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Abstract:  'The main goal of Biomedical Natural Language
Processing (BioNLP) is to capture biomedical phenomena fra
textual data by extracting relevant entities, information and re-
lations between biomedical entities (i.e. proteins and ges).
In general, in most of the published papers, only binary re-
lations were extracted. In a recent past, the focus is shifte
towards extracting more complex relations in the form of bio
molecular events that may include several entities or otherela-
tions. In this paper we propose an approach that enables evéen
extraction (detection and classification) of relatively coplex
bio-molecular events. We approach this problem as a super-
vised classification problem and use the well-known algorfitms,
namely Conditional Random Field (CRF) and Support Vector
Machine (SVM) as the underlying classifiers. These algoritims
make use of statistical and linguistic features those repsent
various morphological, syntactic and contextual informaton of
the candidate bhio-molecular trigger words. Here the outpus
of these classifiers are combined using a newly developed ge-
netic ensemble technique. The genetic algorithm based emse
ble technique will be able to automatically determine the ap
propriate weights of votes for each classifier for each outpu
class in order to combine the outputs of different classifies us-
ing weighted voting. Experiments on the BioNLP 2009 shared
task datasets yield the overall average recall, precisionra F-
measure values of 53.56%, 51.47%, and 52.50%, respectively
on development data.

tributed to the progress of their respective fields. This has
also been similar for bio-text miningdpio-TM). Some of the
bio-text mining evaluation challenges include the LLL [1],
and BioCreative [2]. The first two shared tasks addressed the
issues of bio-information retrievabio-IR) and bio-Named
Entity Recognition lfio-NER), respectively. The JNLPBA
and BioCreative evaluation campaigns were associated with
the bio-information extractiorbfo-1E). These two addressed
the issues of seeking relations between bio-moleculesh Wit
the emergence of NER systems with performance capable of
supporting practical applications, the recent interesthef
bio-TM community is shifting toward IE.

Relations among biomedical entities (i.e. proteins aneégen
are important in understanding biomedical phenomena and
must be extracted automatically from a large number of pub-
lished papers. Most researchers in the field of Biomedical
Natural Language Processing (BioNLP) have focused on ex-
tracting binary relations, including protein—proteindrec-
tions (PPIs) such as LLL and BioCreative challenges. Binary
relations are not sufficient for capturing biomedical phreno
ena in detail, and there is a growing need for capturing more
detailed and complex relations. For this purpose, two large
corpora, Biolnfer [3] and GENIA [4], have been proposed.
Similar to previous bio-text mining challenges (e.g., Lirida

Keywords:  Event extraction; Support vector machine; Condi-BioCreative), the BioNLP'09 Shared Task also addressed

tional random field; Biomedical natural language processiDe-
tection and classification; Text mining.

[. Introduction

The past history of text miningTM) shows the great suc-
cess of different evaluation challenges based on carefully
rated resources. All these shared tasks have significarly ¢

