International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 5 (2013) pp. 642-651
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Web Service Based Model for Inter-agent

Communication in Multi-Agent Systems:

A Case

Study

Sachini S. Weerawardhana' and Gaya B. Jayatilleke?

'Department of Computer Science and Engineering, University of Moratuwa,
Katubedda, Moratuwa, Sri Lanka
sachini.sw@uom.lk

2Department of Computer Science and Engineering, University of Moratuwa,
Katubedda, Moratuwa, Sri Lanka
buddhinath@ gmail.com

Abstract: Service oriented architecture (SOA) is a widely
used model for enterprise application integration, mainly due to
the presence of accepted standards and tools required to imple-
ment web services. While the service oriented architecture pro-
vides an elegant model for interoperability, it does not define a
computational model for building the endpoints of complex dis-
tributed services it exposes in a typical enterprise application.
On the other hand, software agent technology provides power-
ful models such as the Belief-Desire-Intention (BDI) model that
allows developers to build distributed systems with enhanced
reasoning capabilities. We propose a web services based com-
munication model for interagent communication allowing het-
erogeneous agents in a multi agent system to freely collaborate.
Although, several attempts have been made at integrating web
service and agent paradigms, the focus on such work has been
on implementing protocol translations from the agent environ-
ment to web services and vice versa. Our approach differs from
existing methods in that, we specifically focus on goal and belief
set sharing in BDI based agents. By providing a web services
based interface, we allow agents as well as non-agent based ser-
vices in a distributed system to yield the benefits of agent tech-
nology. In doing so, we prove that it is feasible for these two dif-
ferent technologies to complement each other in building scal-
able and highly adaptive distributed systems. Applicability of
this proposition is demonstrated by designing and implement-
ing a prototype multi-agent system for flood forecasting.

Keywords: BDI, Multi Agent Systems, Web Services, Agent
Oriented Software Engineering

1. Introduction

Modern day enterprise application integration relies heavily
on carefully choreographed composition of unique services.
Owing to the presence of standardized models, tools and
technologies, Service Oriented Architecture (SOA) has be-
come the de facto standard for implementing interoperable
distributed systems. As highlighted in [1], with the growth

of a business, the number of clients seeking a particular ser-
vice a business unit offers rises. This increases demands on
processing units such as servers providing a specific service,
leading to models of the nature of federated servers with
composite services where information from different sources
need to be pooled together.

Another inherent problem is the need for constant sys-
tem changes to cater to the emergent requirements. Soft-
ware Agents provide a model for building distributed systems
as autonomous entities that behave in reactive and proactive
manner in achieving the designated system goals. Agents
are able to collaborate, learn, reason, share their beliefs and
goals and work as a community. The challenge lies in embed-
ding these agent capabilities into web services so that more
“value added" web services can be developed. A common
feature in most of the prior attempts to enable sharing of
goals between agents is that they are tightly coupled with
the agent development platform. For example in[1], Bor-
dini et al. have implemented a system where Jason[2] agents
were enabled to communicate goals among one another us-
ing AgentSpeak(L). However, little emphasis has been put on
finding a methodology to do the same using technologies that
are more platform independent. The effort here is to address
this particular aspect with the use of web services technol-
ogy leading to communication across heterogeneous agent
systems. Further an integration of agent technology and web
services can help create, flexible, adaptive systems that can
easily absorb evolving user requirements.

Applications of multi-agent systems are diverse, rang-
ing from mobile applications, e-learning to knowledge based
systems. In [3], the authors present a mobile agent based
system, which provides the functionality of choosing a uni-
versity, according to a user specified criteria. The authors
have focused on minimizing the decision making tasks of the
human user, so as to arrive at a logical choice of a university,
based on fuzzy logic and heuristics quicker, easier and at a
reduced cost. Similarly, in [4] Stoyanov et al. have exper-

MIRLabs,USA

643

imented on service oriented, agent based middleware archi-
tecture, which could be used in providing mobile e-Learning
services. The authors present a case study, where the pro-
posed layered architecture is deployed in a university envi-
ronment, using the JADE agent platform. Similarly, SOA
too has proven its applicability in multiple domains. An at-
tempt in utilizing SOA in disaster recovery and emergency
response is described in [5]. Since it’s origin, SOA has
evolved from silos-like architectures to more collaborative,
dynamic systems, in which services communicate and share
data to gain competitive advantages particularly in business
domains [6]. A common feature in both agent based and
SOA applications is that they are distributed, launched on
multiple platforms, and need to evolve with changing re-
quirements. In our research, we investigate the possibility
of both these technologies to complement each other, when
used in a distributed, heterogenous environment.

We assess the extent to which prior attempts to integrate
web services with agent systems have been successful, by
drawing comparisons between each approach and discussing
the deficiencies present. We compare the work of Dickin-
son and Wooldrige in Nuin[7], JADE Web Services Inte-
gration Gateway (WSIG) [8], WS2JADE [9] and AgentWeb
Gateway[10]. A common property present in all these sys-
tems is that the architecture is designed to support protocol
translations between agents and web services. For example,
in WSIG, a key design pattern involves implementing one to
one mapping from agent communication language (ACL) to
communication protocol web services use (SOAP), to facili-
tate message transmission between an agent environment to
the web service environment. This requires the implemen-
tation of complex codecs, thus limiting the extendibility and
simplicity of the design. Our approach aims at finding an
alternative solution, which enables agents to communicate
their belief-sets and goals through a web service interface,
without the need for any encoding and decoding.

