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Abstract: 1The main goal of Biomedical Natural Language
Processing (BioNLP) is to capture biomedical phenomena from
textual data by extracting relevant entities, information and re-
lations between biomedical entities (i.e. proteins and genes).
In general, in most of the published papers, only binary re-
lations were extracted. In a recent past, the focus is shifted
towards extracting more complex relations in the form of bio-
molecular events that may include several entities or otherrela-
tions. In this paper we propose an approach that enables event
extraction (detection and classification) of relatively complex
bio-molecular events. We approach this problem as a super-
vised classification problem and use the well-known algorithms,
namely Conditional Random Field (CRF) and Support Vector
Machine (SVM) as the underlying classifiers. These algorithms
make use of statistical and linguistic features those represent
various morphological, syntactic and contextual information of
the candidate bio-molecular trigger words. Here the outputs
of these classifiers are combined using a newly developed ge-
netic ensemble technique. The genetic algorithm based ensem-
ble technique will be able to automatically determine the ap-
propriate weights of votes for each classifier for each output
class in order to combine the outputs of different classifiers us-
ing weighted voting. Experiments on the BioNLP 2009 shared
task datasets yield the overall average recall, precision and F-
measure values of 53.56%, 51.47%, and 52.50%, respectively,
on development data.
Keywords: Event extraction; Support vector machine; Condi-
tional random field; Biomedical natural language processing; De-
tection and classification; Text mining.

I. Introduction

The past history of text mining (TM) shows the great suc-
cess of different evaluation challenges based on carefullycu-
rated resources. All these shared tasks have significantly con-

1All the authors equally contributed for the paper

tributed to the progress of their respective fields. This has
also been similar for bio-text mining (bio-TM). Some of the
bio-text mining evaluation challenges include the LLL [1],
and BioCreative [2]. The first two shared tasks addressed the
issues of bio-information retrieval (bio-IR) and bio-Named
Entity Recognition (bio-NER), respectively. The JNLPBA
and BioCreative evaluation campaigns were associated with
the bio-information extraction (bio-IE). These two addressed
the issues of seeking relations between bio-molecules. With
the emergence of NER systems with performance capable of
supporting practical applications, the recent interest ofthe
bio-TM community is shifting toward IE.
Relations among biomedical entities (i.e. proteins and genes)
are important in understanding biomedical phenomena and
must be extracted automatically from a large number of pub-
lished papers. Most researchers in the field of Biomedical
Natural Language Processing (BioNLP) have focused on ex-
tracting binary relations, including protein–protein interac-
tions (PPIs) such as LLL and BioCreative challenges. Binary
relations are not sufficient for capturing biomedical phenom-
ena in detail, and there is a growing need for capturing more
detailed and complex relations. For this purpose, two large
corpora, BioInfer [3] and GENIA [4], have been proposed.
Similar to previous bio-text mining challenges (e.g., LLL and
BioCreative), the BioNLP’09 Shared Task also addressed
bio-IE, but it tried to look one step further toward finer-
grained IE. The difference in focus is motivated in part by
different applications envisioned as being supported by the
IE methods. For example, BioCreative aims to support cu-
ration of PPI databases such as MINT [5], for a long time
one of the primary tasks of bioinformatics. The BioNLP’09
shared task contains simple events and complex events.
Whereas the simple events consist of binary relations be-
tween proteins and their textual triggers, the complex events
consist of multiple relations among proteins, events, and their
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textual triggers. Bindings can represent events among mul-
tiple proteins, and regulations can represent causality rela-
tions between proteins and events. These complex events are
more informative than simple events, and this information is
important in modeling biological systems, such as pathways.
The primary goal of BioNLP-09 shared task [6] was aimed
to support the development of more detailed and structured
databases, e.g. pathway [7] or Gene Ontology Annotation
(GOA) [8] databases, which are gaining increasing interest
in bioinformatics research in response to recent advances in
molecular biology. In [9] a machine learning based biologi-
cal event extraction system was developed.
In the present paper, we propose a system that enables the
extraction of bio-molecular events from the medical litera-
ture. The main goal of event extraction is to detect the bio-
molecular events from the texts and to classify them into nine
predefined classes, namelygene expression, transcription,
protein catabolism, phosphorylation, localization, binding,
regulation, positive regulationandnegative regulation. We
approach the problem from a supervised machine learning
perspective based on Conditional Random Field (CRF) and
Support Vector Machine (SVM) those make use of statisti-
cal and linguistic features that represent various morpholog-
ical, syntactic and contextual information of the candidate
bio-molecular trigger words. We target the event extraction
problem as one-step procedure where event identification and
classification are performed together.
Initially, we generate different models based on two power-
ful learning algorithms, namely Conditional Random Field
(CRF) and Support Vector Machine (SVM). These models
are constructed by varying the available features and/or fea-
ture templates. We identify a very rich and effective fea-
ture set that includes variety of features based on orthogra-
phy, local contextual information and global contexts. We
hypothesize that rather than selecting the best-fitting feature
set, ensembling several systems where each one is based on
either different feature representations or different classifi-
cation methodologies could be a more effective approach to
achieve reasonably high accuracy. But, selection of the ap-
propriate subset of classifiers that could participate in con-
structing an ensemble remains a difficult problem. It can be
noted that all the existing ensemble techniques should have
a way of combining the decisions of a set of classifiers. Ex-
isting approaches combine the outputs of all classifiers ei-
ther by using majority voting or by using weighted voting.
The weights of votes depend on the error rate/performance
of individual classifiers. But none of the existing techniques
quantifies the amount of vote for each output class in each
classifier. However, in reality, in an ensemble system all
the classifiers are not good to detect all types of output
classes. Some classifiers are good to detecttranscription
class whereas some are good to detectbindingclass. In the
present work, we have used a single objective optimization
(SOO) based classifier ensemble technique proposed in [10].
In single objective optimization, we optimize a single clas-
sification quality measure (i.e. objective function) such as
recall, precision or F-measure at a time. Here, we optimize
F-measure which is the harmonic mean of recall and preci-
sion both. This optimization technique is based on genetic
algorithm (GA) [11] which is a randomized search and op-