1All the authors equally contributed for the paper

bio-IE, but it tried to look one step further toward finer-
grained IE. The difference in focus is motivated in part by
different applications envisioned as being supported ley th
IE methods. For example, BioCreative aims to support cu-
ration of PPl databases such as MINT [5], for a long time
one of the primary tasks of bioinformatics. The BioNLP’09
shared task contains simple events and complex events.
Whereas the simple events consist of binary relations be-
tween proteins and their textual triggers, the complex &ven
consist of multiple relations among proteins, events, haitt
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textual triggers. Bindings can represent events among muimization techniques guided by the principles of evolatio
tiple proteins, and regulations can represent causality re and genetics, having a large amount of implicit parallelism
tions between proteins and events. These complex events &#& has been successfully applied for solving many real-life
more informative than simple events, and this informat®n iproblems [12, 13, 14, 15, 16]. The key advantages (or, nov-
important in modeling biological systems, such as pathwayslty) of our used approach over the existing ensemble tech-
The primary goal of BioNLP-09 shared task [6] was aimeahiques are two-fold, i.e. (i). unlike previous ensemblése(l
to support the development of more detailed and structurethicking), our GA-based approach does not require to have
databases, e.g. pathway [7] or Gene Ontology Annotatiany technique to select the most suitable subset of classifie
(GOA) [8] databases, which are gaining increasing interefitom a set of base classifiers. In contrast the proposed tech-
in bioinformatics research in response to recent advamcesriique in [10] does not discard any classifier during ensemble
molecular biology. In [9] a machine learning based biologiand (ii). rather than assigning same weights to all the elass
cal event extraction system was developed. in a classifier, like any other existing techniques, it effesty
In the present paper, we propose a system that enables fimels the proper weights of all the eligible classes depandin
extraction of bio-molecular events from the medical literaupon the prediction confidence.
ture. The main goal of event extraction is to detect the bidoFhe best configurations of all the classifiers are obtained us
molecular events from the texts and to classify them inte nining the development data. Due to the non-availability ofigol
predefined classes, hamalgne expressigriranscription  annotations in the BioNLP 2009 shared task test dataset, we
protein catabolismphosphorylationlocalization binding ~ perform 3-fold cross validation on the training data to re-
regulation positive regulatiorandnegative regulation We port the final evaluation results. Evaluation results of the
approach the problem from a supervised machine learnigA based approach showed the overall recall, precision and
perspective based on Conditional Random Field (CRF) aridmeasure values of 60.56%, 56.47%, and 58.44%, respec-
Support Vector Machine (SVM) those make use of statisttively. Experiments with development set show the overall
cal and linguistic features that represent various moigdnol average recall, precision and F-measure values of 53.56%,
ical, syntactic and contextual information of the candidat51.47%, and 52.50%, respectively. Results show that the GA
bio-molecular trigger words. We target the event extractiobased classifier ensemble technique attains performance im
problem as one-step procedure where event identificatidn aprovements over best individual classifiers.
classification are performed together.
Initially, we generate different models based on two powelj. Related Works
ful learning algorithms, namely Conditional Random Field
(CRF) and Support Vector Machine (SVM). These model§he BioNLP’09 shared task [6] included three subtasks:
are constructed by varying the available features andéor fefinding core events (Task 1), finding the secondary argu-
ture templates. We identify a very rich and effective feaments (such as location and sites) (Task 2), and recogniz-
ture set that includes variety of features based on orthogriag speculation and negation (Task 3). In total, nine poten-
phy, local contextual information and global contexts. Wdial events were identified for extraction. Among them five
hypothesize that rather than selecting the best-fittintufea events were simple such gene expressiqriranscription
set, ensembling several systems where each one is basegmiein catabolismphosphorylationandlocalization The
either different feature representations or differenssife  rest four events, namelginding, regulation positive regu-
cation methodologies could be a more effective approach lation, andnegative regulatiorwere relatively complex. A
achieve reasonably high accuracy. But, selection of the agimple event is an event that includes only a single primary
propriate subset of classifiers that could participate in-cotheme protein, and a complex event is an event that includes
structing an ensemble remains a difficult problem. It can bmultiple primary theme and cause arguments. These theme
noted that all the existing ensemble techniques should hasad cause can be either proteins or events. Our proposed sys-
a way of combining the decisions of a set of classifiers. Exem targets a part of Task 1. The goal of Task 1 is to identify
isting approaches combine the outputs of all classifiers etvents along with their types, textual triggers, and primar
ther by using majority voting or by using weighted votingtheme and cause arguments. Textual triggers are tokens that
The weights of votes depend on the error rate/performanoepresent the events. Keeping in mind the complexities and
of individual classifiers. But none of the existing techrédqu challenges involved in the overall task, in the current work
guantifies the amount of vote for each output class in eaete tried to address the issues of event extraction, wherd eve
classifier. However, in reality, in an ensemble system attiggers were identified from the text and classified into som
the classifiers are not good to detect all types of outpyiredefined classes.
classes. Some classifiers are good to det@ctscription
class whereas some are good to detintlingclass. Inthe |||, Proposed Approach for Event Extraction
present work, we have used a single objective optimization
(SOO0) based classifier ensemble technique proposed in [10].this section we describe our proposed approach for event
In single objective optimization, we optimize a single elasextraction that involves identification of bio-moleculaeats
sification quality measure (i.e. objective function) sush afrom the texts and classification of them into some prede-
recall, precision or F-measure at a time. Here, we optimiZéned categories of interest. We approach this problem from
F-measure which is the harmonic mean of recall and predhe supervised machine learning perspectives, namely sup-
sion both. This optimization technique is based on genetmort vector machine (SVM) [17] and Conditional Random
algorithm (GA) [11] which is a randomized search and opField (CRF) those make use of statistical and linguistic
features that represent various morphological, syntactit
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contextual information of the candidate bio-moleculag-tri The o vector can be calculated also as a quadratic opti-

ger words. Here, we solve the problem of event extractiomization problem. Given the optimal* vector of the dual

in one step by performing event identification and classifiquadratic optimization problem, the weight vectet that

cation together. The training set is highly imbalanced. Weealizes the maximal margin hyperplane is calculated as:

filter out those sentences that don’t contain any proteires. W

use the following set of features (described in Section bfl) f . N .

both event trigger identification and classificafioiWe use W= Z Yici X

the datasets which were tokenized, stemmed, PoS tagged and =t

NE-tagged, and provided in the CONLL-X formiatWe use Thed* has also a simple expression in termsaof and the

the McClosky-Charniak parsed outputs [¥8jvhich were training examplegx;, ;). ;.

converted to the Stanford Typed Dependencies format.  The advantage of the dual formulation is that efficient learn
ing of non-linear SVM separators, by introducikgrnel

A. Support Vector Machine Framework for Event Extractiofunctions Technically, akernel functioncalculates a dot

In the field of NLP, Support Vector Machines (SVMs) [17]IorOdUCt t_’et"vee”_ two vectors that have been (non_ linearly)

are applied to text categorization, and are reported to ha%apped into a high dlm.en5|onall featurg space. Smc_e there

achieved high accuracy without falling into over-fittingeev IS no negd to perform this mapping explicitly, the trainisg i

though with a large number of words taken as the featuré%'" feasible although the dimension of the real featurcep