In [11] we look at how agent platforms built using the
Belief-Desire-Intention (BDI)[12] model can be integrated
via web services. Here we provide a more detailed account of
that work. We propose a template for representing a goal and
a publish-subscribe model for sharing goals across agents. In
section two we look at related work, specifically inter-agent
communication implementations of widely used BDI agent
platforms. We also look at work related to goal sharing in
agent systems. In section three we introduce the proposed
inter-agent communication model for goal sharing. In sec-
tion four we describe a case study that implements the pro-
posed model in a proof of concept multi-agent system with
heterogeneous agents. We also look at how the proposed
publish-subscribe model performs in scaling the system with
agents. We conclude and lists some of the future work in
section five.

II. Related Work

We analyze the inter-agent communication aspect under a
web service based model, so as to realize the feasibil-
ity of implementing a publish/subscribe[13] oriented agent-
communication platform. Existing BDI agent development
platforms provide inter-agent communication using a variety
of techniques. Here we look at the communication methods

Weerawardhana and Jayatilleke

available in three widely used BDI platforms, namely Jason
[2], JACK [14], and Jadex [15].

A. Inter-agent Communication in Jason

Jason is a Java based interpreter for AgentSpeak(L)[1],

which makes use of speech-act based inter-agent communi-

cation. In AgentSpeak(L), a message received by one agent

from another typically has the following general structure:
<sender, illocutionary_force, content>

Here, the illocutionary_force is also referred to as
the performative and can be one of .tell, .untell,
.achieve, .unachieve, .askOne, .askAall,
.tellHow, .untellHow, and .askHow. When this
performative is received, the agent’s reasoning cycle in
Jason will interpret the message and act accordingly [2]. In
the Jason API a default method(internal action) .send is
available to send messages to other agents. The syntax to
this internal action is as:

.send (recipient, illocutionary_force,

propositional_content)

SACI (Simple Agent Communication Infrastructure) [16]
is a built-in component of the Jason platform that facilitates
inter-agent communication between Jason agents distributed
over a network. SACI uses Java RMI (Remote Method Invo-
cation) to communicate between physically distributed Jason
agents.

B. Inter-agent Communication in JACK

JACK is a commercially available agent development plat-
form that extends Java to support Agent Oriented program-
ming. JACK allows developers to defined goals (events)
and plans providing a BDI style reasoning cycle within each
agent. In local communication, agent-agent messages are
sent directly with the directive #sends or @send statement
within a reasoning method inside a plan, with the recipient
agent’s name as a parameter. Similar to Jason, JACK treats
message sending and receipt as events. The JACK communi-
cations layer known as the DCI network needs to be used to
allow inter-agent communication. The DCI network is lay-
ered in such a way that different underlying transport mecha-
nisms can be accommodated, leaving the developer free of
implementation details related to network communication.
Extensions or changes to the architecture can be provided
via new plug-ins. New communication infrastructures can
be attached by overriding the appropriate run time methods.

C. Inter-agent Communication in Jadex

Jadex achieves FIPA-compliancy[17] in way of being based
on the JADE Agent Framework. JADE provides the plat-
form architecture and the core services and message transport
mechanisms as required by the FIPA specifications. In Jadex
framework, plans are represented as Java classes, which ex-
tends abstract classes providing useful generic functions like
sending messages, dispatching sub-goals, reading and alter-
ing beliefs. Agents are defined using XML based agent def-
inition file(ADF), which specifies the initial goals, plans and
beliefs of the agent. Inter-agent communication in Jadex is
achieved through asynchronous message event passing. Mes-
sage events in Jadex have dedicated message types which

Web Service Based Model for Inter-agent Communication in Multi-Agent Systems: A Case Study 644

constrain the allowed parameters and parameter types of the
message event. Furthermore, Jadex supports all FIPA mes-
sage types (equipped with FIPA parameters such as sender,
receiver, performative, content)

D. Agent-Web Service Integration Attempts
Nuin

Nuin [18] is an open source Java framework for build-
ing BDI agents with special emphasis on building seman-
tic web agents. An attempt to facilitate knowledge shar-
ing among agents is made by encoding meta-knowledge and
adding them to the agent’s knowledge base using RDF/OWL.
Specifics regarding the implementation of knowledge shar-
ing is still an unmet requirement in the Nuin platform.

JADE Web Services Integration Gateway

JADE Web Services Integration Gateway (WSIG) [8] from
Whitestein Technologies AG Switzerland, is a standalone
intermediary gateway service that offers transparent, bi-
directional transformations between FIPA compliant agent
services and web services. They have used a non-BDI plat-
form JADE to host agents. The web services employ the
WSDL/SOAP/UDDI stack. The gateway intercepts calls
from agents to web services and web service clients to agent
services and does the relevant conversions from one language
to the other. Codecs are used to do the translations: e.g.
WSDL to ACL and vice versa.

WS2JADE: Web Service Integration with Jade Agents

WS2JADE [9] is a similar approach in achieving the same
objectives as in JADE WSIG. WS2JADE uses a layered ap-
proach to connect JADE agent components with web ser-
vices. There are two distinct layers in WS2JADE: intercon-
necting layer, containing entities that connect the web ser-
vices and agents together, and also the management layer that
manages the entities that are involved in connecting agents
and web services. The architecture uses a special type of
agents called Web Service Agents (WSAG), who are capable
of communicating with and offering web services as their
own services. The ontology generator is responsible for on-
tology generation and management. It translates data and its
structure from Web service WSDL interfaces into meaning-
ful information for Agents. To translate web service transport
messages (commonly SOAP) into agent ACL messages the
Agents communicate with, the SOAP envelope is first pro-
jected into Java languages and then into ACL.

AgentWeb Gateway

The key feature of the AgentWeb gateway [10] is approach
is that it enables integration of software agents and web ser-
vices without changing their existing specifications at the
cost of time taken for translations, which is negligible as
compared to a transaction. The middleware lies between
the two platforms; agents and web services. It has compo-
nents to do the necessary translations between the service
registries (Search Query Converter), service description lan-
guages (Service Description Converter) and communication
protocols (Communication Protocol Converter).