timization techniques guided by the principles of evolution
and genetics, having a large amount of implicit parallelism.
GA has been successfully applied for solving many real-life
problems [12, 13, 14, 15, 16]. The key advantages (or, nov-
elty) of our used approach over the existing ensemble tech-
niques are two-fold, i.e. (i). unlike previous ensembles (like
stacking), our GA-based approach does not require to have
any technique to select the most suitable subset of classifiers
from a set of base classifiers. In contrast the proposed tech-
nique in [10] does not discard any classifier during ensemble
and (ii). rather than assigning same weights to all the classes
in a classifier, like any other existing techniques, it effectively
finds the proper weights of all the eligible classes depending
upon the prediction confidence.
The best configurations of all the classifiers are obtained us-
ing the development data. Due to the non-availability of gold
annotations in the BioNLP 2009 shared task test dataset, we
perform 3-fold cross validation on the training data to re-
port the final evaluation results. Evaluation results of the
GA based approach showed the overall recall, precision and
F-measure values of 60.56%, 56.47%, and 58.44%, respec-
tively. Experiments with development set show the overall
average recall, precision and F-measure values of 53.56%,
51.47%, and 52.50%, respectively. Results show that the GA
based classifier ensemble technique attains performance im-
provements over best individual classifiers.

II. Related Works

The BioNLP’09 shared task [6] included three subtasks:
finding core events (Task 1), finding the secondary argu-
ments (such as location and sites) (Task 2), and recogniz-
ing speculation and negation (Task 3). In total, nine poten-
tial events were identified for extraction. Among them five
events were simple such asgene expression, transcription,
protein catabolism, phosphorylation, and localization. The
rest four events, namelybinding, regulation, positive regu-
lation, andnegative regulationwere relatively complex. A
simple event is an event that includes only a single primary
theme protein, and a complex event is an event that includes
multiple primary theme and cause arguments. These theme
and cause can be either proteins or events. Our proposed sys-
tem targets a part of Task 1. The goal of Task 1 is to identify
events along with their types, textual triggers, and primary
theme and cause arguments. Textual triggers are tokens that
represent the events. Keeping in mind the complexities and
challenges involved in the overall task, in the current work,
we tried to address the issues of event extraction, where event
triggers were identified from the text and classified into some
predefined classes.

III. Proposed Approach for Event Extraction

In this section we describe our proposed approach for event
extraction that involves identification of bio-molecular events
from the texts and classification of them into some prede-
fined categories of interest. We approach this problem from
the supervised machine learning perspectives, namely sup-
port vector machine (SVM) [17] and Conditional Random
Field (CRF) those make use of statistical and linguistic
features that represent various morphological, syntacticand
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contextual information of the candidate bio-molecular trig-
ger words. Here, we solve the problem of event extraction
in one step by performing event identification and classifi-
cation together. The training set is highly imbalanced. We
filter out those sentences that don’t contain any proteins. We
use the following set of features (described in Section VI) for
both event trigger identification and classification2. We use
the datasets which were tokenized, stemmed, PoS tagged and
NE-tagged, and provided in the CoNLL-X format3. We use
the McClosky-Charniak parsed outputs [18]4 which were
converted to the Stanford Typed Dependencies format.