[19, 20]. Suppose, we have a set of training data for a twEa" _be very high or even infinite. .
class problemy{ (x1,41), . .., (xn,yx)} » Wherex; € RP By simply substituting every dot product®f andx; in dual

is a feature vector of theth sample in the training data andform With any kemel functionk(x;, x; ), SVMS_ can han-
y € {+1, -1} is the class to whick; belongs. In their basic dle non-linear hypotheses. Among the many kindkerhel

form, a SVM learns a linear hyperplane that separates tr1‘1Lén.ct|onsavallable, we will focus on thé-th polynomial ker-

set of positive examples from the set of negative examplé‘? '
with maximal marginthe margin is defined as the distance
of the hyperplane to the nearest of the positive and negativise ofd-th polynomial kernel function allows us to build an
examples). In basic SVMs framework, we try to separate thgptimal separating hyperplane which takes into account all
positive and negative examples by the hyperplane written asombination of features up th
_ n Support Vector Machines have advantage over conventional

(wx)+b=0 weR"beR. statistical learning algorithms from the following two as-
SVMs find the “optimal” hyperplane (optimal parametemects:
w, b) which separates the training data into two classes pre- . N .
z’se)ly P g P 1. SVMs have high generalization performance indepen-

The linear separator is defined by two elements: a weight dent of dimension of feature vectors.

vectorw (with one component for each feature), and abias b, svMs can carry out their learning with all combina-
which stands for the distance of the hyperplane to the arigin  tjons of given features without increasing computational

(®)

K(Xi,Xj) = (Xi.Xj + 1)d

The classification rule of a SVM is: complexity by introducing th&ernel function
sgn(f(x, w, b)) @) we develop our system using SVM [19, 17] which perform
Fx,w,b) =< wx > +b ) classification by constructing an N-dimensional hyperplan

that optimally separates data into two categories. We have

beingx the exe}mple to be.classified: In the linearly Separgised YamChi toolkit, an SVM based tool for detecting
ble case, learning the maximal margin hyperplameb) can _classes in documents and formulating the event extraction

be stated as a convex quadratic optimization problem W"t'&sk as a sequential labeling problem. Here, ghawise

a unique squtior_1n_1inimize||w||, subject to the constraints multi-class decisiomethod and theolynomial kernel func-
(one for each training example): tion are used. We use TinySVM-0.9@lassifier.
yi(< war; > +b) > 1 3)
] ] B. Conditional Random Field Framework for NERC
The SVM model has an equivalent dual formulation, char-

acterized by a weight vecter and a biag. In this casep ~ Conditional Random Fields (CRFs) [21] are undirected
contains one weight for each training vector, indicating thgraphical models, a special case of which corresponds to
importance of this vector in the solution. Vectors with norfonditionally trained probabilistic finite state automake-

null weights are callegupport vectors The dual classifica- ing conditionally trained, these CRFs can easily incorfeora
tion rule is: a large number of arbitrary, non-independent featuresewhil

still having efficient procedures for non-greedy finitetsta
4) inference and training.
CRF is used to calculate the conditional probability of ealu
on designated output nodes given values on other designated
2in our future work, we would like to investigate differeniafere sets INPUt nodes. The conditional probability of a state seqeenc
for identification and classification.
Shttp://www-tsuijii.is.s.u-tokyo.ac.jp/GENIA/Sharedskdtools.shtml Shttp://chasen-org/ taku/software/yamcha/
“http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/Sharedskdtools.shtml Bhttp://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM

N
f(x,a,b) = Zyiai < XX > +b

=1
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= e iven an observation sequence-
§=<51,82,...,87 > G _ q < 053 1012 056| 0.09| 0.91| 0.02| 0.76] 05| 0.21
01,02, ...,0r > is calculated as:
1 T K / N
Ph(s|o) = Z—eXp(ZZ)\k X fr(st—1, $t,0,t)), -
o t=1 k=1
where, fr.(s:—1, st,0,t) is a feature function whose weight Classifier 1 Classifier 2 Classifier 3
Ak, IS to be learned via training. The values of the feature
functions may range betweenoo, ... + oo, but typically Figure. 1: Chromosome Representation

they are binary. To make all conditional probabilities sym u
to 1, we must calculate the normalization factor,

Begin
T K 1.t=0
Z, = Zexp(z Z Ak X fr(8t—1, 8¢,0,1)), 2. initialize populationP(t) /* Popsize = |P|*/
s t=1 k=1 3. fori = 1to Popsize
compute fitnes#(¢)

which as in HMMs, can be obtained efficiently by dynamic

. 4.t=t+1
programming. ; T . .
To train a CRF, the objective function to be maximized is 2 i t?arrrtnnauon criterion achieved go to step 10
the penalized log-likelihood of the state sequences ghen t 7' select £)
observation sequences: - crossoverg)
8. mutate P)
N o K 2 9.gotostep 3
La =Y log(Pr(sW]ol")) = Y =k 10. output best chromosome and stop