A noticeable similarity in all these implementations is the
use of an intermediate middleware (codec) to map agent level
protocols to web service level protocols, one-to-one. This
rigidity prevents architectures using such approaches to adapt
to different use cases. Our approach differs from these meth-
ods, in that we extend the agent’s internal abilities to be able
to generate the messages that can be used to communicate
with other agents through a web service interface.

E. Goal Sharing of Agents

Representation of goals and the ability to reason about them
is the feature that makes agent-oriented software engineer-
ing a powerful tool in building autonomous, intelligent sys-
tems. Goals have two aspects: a description of the state, and
a set of plans for achieving the goal as a procedure. The
former is necessary in order to reason about important prop-
erties of goals, and the latter is necessary to ensure that goals
can be achieved efficiently in dynamic environments. Goals
determine the course of actions an agent can take within its
operating surroundings. Goal sharing enables the agents to
work inter-dependently empowering them to complete ac-
tions which may seem impossible otherwise. In a goal shar-
ing enabled environment, losing one agent in the community
does not result in the overall system functionality coming to a
halt. Remaining agents can communicate among themselves
and act accordingly to minimize the impact of losing a cer-
tain set of capabilities. Moreover, agents will have the ability
to locate methods to achieve goals (also known as plans) that
can complete a certain activity more effectively than what
is defined in its local plan set. Agents from different im-
plementation specifications can work together in the same
multi-agent system, thus allowing the system to benefit from
advantages each specification provides.

Several approaches have been developed for goal-oriented
multi agent systems. In [19] Michael Winikoff et al. has
proposed a theoretical framework for goals which integrate
both procedural and declarative aspects. Their aim is to al-
low agent development platforms to reduce the gap between
agent theories and actual implementations of agent based
systems. Following this, PRACTITIONIST [20], a frame-
work that adopts a goal-oriented approach to develop BDI
agents and stresses the separation between deliberation pro-
cess and the means-ends reasoning was proposed. PRAC-
TITIONIST agents can be programmed in terms of goals,
which then will be related to either desires or intentions ac-
cording to whether some specific conditions are satisfied or
not. PRACTITIONIST agents also have the capability of de-
tecting and rectifying conflicts among agents’ activities and
objectives.

However, the work that has been done thus far is highly
dependant on the agent implementation platforms. For exam-
ple, in [20] the implementation is based on Jason agent devel-
opment platform. Popular agent development platforms such
as JACK [14] and Jadex [15] already support goal-oriented
agent development. Coo-BDI [21], extends the BDI archi-
tecture allowing agents to cooperate via plan exchange in
cases which no applicable plans are available for managing
an event. The proposed extension facilitates adaptability of
agents by sharing resources among other agents. Yet, there
is the need to come up with a mechanism do enable goal

645

sharing using a platform independent method such as web
services technology.

We introduce an inter-agent communication methodol-
ogy using a message broker service [22] as the communi-
cation model. We extend Jason agents’ functionality to en-
able sharing of goals between other Jason agents using the
proposed model. Our implementation uses mainstream tech-
nologies built on top of Apache Axis2[23] and communicates
with agents using XML messages. We further explore the
ability of this proposed communication platform to incorpo-
rate the message transportation mechanism for JACK intel-
ligent agents, to prove that the said message communication
methodology is independent of agent implementation plat-
form. Following sections describe the proposed method and
a proof of concept implementation.

ITI. Open Inter-agent Communication

A. Publish-Subscribe Architecture

Publish-subscribe (pub/sub) messaging architecture [13] is
a commonly used inter-process communication paradigm,
which enables end processes to communicate with one an-
other using topic based, content based or type based sub-
scriptions. Topic based subscription was the earliest notion
of grouping messages in pub/sub systems. Here events are
classified based on a keyword. For instance if publisher P
transmits a message under topic T, the message is broadcast
to all recipients who are subscribed to topic T.

In designing a pub/sub messaging architecture the ini-
tial step is to determine the content of the messages and the
publish subscribe methodology (type based, content based
or topic based) that would interest the communication end-
points of the system. Next, based on the topology integra-
tion, message delivery can occur via a message broker, a
bus interface or point-to-point integration. In message bro-
ker variation, which we use in our implementation, messages
exchanged among publishers and subscribers transit via a
broker, who maintains subscription lists. Message recipients
subscribe to these subscription lists in order to receive mes-
sages from the broker.

Here, we draw a comparison between agent architectures
and the pub/sub based systems, i.e. the event driven model.
Similar to pub/sub systems, multi-agent systems too can re-
spond to events such as message receipt, and external events
received as perceptions. Thus we anticipate a possibility of
capitalizing on this similarity, by formulating a communica-
tion link between the messaging system and the multi-agent
system with the objective of achieving goal sharing.

B. Proposed System Architecture

Based on the improvements made to WS-Messenger in [24]
we opted to use the pub/sub messaging system OGCE WS-
Messenger [22] in implementing the proposed inter-agent
communication infrastructure. WS-Messenger provides ba-
sic pub/sub functions as specified by WS-Eventing [25] and
WS-Notification [26] specifications. It also includes mes-
sage mediation facilitated by a message broker. The broker
is responsible for message routing between subscribers and
publishers, based on their subscription specifications. WS-

Weerawardhana and Jayatilleke

Messenger consists of a subscriber, a NotificationConsumer
Web service interface, a publisher, NotificationProducer Web
service interface, Notification broker, an underlying messag-
ing system, and XPath based message filtering. OGCE Mes-
senger is a free and open source messaging library imple-
mented on top of Apache Axis2 stack.