A. Support Vector Machine Framework for Event Extraction

In the field of NLP, Support Vector Machines (SVMs) [17]
are applied to text categorization, and are reported to have
achieved high accuracy without falling into over-fitting even
though with a large number of words taken as the features
[19, 20]. Suppose, we have a set of training data for a two-
class problem:{(x1, y1), . . . , (xN , yN )} , wherexi ∈ RD

is a feature vector of thei-th sample in the training data and
y ∈ {+1,−1} is the class to whichxi belongs. In their basic
form, a SVM learns a linear hyperplane that separates the
set of positive examples from the set of negative examples
with maximal margin(the margin is defined as the distance
of the hyperplane to the nearest of the positive and negative
examples). In basic SVMs framework, we try to separate the
positive and negative examples by the hyperplane written as:

(w.x) + b = 0 w ∈ R
n, b ∈ R.

SVMs find the “optimal” hyperplane (optimal parameter
w, b) which separates the training data into two classes pre-
cisely.
The linear separator is defined by two elements: a weight
vectorw (with one component for each feature), and a bias b
which stands for the distance of the hyperplane to the origin.
The classification rule of a SVM is:

sgn(f(x,w, b)) (1)

f(x,w, b) =< w.x > +b (2)

beingx the example to be classified. In the linearly separa-
ble case, learning the maximal margin hyperplane(w, b) can
be stated as a convex quadratic optimization problem with
a unique solution:minimize||w||, subject to the constraints
(one for each training example):

yi(< w.xi > +b) ≥ 1 (3)

The SVM model has an equivalent dual formulation, char-
acterized by a weight vectorα and a biasb. In this case,α
contains one weight for each training vector, indicating the
importance of this vector in the solution. Vectors with non
null weights are calledsupport vectors. The dual classifica-
tion rule is:

f(x, α, b) =

N
∑

i=1

yiαi < xi.x > +b (4)

2In our future work, we would like to investigate different feature sets
for identification and classification.

3http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/tools.shtml
4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/tools.shtml

The α vector can be calculated also as a quadratic opti-
mization problem. Given the optimalα∗ vector of the dual
quadratic optimization problem, the weight vectorw

∗ that
realizes the maximal margin hyperplane is calculated as:

w
∗ =

N
∑

i=1

yiα
∗

i xi (5)

Theb∗ has also a simple expression in terms ofw
∗ and the

training examples(xi, yi)
N

i=1.
The advantage of the dual formulation is that efficient learn-
ing of non-linear SVM separators, by introducingkernel
functions. Technically, akernel functioncalculates a dot
product between two vectors that have been (non linearly)
mapped into a high dimensional feature space. Since there
is no need to perform this mapping explicitly, the training is
still feasible although the dimension of the real feature space
can be very high or even infinite.
By simply substituting every dot product ofxi andxj in dual
form with any kernel functionK(xi,xj), SVMs can han-
dle non-linear hypotheses. Among the many kinds ofkernel
functionsavailable, we will focus on thed-th polynomial ker-
nel:

K(xi,xj) = (xi.xj + 1)d

Use ofd-th polynomial kernel function allows us to build an
optimal separating hyperplane which takes into account all
combination of features up tod.
Support Vector Machines have advantage over conventional
statistical learning algorithms from the following two as-
pects:

1. SVMs have high generalization performance indepen-
dent of dimension of feature vectors.

2. SVMs can carry out their learning with all combina-
tions of given features without increasing computational
complexity by introducing theKernel function.

We develop our system using SVM [19, 17] which perform
classification by constructing an N-dimensional hyperplane
that optimally separates data into two categories. We have
used YamCha5 toolkit, an SVM based tool for detecting
classes in documents and formulating the event extraction
task as a sequential labeling problem. Here, thepairwise
multi-class decisionmethod and thepolynomial kernel func-
tion are used. We use TinySVM-0.076 classifier.

B. Conditional Random Field Framework for NERC

Conditional Random Fields (CRFs) [21] are undirected
graphical models, a special case of which corresponds to
conditionally trained probabilistic finite state automata. Be-
ing conditionally trained, these CRFs can easily incorporate
a large number of arbitrary, non-independent features while
still having efficient procedures for non-greedy finite-state
inference and training.
CRF is used to calculate the conditional probability of values
on designated output nodes given values on other designated
input nodes. The conditional probability of a state sequence

5http://chasen-org/ taku/software/yamcha/
6http://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM
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s =< s1, s2, . . . , sT > given an observation sequenceo =<

o1, o2, . . . , oT > is calculated as:

P∧(s|o) =
1

Zo

exp(
T

∑

t=1

K
∑

k=1

λk × fk(st−1, st, o, t)),

where,fk(st−1, st, o, t) is a feature function whose weight
λk, is to be learned via training. The values of the feature
functions may range between−∞, . . . + ∞, but typically
they are binary. To make all conditional probabilities sum up
to 1, we must calculate the normalization factor,

Zo =
∑

s

exp(

T
∑

t=1

K
∑

k=1

λk × fk(st−1, st, o, t)),

which as in HMMs, can be obtained efficiently by dynamic
programming.
To train a CRF, the objective function to be maximized is
the penalized log-likelihood of the state sequences given the
observation sequences:

L∧ =

N
∑

i=1

log(P∧(s(i)|o(i))) −

K
∑

k=1

λ2
k

2σ2
,

where{< o(i), s(i) >} is the labeled training data. The sec-
ond sum corresponds to a zero-mean,σ2 -variance Gaussian
prior over parameters, which facilitates optimization by mak-
ing the likelihood surface strictly convex. Here, we set pa-
rametersλ to maximize the penalized log-likelihood using
Limited-memory BFGS [22], a quasi-Newton method that is
significantly more efficient, and which results in only minor
changes in accuracy due to changes inλ.
When applying CRFs to the event extraction problem, an
observation sequence is a token of a sentence or document
of text and the state sequence is its corresponding label
sequence. In general, CRFs can take any value between
−∞, . . . + ∞, although binary values are traditional. A fea-
ture functionfk(st−1, st, o, t) has a value of 0 for most cases
and is only set to 1, whenst−1, st are certain states and the
observation has certain properties. We have used the C++

based CRF++ package7, a simple, customizable, and open
source implementation of CRF for segmenting or labeling
sequential data.

IV. Weighted Vote Based Classifier Ensemble
Problem Formulation [10]

Suppose, theN number of available classifiers be denoted
by C1, . . . , CN . Let,A = {Ci : i = 1; N}. Suppose, there
are M output classes. The weighted vote based classifier
ensemble problem is then stated as follows:
Find the weights of votesV per classifier which will optimize
some functionF (V ). Here,V is an real array of sizeN×M .
V (i, j) denotes the weight of vote of theith classifier for the
jth class. More weight is assigned for that particular class
for which the classifier is more confident; whereas the output
classes for which the classifier is less confident are given less
weight. V (i, j) ∈ [0, 1] denotes the degree of confidence of
the ith classifier for thejth class. These weights are used

7http://crfpp.sourceforge.net

Figure. 1: Chromosome Representation

Begin
1. t = 0
2. initialize populationP (t) /* Popsize = |P | */
3. for i = 1 to Popsize

compute fitnessP (t)
4. t = t + 1
5. if termination criterion achieved go to step 10
6. select (P )
7. crossover (P )
8. mutate (P )
9. go to step 3
10. output best chromosome and stop

End

Figure. 2: Basic Steps of GA

while combining the outputs of classifiers using weighted
voting. Here,Fis are some classification quality measures of
the combined weighted vote based classifier. The particular
type of problem like NERC has mainly three different kinds
of classification quality measures, namely recall, precision
and F-measure. Thus,F ∈ {recall, precision, F-measure}.
The weighted vote based classifier ensemble problem can
be formulated under the single objective optimization (SOO)
framework is as below: For each classifier, find the weights
of votes V per classifier such that,maximize [F (V )],
where F ∈ {recall, precision, F-measure}. We choose
F = F-measure, which is the harmonic mean of recall and
precision both.

V. GA Based Classifier Ensemble Technique

In this section, we describe the single objective optimization
(SOO) based classifier ensemble approach [10]. It identi-
fies the events from the biomedical texts and classifies them
into nine different categories, namelygene expression, tran-
scription, protein catabolism, phosphorylation, localization,
binding, regulation, positive regulationandnegative regula-
tion. Other than these entities are classified as ”Other-than-
events”, denoted by O. The used ensemble approach is based
on GA [11] that closely follows those of the steps as shown
in Figure 2.

A. String Representation and Population Initialization

Suppose, there areN available classifiers andO output
classes. Then, the length of the chromosome isN × O.
Each chromosome encodes the weights of votes for possi-
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bleO output classes8 for each classifier. As an example, the
encoding of a particular chromosome is represented in Fig-
ure 1, whereN = 3 andO = 3 (i.e., total 9 votes can be
possible). The chromosome represents the following ensem-
ble:
The weights of votes for 3 different output classes in classi-
fier 1 are 0.59, 0.12 and 0.56, respectively. Similarly, weights
of votes for 3 different output classes are 0.09, 0.91 and 0.02,
respectively in classifier 2 and 0.76, 0.5 and 0.21, respec-
tively in classifier 3.
We use real encoding that randomly initializes the entries of
each chromosome by a real value (r) between 0 and 1. Here,
r is an uniformly distributed random number between 0 and
1. If the population size isP then all theP number of chro-
mosomes of this population are initialized in the above way.

B. Fitness Computation

Initially, the F-measure values of all the classifiers are calcu-
lated using 5-fold cross validation on the available training
data. Each of these classifiers is built using various repre-
sentations of the available features and/or feature templates.
Thereafter, we execute the following steps to compute the
fitness value of each chromosome.