, 20

i=1 k=1 End
where{< 0", s() >} is the labeled training data. The sec- Figure. 2: Basic Steps of GA

ond sum corresponds to a zero-mesh;variance Gaussian
prior over parameters, which facilitates optimization bgkm

ing the likelihood ;urface strictly gonvex. Herg, we set. P&y hile combining the outputs of classifiers using weighted
rameters\ to maximize the penalized log-likelihood usingoiing Here F;s are some classification quality measures of
Limited-memory BFGS [22], a quasi-Newton method that i compined weighted vote based classifier. The particular
significantly more efficient, and which results in only mlnortype of problem like NERC has mainly three different kinds

changes in accuracy due to changes.in i of classification quality measures, namely recall, preaisi
When applying CRFs to the event extraction problem, and F-measure. Thus, € {recall precision F-measurg.

observation sequence is a token of a sentence or docCUM@RL \yeighted vote based classifier ensemble problem can
of text and the state Isequence IS 'ti correspcindlr;g labgl formulated under the single objective optimization (300
sequence. In general, CRFs can take any value betweeny, ey ork is as below: For each classifier, find the weights

—00, ... + 00, although binary values are traditional. A fea-¢ votes V per classifier such thatpazimize [F(V)],
ture functionfy (s;—1, s, o, t) has a value of O for most Cases, hare F ¢ {recall precisionF-measure. We choose

and is oqu setto 1, W,hemf—l’ St .are certain states and theF = F-measure, which is the harmonic mean of recall and
observation has certain properties. We have used the C precision both

based CRE* packag€, a simple, customizable, and open
source implementation of CRF for segmenting or labeling

sequential data. V. GA Based Classifier Ensemble Technique

IV. Weighted Vote Based Classifier Ensemble |, this section, we describe the single objective optiniizat

Problem Formulation [10] (SO0) based classifier ensemble approach [10]. It identi-
) - fies the events from the biomedical texts and classifies them
Suppose, theV number of available classifiers be denoteghig nine different categories, namejgne expressigiran-
byCi,...,Cn. Let, A= {C; : i = 1; N}. Suppose, thefe_ ‘scription, protein catabolismphosphorylationlocalization
are M output class.es. The weighted vote based Class'f'ﬁfnding, regulation positive regulatiorandnegative regula-
ensemble problem is then stated as follows: ~ ~~  {jon_ Other than these entities are classified as "Other-than-
Find the weights of vote¥’ per classifier which will optimize gy ents” denoted by O. The used ensemble approach is based

some function’(V'). Here,V is an real array of siz&/ x M. o Ga [11] that closely follows those of the steps as shown
V (i, j) denotes the weight of vote of thé classifier for the Figure 2.

4t class. More weight is assigned for that particular class

for which the classifier is more confident; whereas the output

classes for which the classifier is less confident are give1 lea . string Representation and Population Initialization
weight. V (i, j) € [0, 1] denotes the degree of confidence of

the i*" classifier for thej!” class. These weights are usedSuppose, there aré/ available classifiers and output
classes. Then, the length of the chromosomé&is< O.
"http://crfpp.sourceforge.net Each chromosome encodes the weights of votes for possi-
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ble O output classe® for each classifier. As an example, theC. Selection and Crossover

encoding of a particular chromosome is represented in Figfoulette wheel selection is used to implement the propor-

ure 1, whereN = 3 andO = 3 (i.e., total 9 votes can be |, . ) )

) . tional selection strategy. We use the normal single point
possible). The chromosome represents the following ensem-
ble: crossover [23]. As an example, let the two chromosomes

i . . . be :
The weights of votes for 3 different output classes in classt_ .
fier 1 are 0.59, 0.12 and 0.56, respectively. Similarly, \wésg P1:0.240.160.540.870.660.760.01 0.88 0.21

of votes for 3 different output classes are 0.09, 0.91 anﬂ’o'oifl:‘i?s:tli (c):.r(()nss)soc;\?zro.;ln?.r?:sot.c? 2[)2 .gzlgcftl:doﬁln?forml ran-
respectively in classifier 2 and 0.76, 0.5 and 0.21, resp b y

e -
tively in classifier 3. Jom between 1 to 9 (length of the chromosome) by generat-

We use real encoding that randomly initializes the entrfes (|)ng some random number between 1 and 9. Let the crossover

each chromosome by a real value (r) between 0 and 1 HePoint, here, be 4. Then after crossover, the offsprings are:
. : - 0y ’ 1: 0.24 0.16 0.54 0.87 0.65 0.82 0.69 0.43 0.15 (taking the
r is an uniformly distributed random number between 0 an

. o " Tirst 4 positions fromP1 and rest fromP2)
1. If the population size i#” then all theP number of chro- )", 154 19 9 89 0.71 0.66 0.76 0.01 0.88 0.21 (taking the
mosomes of this population are initialized in the above wa