1) Message Structure Design

The primary task in establishing proper communication
among agents is to identify the structure of the message that
will be sent to and received by agents. The proposed multi
agent system will demonstrate communication of beliefs and
goals of agents. Since the purpose of each of these agent con-
structs are different, we designed two different XML mes-
sage structures for goal communication and belief communi-
cation.

Belief Message

Beliefs of agents vary according to the system they try to
model. Since the proposed case study models a flood fore-
casting system, we decided to encode the required measure-
ments in a message structure as a simple XML message with
the tags, Observation - representing the weather parameter
measurement, e.g. rainfall and river water level, Location -
stating where the reading was recorded from, e.g. Colombo,
Keliniya, Unit - representing the measurement unit that quan-
tifies the reading, e.g. millimeters, Value - representing the
numeric figure of the measurement, and Time specifying the
date and the time that a particular reading was made.

XML based messaging structure facilitated by OGCE
message broker allows different belief representations be
communicated with ease. The key is to identify what infor-
mation the agents wish to communicate as beliefs and de-
signing a message structure that properly encapsulates the
information.

Goal Message

<agentinteraction>
<goal>
<type></type>
<label></label>
<parameters></parameters>
</goal>

<topics>
<publishtopic></publishtopic>

<responsetopic></responsetopic>

</topics>
</agentinteraction>

Above is the XML message structure we designed to be used
as the message transport unit, that would communicate infor-
mation about a goal to another agent. By studying the agent
concepts represented in both JACK and Jason, we have iden-
tified similar properties which we can use to describe a goal.
JACK provides programming constructs to implement test,
achieve, maintain and insist goal types, while Jason supports
test and achieve goals. A label is the name used to iden-
tify a goal. We assume the recipient agent already possesses

Web Service Based Model for Inter-agent Communication in Multi-Agent Systems: A Case Study 646

a plan to achieve the goal specified by the sender. The mes-
sage receipt is the event that triggers a goal. Parameter
tags are used to feed data required by the goal to execute
the plan it is associated with. PublishTopic tag is used
to create separate channels in a pub/sub messaging architec-
ture. ResponseTopic tag is used when a certain message
received at a recipient requires a reply back to the sender.
That particular response can be sent using this field back to
the source.

2) Broker Integration

For the implementation of the pub/sub based messaging sys-
tem peered by agents we only make use of the eventing ser-
vice. Goal and belief sharing occur under a publish subscribe
scheme. Eventing service exposes broker related services
open like publish, subscribe, renew, unsubscribe.

The extendibility of Jason makes it highly customiz-
able according to different requirements of different
multi-agent systems. New functionality can be added
to the system by way of internal actions. New in-
ternal actions can be created by extending the class
DefaultInternalAction and overriding the method
execute. In this experiment, since we need to devi-
ate from the existing inter-agent communication method
.send (recipient, illocutionary_force,
propositional_content) we use classes that are
extended from the class DefaultInteralAction to
send and receive messages via OGCE Message Broker. Fur-
thermore, message broker integration with agents, message
definitions, reading configuration definitions by agents are
also done the same way.

JACK Agent Language provides templates for class level
constructs. By extending these templates user can implement
new features for JACK agents. Here, we extended the tem-
plate Agent to define a new JACK agent type, which can
communicate with the OGCE message broker. This tem-
plate can be used to add new methods required to publish
and/or subscribe into channels. In order to handle messages
received from the broker, we further created a new plan for
the JACK agent by extending the class template P1an.

Rainfall Sensor River Height Temperature Sensor
Agent Measurement Agent Agent
o ¥ Publish River _ - Publish
Publish Rainfall ~~ | Height Data L 7 Temperature
Data N - Data
O Topic 3
) Subscription Topic 2
Topic 4 Service. Subscription
_O. _ Q) service

Publish? - =TTl ~o

Mertg (--2---—~ AETURR
Forecasting Agent Logger Agent

Figure. 1: Multi Agent System in a Pub/Sub Environment

Figure 1 illustrates the broker integrated system architec-
ture. We exploit the concurrency feature present in both BDI
agents as well as the OGCE messaging system. In that, we
design the agents so that they can communicate with the mes-
sage broker, as well as continue with their decision making
activities at the same time. Further the Pub/sub messaging
system is inherently asynchronous. Agents can acquire new

functionality and/or knowledge without having to be con-
cerned about how to communicate them to other agents. The
message broker also can separately evolve in its design to
handle multiple agents or agent systems, or in its internal
system design.

IV. Case Study and Observations

A. The Background

As a proof of concept of the proposed goal and belief shar-
ing model for BDI agents, we designed and implemented an
agent based flood forecasting system. This agent based appli-
cation models the flood forecasting process that is currently
being used in Sri Lanka. We believe that this study would
provide the expected motivation in the direction of improv-
ing the manual processes that are heavily being used in flood
forecasting in Sri Lanka today.

The Hydrology Division of the Department of Irrigation
in Sri Lanka is responsible for monitoring, collecting, pro-
cessing, storing, dissemination of hydrological data and ac-
tivating the flood warning system for major rivers. Kelani
river, as at today is monitored by a flood forecasting system
involving a lot of manual data reporting and recording pro-
cedures. Although, efforts have been made to automate this
process, with the adoption of systems such as MIKE II [27],
significant progress is yet to be reported.

Flood forecasting in Sri Lanka is done primarily based
on two measurements; rainfall and runoff. Runoff mea-
surements are taken only at rivers which have the tendency
to overflow. As far as the country’s commercial capital
Colombo is concerned, flood threats occur mainly due to
Kelani river, which is also one of the two most overflow
prone rivers in Sri Lanka. Therefore to forecast flooding for
Colombo area, they have established rainfall/runoff gauges
in 11 areas in the Kelani river basin (figure 2). Additionally,
they have reading stations established at all catchment areas
upstream.