1. Let, the overall F-measure values of theN number of
classifiers beFi, i = 1 . . .N .

2. Initially, the training data is divided equally into 5 parts.
Each classifier is trained using 4/5 portions of the train-
ing data and evaluated with the remaining 1/5 part (i.e.,
test dataset). Now, for the ensemble classifier the out-
put class for each token in the 1/5 training data is deter-
mined using the weighted voting of theseN classifiers’
outputs. The weight of the output class provided by the
mth classifier is equal toI(m, i) × Fm. Here,I(m, i)
is the entry of the chromosome corresponding tomth

classifier andith output class. The combined score of a
particular classci for a particular tokent is:

f(ci) =
∑

I(m, i) × Fm,

∀m = 1 : N & op(t, m) = ci

Here,op(t, m) denotes the output class provided by the
mth classifier for the tokent.

The class receiving the maximum combined score is se-
lected as the joint decision. Note that in case differ-
ent boundaries are outputted by the distinct classifiers,
the final output is decided by the maximum combined
score.

3. The overall F-measure value of the ensemble for the 1/5
training data (i.e., test data) is calculated.

4. Steps 2 and 3 are repeated 5 times to perform 5-fold
cross validation.

5. The average F-measure value of this 5-fold cross vali-
dation is used as the fitness value of the particular chro-
mosome. This fitness function,fit = F-measureavg is
maximized using the search capability of GA.

8We also treat the beginning and internals (denoted by BIO labeling
scheme) of a multiword NE as the separate classes

C. Selection and Crossover

Roulette wheel selection is used to implement the propor-
tional selection strategy. We use the normal single point
crossover [23]. As an example, let the two chromosomes
be :
P1: 0.24 0.16 0.54 0.87 0.66 0.76 0.01 0.88 0.21
P2: 0.12 0.09 0.89 0.71 0.65 0.82 0.69 0.43 0.15
At first a crossover point has to be selected uniformly ran-
dom between 1 to 9 (length of the chromosome) by generat-
ing some random number between 1 and 9. Let the crossover
point, here, be 4. Then after crossover, the offsprings are:
O1: 0.24 0.16 0.54 0.87 0.65 0.82 0.69 0.43 0.15 (taking the
first 4 positions fromP1 and rest fromP2)
O2: 0.12 0.09 0.89 0.71 0.66 0.76 0.01 0.88 0.21 (taking the
first 4 positions fromP1 and rest fromP2)
Crossover probability is selected adaptively as in [24]. The
expressions for crossover probabilities are computed as fol-
lows:
Let fmax be the maximum fitness value of the current pop-
ulation,f be the average fitness value of the population and
f

′

be the larger of the fitness values of the solutions to be
crossed. Then the probability of crossover,µc, is calculated
as:

µc =

{

k1 ×
(fmax−f

′
)

(fmax−f)
if f

′

> f

k3 otherwise

Here, as in [24], the values ofk1 andk3 are kept equal to
1.0. Note that, whenfmax=f , thenf

′

= fmax andµc will
be equal tok3. The aim behind this adaptation is to achieve a
trade-off between exploration and exploitation in a different
manner. The value ofµc is increased when the better of the
two chromosomes to be crossed is itself quite poor. In con-
trast, when it is a good solution,µc is low so as to reduce the
likelihood of disrupting a good solution by crossover.

D. Mutation

Each chromosome undergoes mutation with a probability
µm. The mutation probability is also selected adaptively for
each chromosome as in [24]. The expression for mutation
probability,µm, is given below:

µm =

{

k2 ×
(fmax−f)

(fmax−f)
if f > f

k4 otherwise

Here, values ofk2 andk4 are kept equal to 0.5. This adaptive
mutation helps GA to come out of local optimum. When GA
converges to a local optimum, i.e. whenfmax − f decreases,
µc andµm both will be increased. As a result the GA may
come out of this. It will also happen for the global optimum
and may result in disruption of the near-optimal solutions.
As a result, GA will never converge to the global optimum.
The µc andµm will get lower values for high fitness solu-
tions and get higher values for low fitness solutions. While
the high fitness solutions aid in the convergence of GA, the
low fitness solutions prevent the GA from getting stuck at a
local optimum. The use of elitism will also keep the best so-
lution intact. For a solution with the maximum fitness value,
µc andµm are both zero. The best solution in a population
is transferred undisrupted into the next generation. Together
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with the selection mechanism, this may lead to an exponen-
tial growth of the solution in the population and may cause
premature convergence.
Here, each position in a chromosome is mutated with prob-
ability µm in the following way. The value is replaced
with a random variable drawn from a Laplacian distribution,

p(ǫ) ∝ e−
|ǫ−µ|

δ , where the scaling factorδ sets the magnitude
of perturbation. Here,µ is the value at the position which is
to be perturbed. The scaling factorδ is chosen equal to0.1.
The old value at the position is replaced with the newly gen-
erated value. By generating a random variable using Lapla-
cian distribution, there is a non-zero probability of generating
any valid position from any other valid position while prob-
ability of generating a value near the old value is more.