Yirst 4 positions fromP1 and rest fromP2)

Crossover probability is selected adaptively as in [24]e Th
expressions for crossover probabilities are computedlas fo
Initially, the F-measure values of all the classifiers alewca lows:

lated using 5-fold cross validation on the available tnagni Let f,,., be the maximum fitness value of the current pop-
data. Each of these classifiers is built using various repratation, f be the average fitness value of the population and
sentations of the available features and/or feature teewmla f  be the larger of the fitness values of the solutions to be
Thereafter, we execute the following steps to compute therossed. Then the probability of crossover, is calculated

B. Fitness Computation

fitness value of each chromosome. as:
1. Let, the overall F-measure values of tNenumber of Goan—f) e o =
ipe s ky x per 22 |ff>f
classifiers bé;,7 =1... N. e = (Fmas—1)
ks otherwise

2. Initially, the training data is divided equally into 5 p&r
Each classifier is trained using 4/5 portions of the traintiere, as in [24], the values @f andks are kept equal to
ing data and evaluated with the remaining 1/5 part (i.e1.0- Note that, whetf,,..=f, thenf = fi.qa. andgp. will
test dataset). Now, for the ensemble classifier the ou€ equal tdis. The aim behind this adaptation is to achieve a
put class for each token in the 1/5 training data is deteftade-off between exploration and exploitation in a difer
mined using the weighted voting of thedeclassifiers’ manner. The value qi. is increased when the better of the
outputs. The weight of the output class provided by thBVO chromosomes to be crossed is itself quite poor. In con-
m'h classifier is equal td(m, i) x F,,. Here,I(m,i) trast,whenitis a good solutiop. is low so as to reduce the
is the entry of the chromosome correspondingit® likelihood of disrupting a good solution by crossover.
classifier and®” output class. The combined score of a

particular class; for a particular token is: D. Mutation
. Each chromosome undergoes mutation with a probability
i) — 1 B X F’m7 . e .
fles) Z (m, ) m- The mutation probability is also selected adaptively for
Vm=1:N & op(t,m) =c¢; each chromosome as in [24]. The expression for mutation

Here,op(t, m) denotes the output class provided by th@mbabi”ty’“m' is given below:

th ifi
classifier for the token. _ . —
- iy _ _ _ by x ey it >
The class receiving the maximum combined score is se- Hm = i (fmaz—1) otherwise
lected as the joint decision. Note that in case differ- 4

ent poundaries are ou_tputted by the d@stinct classi.fierii,ere, values ok, andk, are kept equal to 0.5. This adaptive
the final output is decided by the maximum Coml:)'neanutation helps GA to come out of local optimum. When GA

score. converges to a local optimum, i.e. whén,, — f decreases,
3. The overall F-measure value of the ensemble for the 1/6: and 1., both will be increased. As a result the GA may
training data (i.e., test data) is calculated. come out of this. It will also happen for the global optimum
and may result in disruption of the near-optimal solutions.
4. Steps 2 and 3 are repeated 5 times to perform 5-folgs 3 result, GA will never converge to the global optimum.
cross validation. The p. and u,,, will get lower values for high fitness solu-

5. The average F-measure value of this 5-fold cross Vaﬁi_ons and get higher values for low fitness solutions. While

dation is used as the fitness value of the particular chr€ high fitness solutions aid in the convergence of GA, the
mosome. This fitness functiofijt = F-measurg, is low fitness solutions prevent the GA from getting stuck at a

maximized using the search capability of GA. local optimum. The use of elitism will also keep the best so-
lution intact. For a solution with the maximum fitness value,

8We also treat the beginning and internals (denoted by Bl@lilap ~ He and ., are bOt_h Zero. The best solution in a population
scheme) of a multiword NE as the separate classes is transferred undisrupted into the next generation. Taget
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with the selection mechanism, this may lead to an exponen-
tial growth of the solution in the population and may cause
premature convergence.

Here, each position in a chromosome is mutated with prob-
ability pu,, in the following way. The value is replaced
with a random variable drawn from a Laplacian distribution,

ple) o P , Where the scaling factdrsets the magnitude

of perturbation. Herey is the value at the position which is

to be perturbed. The scaling facidis chosen equal t6.1.

The old value at the position is replaced with the newly gen-
erated value. By generating a random variable using Lapla-
cian distribution, there is a non-zero probability of gextierg

any valid position from any other valid position while prob-
ability of generating a value near the old value is more.

E. Termination Condition

In this approach, the processes of fithess computatiorg-sele
tion, crossover, and mutation are executed for a maximum®-
number of generations. The best string seen up to the last
generation provides the solution to the above classifier en-
semble problem. Elitism is implemented at each generation
by preserving the best string seen up to that generation in
a location outside the population. Thus on terminatiors thi
location contains the best classifier ensemble.

VI. Features for Event Extraction

We identify and use the following set of features for event ex
traction. All these features are automatically extractednf
the training datasets without using any additional domain d
pendent resources and/or tools.