Floods occur at downstream river basin due to heavy rain-
fall in upper watershed, heavy rainfall in the locality, dam
breach, or heavy rainfall in local plat areas (flash floods).
Persons stationed at each location, report data to the central
operation center in an hourly basis during a possible flood-
ing period. If not, usually telephone calls are made out to
all measurement stations daily at 0900hours 1200hours and
1500hours to obtain the readings. Forecast is made on the
basis of present river water level of the location, river water
level rising at up stream river gauge station and past 24 hour
rainfall in upper watershed rain gauge stations.

Warnings are issued based on river water level. For
Colombo district, the yardstick for issuing warnings is the
reading obtained from the Kelani river gauge station at Na-
galangam Street. According to the scale established by the
Irrigation Department, a water level of 5 means that it is a
minor flood level, where warning issuing begins. A water
level of 7 represents a major flood level. A level of 9 repre-
sents a dangerous flood level and water level of 12 (reported
only once in history) means a critical flood level. Warnings
and alerts are usually issued to media, Disaster Management
Center and local police. Readings from gauges are manu-
ally logged in record books. Each gauge station along rivers

647

LEGEND Ry
* NON RECORDING R/ GAUGE i
A STREAM GAUGE

AN

, _l./v
NAGALAGAM ST ~ CLENCOURSE

Figure. 2: Locations of Gauge Stations Alongside Kelani
River

maintain their own logs and they are sent to Irrigation De-
partment which acts as the log aggregating unit. Much of
the present process is paper based and manual. As shown
in figure 2, considering the locations of gauge stations, it is
feasible to deploy a web service based system to automate
forecasting process.

In the following sections, we discuss how this process can
be automated using the proposed agent based system, sup-
ported by the service based communication infrastructure.

B. A Distributed MAS for Automated Flood Forecasting

With the proposed agent based system, equipped with the
message broker infrastructure, we mimic a flood forecasting
scenario. Trend of the readings obtained from data collec-
tion units are analyzed to predict if/when a safety threshold
for a given gauge reading will be exceeded, and alerts are is-
sued to the general public and media accordingly. The initial
system design consists of five agents: Rain Gauge Monitor,
River Gauge Monitor, Authorizer, Logger and Warning Is-
suer. The Rain Gauge Monitor agent and the River gauge
monitor act as the sensors providing data into the system.
The Authorizer agent collects these readings, analyzes and
makes a prediction about the next possible river height. If
this height coincides with one of the aforementioned alert
levels, the respective alert is issued. The issuing of alerts is
done via the Warning Issuer agent. The Authorizer agent,
having made the decision to issue a warning communicates
his goal (issue a warning) to the Warning Issue Agent, which
in return executes the relevant plan.

Figure 3 illustrates the high level architecture of the multi
agent system. We used the Prometheus methodology [28] to
design the system. The external percepts of this system are
rainfall, river height measurement and also addition of a new
sensor agent for the system. The agents which are capable
of perceiving the external environment are the Rain Gauge
Monitor, River Gauge Monitor and The Authorizer agent re-
spectively. This system comprises of 5 Jason agents and one
JACK agent, which duplicates the behavior of the Warning
Issuer Agent. We decided to incorporate JACK agents into
this multi agent system to prove the platform independent

Weerawardhana and Jayatilleke

feature of this proposed message communicating infrastruc-
ture. The messages that are exchanged between the agents
are mediated through the message broker. When the require-
ment arises for the agent to communicate either a belief or a
goal to another agent, the connection is made to the message
broker’s publish service under a commonly accepted URL
(endpoint reference). We have allocated each monitoring
agent a different topic to publish data under; e.g Rain Gauge
Monitoring agent publishes data under the topic “Rainfall”
while River Gauge Monitor agent publishes data under “wa-
terlevelofriver" topic. The agents who wish to receive these
data are Authorizer agent and the Data Logger agent. They

i both subscribe to these topics upon startup to receive data.

In this prototype system, each monitoring agent records and
reports a reading (rainfall and river water level measurement)
every 10 seconds. We picked up this arbitrary interval value
for simulation purposes although this choice deviates signif-
icantly from the real procedure.

C. Agent Decomposition
Rain Gauge Monitor Agent

Rain Gauge Monitor agent has one plan, according to which
rainfall is measured and the reading is sent to the Authoriz-
ing agent and the Logger agent. As we mentioned earlier,
the reading used here is a randomly generated number for
demonstration purposes. In agent terminology the reading is
a belief to the Rain Gauge Monitor. He then publishes this
belief to the message broker under the topic “rainfall”.

River Gauge Monitor Agent

The functionality of the River Gauge monitoring agent is
similar to that of the Rainfall Monitoring agent. In that, it
consists of a single plan, which generates and communicates
a reading as a belief under the topic “riverwaterlevel" to the
message broker.

Authorizer Agent

The Authorizer agent is responsible for analyzing the data in
order to predict the next possible river water level depth. Ad-
ditionally it creates a real-time graphical plot of the recorded
rainfall and the river water levels, which is expected to as-
sist human users. The Authorizer agent works in two modes:
automatic mode allows the system to run without human in-
tervention, the custom mode allows a user to retrieve past
records of rainfall and river water level measurements.
Upon the receipt of the result message, the agent then runs
an algorithm to calculate the next predicted value for the wa-
ter level measurement of a river. The prediction is made by
using time series analysis method, simple regression. Sim-
ple regression provides ordinary least squares regression with
one independent variable estimating the linear model. We
decided to use simple linear regression technique to make
the predictions in water level measurements. Research on
rainfall and runoff prediction models for Sri Lankan inunda-
tion areas are relatively scarce. However, in [29] and in [30]
authors have conducted a survey and concluded that, based
on historic data rainfall and run off can be sufficiently mod-
eled using time series analysis with linear regression method.
Therefore, based on these conclusions, we adapted a linear

Web Service Based Model for Inter-agent Communication in Multi-Agent Systems: A Case Study

Rain Fall In mm

% Authorizer

648

|%Warning Issuer |—>| Issue Alert >
T

Alert

'

Monitoring
|$ RainGauge Monitor|

Stations

Plot Readings

A

\

Request River Water Level
Reading For Past 24 Hours

River Water Level In m

24 Hour Data

|% RiverGauge Monitor | % Data Logger

RiverWater Level

Rainfall Log

Request Rain Fall Reading
For Past 24 Hours

River Water Level Log

Figure. 3: System Overview Diagram of The Agent Based Flood Forecasting System

regression model to predict on the next expected river water
level height measurement. The agent based design facilitates
easy integration of different prediction models, to achieve
different levels of accuracy with respect to the predictions.
However, this is not the focus of our work.