E. Termination Condition

In this approach, the processes of fitness computation, selec-
tion, crossover, and mutation are executed for a maximum
number of generations. The best string seen up to the last
generation provides the solution to the above classifier en-
semble problem. Elitism is implemented at each generation
by preserving the best string seen up to that generation in
a location outside the population. Thus on termination, this
location contains the best classifier ensemble.

VI. Features for Event Extraction

We identify and use the following set of features for event ex-
traction. All these features are automatically extracted from
the training datasets without using any additional domain de-
pendent resources and/or tools.

1. Context words: We use preceding and succeeding few
words as the features. This feature is used with the ob-
servation that contextual information plays an important
role in identification of event triggers.

2. Root words: Stems of the current and/or the surround-
ing token(s) are used as the features of the event extrac-
tion module. Stems of the words were provided with the
evaluation datasets of training, development and test.

3. Part-of-Speech (PoS) information: PoS information
of the current and/or the surrounding tokens(s) are ef-
fective for event trigger identification. PoS labels of
the tokens were provided by the organizers with the
datasets.

4. Named Entity (NE) information : NE information of
the current and/or surrounding token(s) are used as the
features. NE information was provided with the shared
task datasets.

5. Semantic feature: This feature is semantically moti-
vated and exploits global context information. This is
based on the content words in the surrounding con-
text. We consider all unigrams in contextswi+3

i−3 =
wi−3 . . . wi+3 of wi (crossing sentence boundaries) for
the entire training data. We convert tokens to lower
case, remove stopwords, numbers, punctuation and spe-
cial symbols. We define a feature vector of length 10

using the 10 most frequent content words. Given a clas-
sification instance, the feature corresponding to tokent

is set to 1 if and only if the contextwi+3
i−3 of wi con-

tainst. Evaluation results show that this feature is very
effective to improve the performance by a great margin.

6. Dependency features: A dependency parse tree cap-
tures the semantic predicate-argument dependencies
among the words of a sentence. Dependency paths be-
tween protein pairs have successfully been used to iden-
tify protein interactions. In this work, we use the depen-
dency paths to extract events. We use the McClosky-
Charniak parses which are converted to the Stanford
Typed Dependencies format and provided to the partic-
ipants by the shared task organizers. We define a num-
ber of features based on the dependency labels of the
tokens.

7. Dependency path from the nearest protein: Depen-
dency relations of the path from the nearest protein are
used as the features. Let us consider a path from “phos-
phorylation” to “CD40” be “nsubj inhibits acomp bind-
ing prep to domain num”. Due to the large number of
possible words, use of these words on the paths may
lead to data sparsity problems, and in turn to poor gen-
eralization. Suppose we have a sentence with similar
semantics, where the synonym word “prevents” is used
instead of “inhibits”. If we use the words on the path
to represent the path feature, we end up with two differ-
ent paths for the two sentences that have similar seman-
tics. Therefore, in this work we use only the dependency
relation types among the words to represent the paths.
For example, the path feature extracted for the (phos-
phorylation, CD40) negative trigger/participant pair is
“nsubj acomp prep to num” and the path feature ex-
tracted for the (phosphorylation, TRAF2) positive trig-
ger/participant pair is “prep of”.

8. Boolean valued features: Two boolean-valued features
are defined using the dependency path information. The
first feature checks whether the current token’s child is
a proposition and the chunk of the child includes a pro-
tein. The second feature fires if and only if the cur-
rent token’s child is a protein and its dependency label
is OBJ

9. Shortest path: Distance of the nearest protein from the
current token is used as the feature. This is an integer-
valued feature that takes the value equal to the number
of tokens between the current token and the nearest pro-
tein.

10. Word prefix and suffix : Fixed length (say, n) word suf-
fixes and prefixes may be helpful to detect event trig-
gers from the text. Actually, these are the fixed length
character strings stripped either from the rightmost (for
suffix) or from the leftmost (for prefix) positions of the
words. If the length of the corresponding word is less
than or equal to n-1 then the feature values are not de-
fined and denoted by ND. The feature value is also not
defined (ND) if the token itself is a punctuation sym-
bol or contains any special symbol or digit. This feature
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is included with the observation that event triggers share
some common suffixes and/or prefixes. In this work, we
consider the prefixes and suffixes of length up to four
characters.