1. Context words: We use preceding and succeeding few
words as the features. This feature is used with the ob-
servation that contextual information plays an important
role in identification of event triggers.

. Root words: Stems of the current and/or the surround- 8.
ing token(s) are used as the features of the event extrac-
tion module. Stems of the words were provided with the
evaluation datasets of training, development and test.

. Part-of-Speech (PoS) information PoS information
of the current and/or the surrounding tokens(s) are ef-
fective for event trigger identification. PoS labels of
the tokens were provided by the organizers with the 9-
datasets.

. Named Entity (NE) information: NE information of
the current and/or surrounding token(s) are used as the
features. NE information was provided with the shared
task datasets.

. Semantic feature This feature is semantically moti-
vated and exploits global context information. This is
based on the content words in the surrounding con-
text. We consider all unigrams in context§™3
w;—3 . .. w13 Of w; (crossing sentence boundaries) for
the entire training data. We convert tokens to lower
case, remove stopwords, numbers, punctuation and spe-
cial symbols. We define a feature vector of length 10

10.
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using the 10 most frequent content words. Given a clas-
sification instance, the feature corresponding to taken
is set to 1 if and only if the context!™3 of w; con-
tainst. Evaluation results show that this feature is very
effective to improve the performance by a great margin.

6. Dependency features A dependency parse tree cap-

tures the semantic predicate-argument dependencies
among the words of a sentence. Dependency paths be-
tween protein pairs have successfully been used to iden-
tify protein interactions. In this work, we use the depen-
dency paths to extract events. We use the McClosky-
Charniak parses which are converted to the Stanford
Typed Dependencies format and provided to the partic-
ipants by the shared task organizers. We define a num-
ber of features based on the dependency labels of the
tokens.

7. Dependency path from the nearest protein Depen-

dency relations of the path from the nearest protein are
used as the features. Let us consider a path from “phos-
phorylation” to “CD40” be “nsubj inhibits acomp bind-
ing prep to domain num”. Due to the large number of
possible words, use of these words on the paths may
lead to data sparsity problems, and in turn to poor gen-
eralization. Suppose we have a sentence with similar
semantics, where the synonym word “prevents” is used
instead of “inhibits”. If we use the words on the path
to represent the path feature, we end up with two differ-
ent paths for the two sentences that have similar seman-
tics. Therefore, in this work we use only the dependency
relation types among the words to represent the paths.
For example, the path feature extracted for the (phos-
phorylation, CD40) negative trigger/participant pair is
“nsubj acomp prep to num” and the path feature ex-
tracted for the (phosphorylation, TRAF2) positive trig-
ger/participant pair is “prep of”.

Boolean valued featuresTwo boolean-valued features
are defined using the dependency path information. The
first feature checks whether the current token’s child is
a proposition and the chunk of the child includes a pro-
tein. The second feature fires if and only if the cur-
rent token’s child is a protein and its dependency label
is OBJ

Shortest path Distance of the nearest protein from the
current token is used as the feature. This is an integer-
valued feature that takes the value equal to the number
of tokens between the current token and the nearest pro-
tein.

Word prefix and suffix: Fixed length (say, n) word suf-
fixes and prefixes may be helpful to detect event trig-
gers from the text. Actually, these are the fixed length
character strings stripped either from the rightmost (for
suffix) or from the leftmost (for prefix) positions of the
words. If the length of the corresponding word is less
than or equal to n-1 then the feature values are not de-
fined and denoted by ND. The feature value is also not
defined (ND) if the token itself is a punctuation sym-
bol or contains any special symbol or digit. This feature
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mmbais

nsubj

acomp
phosphorylation bindiog
prep of prep_to
TRAF2 domain

“V mN

cytoplasmxc CD40 the

Figure 1: The dependency tree of the sentence “The phos-
phoryiarion of TRAF2 inhibits binding to the CDH0 cyto-
plasmic domain.”

is included with the observation that event triggers sharmorpus. The selected event types all concern protein biplog
some common suffixes and/or prefixes. In this work, wamplying that they take proteins as their theme. The firsgehr
consider the prefixes and suffixes of length up to fouevent types concern protein metabolism that actually repre
characters. sents protein production and breakdowRhosphorylation
represents protein modification event wher&a=lization