Having computed the predicted river water level mea-
surement, the Authorizer agent initiates another goal shar-
ing phase. This is to inform the Warning Issuing agent that
an alert should be fired. Plan “Notify Warning Issuer”, which
the Authorizer agent possesses takes care of this requirement.
The Warning Issuer agent possess the plan to issue alerts.
The Authorizer agent triggers this plan according to the pre-
diction value it determines. In the manual process, the Irriga-
tion Department processes the data, decides on when to issue
alerts and sends alerts to police stations etc. In our agent
based model this task is decomposed into two phases. Two
separate agents: Warning issuer agent, Authorizer agent are
responsible for achieving the goals sending alerts, and gen-
erating data required to issue alerts respectively. This design
enhancement improves the agents’ chances of independently
evolving in the future. In the sense, the Warning Issuer agent
may incorporate new plans to send out notifications such as
SMS alerts, email messages, manage an on screen interface
to visually aid human users to locate areas under threats etc.
The Authorizer agent may incorporate new prediction mod-
els for flood forecasting, add new metrics such as the wind
speed, humidity, temperature to formulate more conclusive
predictions and so forth.

The authorizer agent exhibits the goal sharing behavior at
two distinct scenarios. Running under the custom mode of
operation, human users can instruct the forecasting system
to retrieve rainfall and runoff data of a selected time period.
Upon receiving the required parameters, a goal sharing XML
message is constructed. Then, the authorizer agent publishes
this particular message under a topic that is known to the
Data Logger agent. Plans to handle each query requests are
defined in Logger agent definition file. The Logger agent
subscribes to this goal sharing channel at startup so that it can
respond to query requests as required. The second instance
of goal sharing occurs with Warning Issuer Agent. Having

formulated a prediction value for river water level measure-
ment based on the past 24 hour data, the Authorizer agent
makes a choice as to what alert plan will be executed under
the current context. The actual issuing of the warning hap-
pens at the Warning issuer, hence plans to execute the warn-
ing is included at the Warning Issuer agent. The Authorizer
agent, constructs the goal sharing XML message and pub-
lishes it on a channel to which the Warning issuer agent is
subscribed. Upon receiving the message, the Warning Agent
executes its plan accordingly.

Data Logger Agent

The Data Logger agent acts as the database of the system.
The purpose of this agent to persist data recorded from the
sensor agents. Presently, the Department of Irrigation main-
tains a lot of paper based logs, which makes maintenance ex-
tremely difficult. We propose data persistence with MySQL
databases. This improves the system’s overall functionality
by increasing accuracy, security, automated persistence, and
ability to execute complex queries to retrieve data.

Warning Issuing Agent

The Warning Issuing agent is responsible for sending out
warnings and alerts based on the decisions taken by the Au-
thorizer agent. In order to examine the platform indepen-
dent behavior of the communication infrastructure, we in-
troduced two Warning Issuing agents implemented in JACK
and Jason into the multi agent system. JACK implementa-
tion of the Warning Issuing Agent is composed of a single
plan “Issue Warning" in order to handle a BDIGoalEvent
ReceiveAlert. Jason implementation of the Warning Is-
suer agent is similar to that of the JACK implementation.
AgentSpeak definition file consists of two plans; one sub-
scribes the Warning Issuer agent to the service the Authorizer
agent publishes warning data to, and the other plan enables
the agent to reason and decide on type of flood alert (mild,
critical, dangerous) that will be issued.

649

D. Performance Evaluation

In order to gain a quantified measurement on the multi agent
system’s scalability under the new web service based com-
munication model, we looked at the performance impact
when increasing the number of agents in the system.

We measured the average response time at the server as
the number of sensor agents increased. As illustrated in fig-
ure 4, we observed a positive correlation between the average
response time and the number of agents. As the agent count
increases, the response time at the server also increases. It
is interesting to note that the response times are in the range
of seconds. This is mainly due to the message delivery de-
lays in the network as well as the delays introduced at the
application layer.

70000
60000
50000

40000 //,
30000 7
[}
200 300 400 500 600 700 800 900
Number of Sensor Agents

20000

1000

Average Response Time (ms)

Figure. 4: Average Response Time vs. Number of Sensor
Agents

Presently, the distributed agent communication system in
Jason, SACI, has been discontinued owing to development
issues present in the platform. Therefore we were unable to
design an alternative distributed BDI agent communication
platform to benchmark against our implementation. How-
ever, in the future we wish to extend the proposed BDI agent
communication platform to incorporate other BDI agent plat-
forms in the likes of Jadex, which has stronger support for
inter agent communication. It will enable us to design and
implement an alternative multi-agent system to benchmark
our proposed implementation.

E. The Reliability Requirement

One of the problems in using a broker based service oriented
communication model is the potential robustness issues that
can arise due to broker failures [31]. We extended our ex-
periment of the prototype system to observe the behavior of
agents as the number of agents are increased.