11. Named Entities in Context: We calculate the frequen-
cies of NEs within the various contexts of a sentence.
This feature has been defined with the observation that
NEs appear most of the times near to the event triggers.
Let us suppose thatw is the current token and L is the
size of the sentence in terms of the number of words.
We consider various contexts as: context-size= L/K,
where K: 1 to 5. Now, consideringw as centre we define
a context window as: context-window-size=2*context-
size+1. When the size exceeds the length of the sen-
tence, we added some slots and fill it by the class labels
“Other-than-NEs” (denoted by O). For wordw, a fea-
ture vector of length 5 is defined. Depending upon the
value of K, the corresponding feature fires. The value
is set equal to the number of NEs within the contexts of
“context-window-size”. For example, for K=1, the en-
tire sentence is considered (i.e., context-size=L). For the
first word of the sentence, the context window is equal
to more than twice (i.e., 2*context-size+1) of the sen-
tence length. For K=2, the context-size is half of the
sentence length. Again, centering the wordw we de-
fine a context of double length by filling the preceding
empty slots with O. The feature value is equal to the
number of NEs within this window.

VII. Datasets and Experimental Results

In this section we describe datasets used in our task and the
experimental results.

A. Datasets

We use the BioNLP-09 shared task datasets. The events were
selected from the GENIA ontology based on their signifi-
cance and the amount of annotated instances in the GENIA

corpus. The selected event types all concern protein biology,
implying that they take proteins as their theme. The first three
event types concern protein metabolism that actually repre-
sents protein production and breakdown.Phosphorylation
represents protein modification event whereaslocalization
andbindingdenote fundamental molecular events.Regula-
tion and its sub-types,positiveandnegativeregulations are
representative of regulatory events and causal relations.The
last five event types are universal but frequently occur on pro-
teins. Detailed biological interpretations of the event types
can be found in Gene Ontology (GO) and the GENIA on-
tology. From a computational point of view, the event types
represent different levels of complexity.
Training and development datasets were derived from the
publicly available event corpus [25]. The test set was ob-
tained from an unpublished portion of the corpus. But gold
annotations are not available for BioNLP 2009 shared task
test dataset. We present some statistics of the datasets in Ta-
ble 1. The shared task organizers made some changes to the
original GENIA event corpus. Irrelevant annotations were
removed, and some new types of annotation were added to
make the event annotation more appropriate. Due to the non-
availability of gold annotations in the BioNLP 2009 shared
task test datasets, we have reported results on development
data and 3-fold cross validation on training data.

B. Experimental Results

We use SVM and CRF for training and testing. In order
to properly denote the boundaries of events triggers we use
standard IOB notation, where the beginning of a multiword
event is tagged as B-Event and the rest of tokens are anno-
tated as I-Event. For example,interacting receptor-ligand
pair is annotated asinteracting/B-Event receptor-ligand/I-
Eventpair/I-Event in the two-phase approach. The single
word token is annotated with B-Event class. For example,
TRAF2 is a . . . which binds/B-Eventto the CD40 cytoplas-
mic domain.
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Table 1: Statistics of the datasets
Dataset #abstracts #sentences #words #events
Training 800 7,449 176,146 8,597
Development 150 1,450 33,937 1,809
Test 260 2,447 57,367 3,182

The system is tuned on the development data, and the results
are reported using 3-fold cross validation9. The system is
evaluated with the standard recall, precision and F-measure
metrics. The definitions of recall and precision are given be-
low:

recall=
# Events correctly identified by the system

# Events in the data set
(6)

precision=
# Events correctly identified by the system

# Events identified by the system
(7)

From the definitions, it is clear that these two capture two
different classification qualities.
The value of the metric F-measure, which is the weighted
harmonic mean of recall and precision, is calculated as be-
low:

Fβ =
(1 + β2)(recall + precision)

β2 × precision + recall
, β = 1

We followed the strict matching criterion, i.e. credit is given
if and only if the event types are the same and the event trig-
gers are the same.
A number of CRF and SVM models are generated by varying
the available features and/or feature templates.
Evaluation results on the development set showed that the
highest performing SVM based model attained the recall,
precision and F-measure values of 52.66%, 50.87%, and
51.75%, respectively. Detailed results for individual classes
for this classifier are shown in Table 2. Results suggest
that apart from the context words, integrating other features
within a larger context sometimes decreases the overall per-
formance.
After tuning the system on the development set, we perform
3-fold cross validation on training data to report the final re-
sults. Initially, the training dataset is randomly splitted into
nearly three equal subsets. Two subsets are used for training
and the remaining one subset is withheld for testing. This
process is repeated three times to perform 3-fold cross vali-
dation.
Evaluation results of 3-fold cross validation for event de-
tection by the best SVM based classifier shows the overall
average recall, precision and F-measure values of 57.66%,
55.87%, and 56.75% , respectively.
Results indicate thatgene expression, protein catabolism, lo-
calization, phosphorylationand transcriptionare relatively
easier for both identification and/or classification. In con-
trast, regulatory events, i.e.regulation, positive regulation
andnegative regulationare difficult to identify and/or clas-
sify. This proves the importance of proper feature selection
for event identification and classification both.
A number of CRF models are also generated by varying the
available features and/or feature templates. Evaluation re-
sults on the development set showed the highest performance