11. Named Entities in Context We calculate the frequen- anqpinding denote fundamental molecular evenRegula-
cies of NEs within the various contexts of a sentencgjon and its sub-typegositiveand negativeregulations are
This feature has been defined with the observation thatyresentative of regulatory events and causal relatibe.
NEs appear most of the times near to the event triggefigst five event types are universal but frequently occur on pr
Let us suppose that is the current token and L is the tejns. Detailed biological interpretations of the evergedy
size of the sentence in terms of the number of word$.4n pe found in Gene Ontology (GO) and the GENIA on-
We consider various contexts as: context-size= L/Kg|ogy. From a computational point of view, the event types
where K: 1to 5. Now, considering as centre we define represent different levels of complexity.
a context window as: context-window-size=2*contextrajining and development datasets were derived from the
size+1. When the size exceeds the length of the sefypiicly available event corpus [25]. The test set was ob-
tence, we added some slots and fill it by the class labelgined from an unpublished portion of the corpus. But gold
“Other-than-NEs” (denoted by O). For wom a fea- annotations are not available for BioNLP 2009 shared task
ture vector of length 5 is defined. Depending upon thgss; gataset. We present some statistics of the datases in T
value of K, the corresponding feature fires. The valugje 1. The shared task organizers made some changes to the
is set equal to the number of NEs within the contexts ofriginal GENIA event corpus. Irrelevant annotations were
“context-window-size”. For example, for K=1, the en-removed, and some new types of annotation were added to
tire sentence is considered (i.e., context-size=L). Fer thyake the event annotation more appropriate. Due to the non-
first word of the sentence, the context window is equajyajlability of gold annotations in the BioNLP 2009 shared
to more than twice (i.e., 2*context-size+1) of the senagk test datasets, we have reported results on development

tence length. For K=2, the context-size is half of thgata and 3-fold cross validation on training data.
sentence length. Again, centering the wavdve de-

fine a context of double length by filling the preceding
empty slots with O. The feature value is equal to the
number of NEs within this window. B. Experimental Results

We use SVM and CRF for training and testing. In order
to properly denote the boundaries of events triggers we use
In this section we describe datasets used in our task and fffgndard I0B notation, where the beginning of a multiword
experimental results. event is tagged as B-Event aqd the rgst of tokens are anno-

tated as I-Event. For examplmteracting receptor-ligand
pair is annotated aiteractingB-Eventreceptor-ligandl-
Eventpair/l-Event in the two-phase approach. The single
We use the BioNLP-09 shared task datasets. The events warard token is annotated with B-Event class. For example,
selected from the GENIA ontology based on their signifiTRAF2 is a ...which bind&-Eventto the CD40 cytoplas-
cance and the amount of annotated instances in the GENbic domain

VIl. Datasets and Experimental Results

A. Datasets
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Table 1 Statistics of the datasets

Ekba, Saha, Hasanuzzama and Majumder

Dataset #abstracts #sentences #words #events
Training 800 7,449 176,146 8,597
Development 150 1,450 33,937 1,809
Test 260 2,447 57,367 3,182

The system is tuned on the development data, and the resuwii¢h the recall, precision and F-measure values of 50.52%,
are reported using 3-fold cross validatidn The system is 48.41%, and 49.54%, respectively. The detailed results of
evaluated with the standard recall, precision and F-meastthis classifier for each individual output classes are shiown
metrics. The definitions of recall and precision are given bélable 3.

low: Thereafter, results are reported for 3-fold cross valadatin

# Events correctly identified by the system( training data. The best CRF based model exhibits the aver-

recall = # Events in the data set 6) age recall, precision and F-measure values 59.92%, 54.52%
. # Events correctly identified by the system and 5_6.94%, rgspecuvel_y. Result_s al_so indicate gleate ex-
precision= pression protein catabolism localization phosphorylation

# Events identified by the system andtranscriptionare relatively easier for both identification

From the definitions, it is clear that these two capture twgnd/or classification. In contrast, regulatory events,reg-
different classification qualities. ulation, positive regulatiorandnegative regulatiomre diffi-
The value of the metric F-measure, which is the weightegt!t to identify and/or classify. This proves the importanc

harmonic mean of recall and precision, is calculated as pef proper feature selection for event identification andsitla
low: fication both.

Finally we apply GA based ensembling technique for com-
bining the outputs of several CRF and SVM based classifiers.
Results are reported in Table 4 for development data and in
We followed the strict matching criterion, i.e. creditisgin  Table 5 for 3-fold cross validation on training data. For de-
if and only if the event types are the same and the event trigelopment data, our approach achieves an improvement of
gers are the same. 0.75% F-measure values over the best individual classifier.
A number of CRF and SVM models are generated by varying case of 3 fold cross validation on the training data, GA
the available features and/or feature templates. based classifier ensemble technique attains the improwsmen
Evaluation results on the development set showed that tbe 1.69% F-measure over the best individual classifier. Re-
highest performing SVM based model attained the recakults show the superiority of the GA based approach.
precision and F-measure values of 52.66%, 50.87%, and

51.75%, respectively. Detailed results for individualssias )

for this classifier are shown in Table 2. Results sugge¥!!l. Conclusion and Future Works

that apart from the context words, integrating other fesgur
within a larger context sometimes decreases the overall p
formance.