As the number of agents in the multi agent system in-
creases, we experienced packet loss at the server, (the bro-
ker). Packet loss causes the recipient agent to lose goal/belief
sharing messages, thus causing plan failure. According to
the graph we noticed that the packet loss is almost negli-
gible up to 500 client agents. Beyond that range, the loss
of data becomes more significant, edging up to 2% at 1000
client agents. Therefore, we recommend the multi-agent sys-
tem running under our proposed communication methodol-
ogy to have proper plan failure handling, especially consid-
ering scalability.

Weerawardhana and Jayatilleke

25

2.0 =

15 /
1.0 /

0.5 /

. ?\'—r—/

200 300 400 500 600 700 800
Number of Sensor Agents

Packet Loss Percentage

900 1000

Figure. 5: Packet Loss Percentage Vs. Number of Sensor
Agents

V. Conclusion

In this work we examined the feasibility of implementing an
inter agent communication architecture based on web ser-
vices to enable agents to share two agent level constructs,
beliefs and goals. Using a service based approach also facil-
itated the interoperability of multi agent systems within real
software environments like the Internet. We adopted a mes-
sage broker service based model for the communication ar-
chitecture. We extended Jason agents’ functionality to enable
sharing of goals between other Jason agents using the mes-
sage broker service. By integrating JACK agents into a Jason
based multi agent system, we also showed how a pub/sub
communication model based on web services can be used to
achieve collaboration amongst heterogeneous agents.

Use cases for practical applications of multi agent systems
is a topic in discussion within the software agents research
community. We intend to contribute to addressing this gap
by developing a proof of concept system that practically im-
plements the proposed communications architecture, which
makes a strong case for using software agent technology in
building smarter web services. The implemented multi agent
system models the flood forecasting system in Sri Lanka and
uses the proposed communication infrastructure to facilitate
goal and belief sharing among agents.

Our test environment showed that the system has to deal
with message loss as the number of agents scale. As future
work, we will look into methods with which robustness and
other relevant quality of service properties can be incorpo-
rated into this design. Furthermore, we intend to extend the
support of the proposed communication model to Jadex, al-
lowing Jason, JACK and Jadex agents to communicate goals
and beliefs. Our message structure design does not support
the communication of plans at this stage. Possible avenue for
further research could look into the ways of designing a mes-
sage structure which can be used to communicate plans and
context information associated with a plan, enabling a higher
degree of collaboration and team work within the multi agent
system.

References

[1] A. S. Rao, AgentSpeak(L): BDI Agents Speak Out in
a Logical Computable Language, Proceeding of the 7th
European Workshop on Modelling Autonomous Agents

Web Service Based Model for Inter-agent Communication in Multi-Agent Systems: A Case Study

(2]

[4]

[5]

[9]

[10]

[11]

in a Multi-agent World Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1996, pp. 42-55.

R. H. Bordini, M. Wooldridge, and J. F. Hiibner, 2007,
Programming Multi-Agent Systems in AgentSpeak us-
ing Jason John Wiley and Sons.

S. Sankaranarayanan and L. Cox, 2012, Intelligent
Agent based University Search & Admission System
Android Environment, International Journal of Com-
puter Information Systems and Industrial Management
Applications, vol. 4, pp. 035-042

S. Stoyanov, I. Ganchev, D. Mitev, V. Valkanov, M.
O’Droma, 2011, Service-oriented and Agent-based Ar-
chitecture Supporting Adaptable, Scenario-based and
Context-aware Provision of Mobile e-Learning Ser-
vices, International Journal of Computer Information
Systems and Industrial Management Applications, vol.
3, pp. 771-779

J. Leppiniemi, 2012, Domain Specific Service Ori-
ented Reference Architecture Case: Distributed Disas-
ters and Emergency Knowledge Management, Interna-
tional Journal of Computer Information Systems and
Industrial Management Applications, vol. 4, pp. 043-
054

M. H. Danesh, B. Raahemi, S.M.A. Kamali, G.
Richards, 2012, A Framework for Process and Perfor-
mance Management in Service Oriented Virtual Orga-
nizations, International Journal of Computer Informa-

tion Systems and Industrial Management Applications,
vol. 5, pp. 203-215

I. Dickinson and M. Wooldrige, 2005, Agents Are Not
(Just) Web Services: Considering BDI Agents and Web
Services, in Proceedings of The Workshop on Service-
Oriented Computing and Agent-Based Engineering:
SOCABE2005.

D. Greenwood and M. Calisti, 2004, "Engineering Web
Service - Agent Integration," in IEEE Conference of
Systems, Man and Cybernetics, vol. 2, pp. 1918-1925.

T. X. Nguyen and R. Kowalczy, 2007, WS2JADE: In-
tegrating Web Service with Jade Agents, Lecture Notes
in Computer Science, Springer Berlin/Heidelberg, vol.
4504/2007.

M. O. Shafigq, A. Ali, H. F. Ahmad, and H. Suguri,
2005, Agentweb Gateway - A Middleware for Dynamic
Integration of Multi Agent System and Web Services
Framework, Proceedings of the 14th IEEE Interna-
tional Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprise (WETICE’05),
IEEE Computer Society, pp. 267-270.

S. S. Weerawardhana and G. B. Jayatilleke, 2011, Web
Service based Model for Inter-agent Communication in
Multi-agent Systems: A Case Study, Proceedings of
the Eleventh International Conference on Hybrid Intel-
ligent Systems (HIS), pp. 698—703.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

650

A. S.Rao and M. P. Georgeft, 1995, BDI-Agents: From
Theory to Practice, Proceedings of the First Interna-
tional Conference on Multi-agent Systems, pp. 312-319

P. T. Eugster, P. A. Felber, R. Guerraoui, and
AM. Kermarrec, June 2003, The Many Faces of
Publish/Subscribe, ACM Computing Survey, vol. 35,
pp-114-131.