9It is to be noted that due to the unavailability of gold-standard annota-
tions we were unable to evaluate the system with the test dataset

with the recall, precision and F-measure values of 50.52%,
48.41%, and 49.54%, respectively. The detailed results of
this classifier for each individual output classes are shownin
Table 3.
Thereafter, results are reported for 3-fold cross validation on
training data. The best CRF based model exhibits the aver-
age recall, precision and F-measure values 59.92%, 54.52%
and 56.94%, respectively. Results also indicate thatgene ex-
pression, protein catabolism, localization, phosphorylation
andtranscriptionare relatively easier for both identification
and/or classification. In contrast, regulatory events, i.e. reg-
ulation, positive regulationandnegative regulationare diffi-
cult to identify and/or classify. This proves the importance
of proper feature selection for event identification and classi-
fication both.
Finally we apply GA based ensembling technique for com-
bining the outputs of several CRF and SVM based classifiers.
Results are reported in Table 4 for development data and in
Table 5 for 3-fold cross validation on training data. For de-
velopment data, our approach achieves an improvement of
0.75% F-measure values over the best individual classifier.
In case of 3 fold cross validation on the training data, GA
based classifier ensemble technique attains the improvements
of 1.69% F-measure over the best individual classifier. Re-
sults show the superiority of the GA based approach.

VIII. Conclusion and Future Works

In this paper at first we have proposed two supervised ma-
chine learning approaches for biological event extractionthat
involves identification of complex bio-molecular events and
classification of them into the predefined nine classes. We
have used CRF and SVM those exploit various statistical and
linguistic features in the forms of morphological, syntactic
and contextual information of the candidate bio-molecular
trigger words. We treated event extraction problem as one-
step process, and performed event detection and classifica-
tion together. Three-fold cross validation experiments on
the BioNLP 2009 shared task datasets yield the good per-
formance in all our settings. Finally outputs of all these clas-
sifiers are combined together using a genetic algorithm based
ensemble technique.
Overall evaluation results suggest that there is still the room
for further improvement. In this work, we have used a quite
similar set of features for event identification and classifica-
tion both. In our future work, we would like to investigate
distinct and more effective set of features for event iden-
tification and classification each. We would like to come
up with an appropriate feature selection algorithm. In this
work, we emphasized on event identification and classifica-
tion. In our future work, we would like to identify arguments
to these events. Argument identification is a more difficult
task that requires more sophisticated features and/or classifi-
cation methods. We also would like to try with other classi-
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Table 2: Results on development data for event detection and classification (we report percentages) by SVM based approach
Event type recall Precision F-measure
Geneexpression 77.52 52.71 62.98
Transcription 45.79 43.27 44.50
Proteincatabolism 63.61 62.71 63.18
Localization 52.20 58.89 55.38
Binding 53.14 42.52 47.29
Phosphorylation 79.87 68.41 73.66
Regulation 40.95 33.47 36.84
Positiveregulation 42.91 34.67 38.39
Negativeregulation 52.25 39.58 45.07
Overall 52.66 50.87 51.75

Table 3: Results for event detection and classification (in %) for CRF based approach on development data
Event type recall precision F-measure
Geneexpression 77.12 52.64 62.58
Transcription 45.59 43.11 44.31
Proteincatabolism 63.51 62.68 63.09
Localization 52.10 58.83 55.26
Binding 53.04 42.49 47.18
Phosphorylation 79.67 68.34 73.57
Regulation 40.85 33.39 36.75
Positiveregulation 42.78 34.62 38.27
Negativeregulation 52.17 39.54 44.98
Overall 50.52 48.41 49.54

Table 4: Detailed Evaluation results of different approaches on development data (we report percentages)
Approach recall precision F-measure
Best CRF based approach 50.52 48.41 49.54
Best SVM based approach 52.66 50.87 51.75
GA based ensemble 53.56 51.47 52.50

Table 5: Detailed Evaluation results of different approaches on 3 fold cross validation on training data (we report percentages)
Approach recall precision F-measure
Best CRF based approach 59.92 54.52 56.94
Best SVM based approach 57.66 55.87 56.75
GA based ensemble 60.56 56.47 58.44
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fication techniques, especially decision trees. In this paper,
we have used GA to optimize only one classification quality
measure, namely F-measure to determine the best classifier
ensemble. But, sometimes only a single measure may not al-
ways capture the quality of an ensemble reliably. For a good
ensemble, it may often be necessary to optimize more than
one classification quality measures simultaneously. Thus it
would be good to use multiobjective optimization (MOO)
techniques to solve the problem of classifier ensemble for
event classification and detection. Future works include the
development of novel classifier ensemble techniques using
MOO for solving the event detection problem from biomed-
ical texts.
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