After tuning the system on the development set, we perfor
3-fold cross validation on training data to report the fireal r

Fy— (1+ 3%)(recall —i—precz’sz’on)7 g=1

(3% x precision + recall

érp this paper at first we have proposed two supervised ma-
chine learning approaches for biological event extradtiai
involves identification of complex bio-molecular eventsian
‘ﬂassification of them into the predefined nine classes. We

sults. Initially, the training dataset is randomly splittato have used CRF and SVM those exploit various statistical and

nearly three equal subsets. Two subsets are used for t‘ljain“'m:-”“stIC feature_s n the_ forms of morpr_lologlcgl, syntact
and the remaining one subset is withheld for testing. Th@nd contextual information of the candidate bio-molecular

process is repeated three times to perform 3-fold cross valfiager words. We freated event extractlon_problem as one-
dation. step process, and performed event detection and classifica-

Evaluation results of 3-fold cross validation for event deIIOn together. Three-fold cross validation experiments on

tection by the best SVM based classifier shows the overige BioNLP 2009 shared task datasets yield the good per-
0

average recall, precision and F-measure values of 57.66 rmance in all our settings. Finally outputs of all theszsel
55.87%, and 56.75% , respectively sifiers are combined together using a genetic algorithmtbase

Results indicate thafene expressiqprotein catabolismlo- ensemble technique.

calization phosphorylatiorand transcriptionare relatively ?virallhevgluanon resultsl sug.gest trllat thehre IS sull;kum )
easier for both identification and/or classification. In con'©F 'Urtherimprovement. In this work, we have used a quite

trast, regulatory events, i.aregulation positive regulation similar set of features for event identification and clasaifi

andnegative regulatiorare difficult to identify and/or clas- tion both. In our future work, we would like to investigate

sify. This proves the importance of proper feature selectiod'Stht and more effective set of features for event iden-

for event identification and classification both. tification and classification each. We would like to come

A number of CRF models are also generated by varying tHP with an appropriate feature selection algorithm. In this
available features and/or feature templates. Evaluaten work, we emphasized on event identification and classifica-
sults on the development set showed the highest performa - In our future work, we W_OUId _I|_ke tp |d_ent|fy argume_nts
to these events. Argument identification is a more difficult
%It is to be noted that due to the unavailability of gold-samtiannota-  task that requires more sophisticated features and/asifitas

tions we were unable to evaluate the system with the tesselata cation methods. We also would like to try with other classi-
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Table 2 Results on development data for event detection and fitzd&n (we report percentages) by SVM based approach

Event type recall Precision F-measure
Geneexpression 77.52 52.71 62.98
Transcription 45.79 43.27 44.50
Proteincatabolism 63.61 62.71 63.18
Localization 52.20 58.89 55.38
Binding 53.14 42.52 47.29
Phosphorylation 79.87 68.41 73.66
Regulation 40.95 33.47 36.84
Positiveregulation 42.91 34.67 38.39
Negativeregulation 52.25 39.58 45.07
Overall 52.66 50.87 51.75

Table 3 Results for event detection and classification (in %) foFGRsed approach on development data

Event type recall precision F-measure
Geneexpression 77.12 52.64 62.58
Transcription 45.59 43.11 44.31
Proteincatabolism 63.51 62.68 63.09
Localization 52.10 58.83 55.26
Binding 53.04 42.49 47.18
Phosphorylation 79.67 68.34 73.57
Regulation 40.85 33.39 36.75
Positiveregulation 42.78 34.62 38.27
Negativeregulation 52.17 39.54 44.98
Overall 50.52 48.41 49.54

Table 4 Detailed Evaluation results of different approaches oreltlgmment data (we report percentages)
Approach recall | precision | F-measure
Best CRF based approach 50.52 | 48.41 49.54
Best SVM based approach 52.66 | 50.87 51.75
GA based ensemble 53.56 | 51.47 52.50

Table 5 Detailed Evaluation results of different approaches onl@¢ross validation on training data (we report percergage
Approach recall | precision | F-measure
Best CRF based approach 59.92 | 54.52 56.94
Best SVM based approach 57.66 | 55.87 56.75
GA based ensemble 60.56 | 56.47 58.44
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fication techniques, especially decision trees. In thisspap
we have used GA to optimize only one classification quality

Ekba, Saha, Hasanuzzama and Majumder

Conference on Hybrid Intelligent Systems (HIS 2011)
Malacca, Malaysia: IEEE, 2011.

measure, namely F-measure to determine the best classifier

ensemble. But, sometimes only a single measure may not Bi0]
ways capture the quality of an ensemble reliably. For a good
ensemble, it may often be necessary to optimize more than
one classification quality measures simultaneously. Thus i

A. Ekbal and S. Saha, “Weighted vote-based classi-
fier ensemble for named entity recognition: A genetic
algorithm-based approach& CM Trans. Asian Lang.
Inf. Process.vol. 10, no. 2, p. 9, 2011.

would be good to use multiobjective optimization (MOO)

techniques to solve the problem of classifier ensemble f&t1]
event classification and detection. Future works include th

D. E. Goldberg,Genetic Algorithms in Search, Opti-
mization and Machine LearningNew York: Addison-

development of novel classifier ensemble techniques using  Vesley, 1989.

:\c/:lglct)ej((t)sr solving the event detection problem from blomed-[12] K. Matsui and H. Sato, “Neighborhood evaluation in
' acquiring stock trading strategy using genetic algo-
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