed
method an attractive choice for practical applications.
It is important to check whether the CFO estimator ensures
reliable performance for the entire range of [−0.5, 0.5] for
possible normalized frequency offsets. Hence, in the above
range, CFOs are introduced with increments of 0.1 and the
proposed algorithms are used to estimate it. The estimated
CFO versus the actual CFO at an SNR of 12 dB is plotted
for the designated range of values. Figure 6 shows the per-
formance of PSO based technique while Fig. 7 shows the
performance of ABC based method. While Fig. 7 depicts
a close match between the actual and estimated CFOs, Fig.
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6 shows a little higher difference between the estimated and
actual CFOs. However all the variations are within 1 − 2%
of subcarrier spacing which is the synchronization accuracy
requirement of a practical implementation. Figures 6 and 7
also show the identifiability of CFO over the entire range of
possible frequency offsets in a typical uplink OFDMA com-
munication system.
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Figure. 4: The Mean Square Error of the Proposed Methods
and that of [6] as a function of SNR
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Figure. 5: Bit Error Rate versus SNR of the Proposed Tech-
niques and that of the classical grid search method
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Figure. 6: Estimated CFO against actual CFO of the Pro-
posed PSO based method
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Figure. 7: Estimated CFO against actual CFO of the Pro-
posed ABC based method

VII. Conclusions

VIII. Conclusions

In this paper, we proposed two efficient CFO estimation
techniques for the challenging uplink of Wi-MAX networks
where OFDMA is used as the transmission technique. Pro-
posed schemes use the principles of bio-inspired optimiza-
tion techniques such as PSO and ABC algorithms and are
able to estimate multiple CFOs from a single composite re-
ceived signal using a few null subcarriers. Also the proposed
methods have a significantly small training overhead com-
pared to some state of the art techniques. The MSE and
BER performances of the proposed techniques are studied
and found to be acceptable for practical Wi-MAX links. It
has been shown that both PSO and ABC based methods out-
perform the null subcarrier based grid search algorithm, that
uses one dimensional grid search, in terms of performance
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and computational complexity. As OFDMA has gained pop-
ularity as a default choice for mobile Wi-MAX networks and
is an active candidate for 4G cellular systems, CFO estima-
tion techniques which ensure good performance with small
training overhead and computational complexity, like the
methods proposed in this paper, have special relevance es-
pecially in the context of inexpensive receiver designs.
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