N. Howden, R. Ronnquist, A. Hodgson and A Lu-
cas, ,2001, Intelligent Agents - Summary of an Agent
Infrastructure, in 5th International conference on au-
tonomous agents.

L. Braubach, A. Pokahr, and W. Lamersdorf, 2005,
Jadex: A BDI-Agent System Combining Middleware
and Reasoning, in Software Agent-Based Applications,
Platforms and Development Kits, Birkhiduser Basel,
pp-143-168

J. F. Hiibner and J. S. Sichman, 2003, SACI - Simple
Agent Communication Infrastructure, Available from:
http://www.lti.pcs.usp.br/saci/

Foundation for Intelligent Physical Agents,
2002, FIPA Agent Communication Lan-
guage Specifications, Available from:

http://www.fipa.org/repository/aclspecs.html.

I. Dickinson and M. Wooldridge, 2003, Towards Prac-
tical Reasoning Agents for the Semantic Web, Pro-
ceedings of the Second International Joint Conference

on Autonomous Agents and Multiagent Systems, ACM
Press, pp. 827-834

M. Winikoff, L. Padgham, J. Harland, and J. Thangara-
jah, 2002, Declarative Procedural Goals in Intelligent
Agent Systems, Proceedings of the 8th International
Conference on Principles of Knowledge Representation
and Reasoning (KR2002), pp. 470—481.

V. Morreale, S. Bonura, G. Francaviglia, F. Centineo,
M. Cossentino, and S. Gaglio, 2006, Goal-Oriented
Development of BDI Agents: The PRACTIONIST
Approach, Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology:
(IAT °06), IEEE Computer Society, pp. 66—72.

J. Omicini, L. Sterling, P. Torroni, D. Ancona, and V.
Mascardi, 2004, Coo-BDI: Extending the BDI Model
with Cooperativity,Proceedings of the First Interna-
tional Workshop on Declarative Agent Languages and
Technologies(DALT-03), Springer-Verlag, pp. 109-134.

J. Alameda, M. Christie, G. Fox, J. Futrelle, D. Gan-
non, M. Hategan, G. Kandaswamy, G. von Laszewski,
N. Gregor, M. Pierce, E. Roberts, C. Severance, M.
Thomas, 2007, The Open Grid Computing Environ-
ments collaboration: portlets and services for science
gateways, Concurrency and Computation: Practice
and Experience, John Wiley and Sons, vol. 19, pp. 921-
942.

Apache Software Foundation, Apache Axis2/Java.
Axis2 Home Page:http://ws.apache.org/axis2/

651

[24] R. Jayasinghe, D. Gamage, and S. Perera, 2010,
Towards Improved Data Dissemination of Publish-
Subscribe Systems, Proceedings of the 2010 IEEE In-
ternational Conference on Web Services, ser. (ICWS
’10), IEEE Computer Society, pp. 520-525.

[25] World Wide Web Consortium (W3C), 2006,
Web Services Eventing (WS-Eventing),
W3C Member Submission, Available from:

http://www.w3.org/Submission/WS-Eventing/

[26] S.Graham, P. Niblett, D. Chappell, A. Lewis, N. Na-
garatnam, J. Parikh, S. Patil, S. Samdarshi, S. Tuecke,
W. Vambenepe, and B. Weihl, 2006, Web Services No-
tification (WS-Notification), IBM Corporation, Sonic
Software Corporation, SAP AG, Hewlett-Packard De-
velopment Company, Akamai Technologies Inc, and
Tibco Software Inc.

[27] K. Stronska, A. Borowicz, K. Kitowski, G. Michalik,
G. Jorgensen, T. van Kalken, and M. Butts, June 1999,
MIKE 11 as Flood Managemenet and Flood Forecast-
ing Tool for the Odra River, Poland, 3rd DHI Software
Conference, Helsinger.

[28] L. Padgham and M. Winikoff, 2002, Prometheus:
A Pragmatic Methodology for Engineering Intelligent
Agents, OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, pp. 97-108.

[29] H. Jayawardene, D. Sonnadara, and D. Jayewardene,
2005, Trends of Rainfall in Sri Lanka Over the Last
Century, Sri Lankan Journal of Physics, vol. 6, Institute
of Physics Sri Lanka, pp. 7-17.

[30] M. A. P. Desilva, March 2006, Time Series Model To
Predict The Runoff Ratio of Catchments of The Kalu
Ganga Basin, National Science Foundation, Sri Lanka.

[31] S. Kumar, P. R. Cohen, and H. J. Levesque, 2000,
The Adaptive Agent Architecture: Achieving Fault-
Tolerance Using Persistent Broker Teams, In Proceed-
ings of the Fourth International Conference on Multi-
Agent Systems, IEEE Computer Society, pp. 159-166.

Author Biographies

Sachini S. Weerawardhana received the Bachelor of
Computer Science degree from the University of Colombo
School of Computing, Sri Lanka in 2006 and the Master of
Computer Science degree from the University of Moratuwa,
Sri Lanka in 2010. She is presently a lecturer at the Depart-
ment of Computer Science and Engineering, at the Univer-
sity of Moratuwa. Her research interests include, multi-agent
systems, information systems, and Computer Science educa-
tion

Gaya B. Jayatilleke earned his PhD in Computer Sci-
ence from RMIT University, Melbourne, Australia in 2007.
Prior to his PhD, he completed Master of Software Systems
Engineering (MSoftSysEng) program at University of Mel-
bourne, Melbourne, Australia in 2002/2003, receiving a High

Weerawardhana and Jayatilleke

Distinction. He earned Bachelor of Science in Computer Sci-
ence and Engineering degree from the Department of Com-
puter Science and Engineering, University of Moratuwa, Sri
Lanka, in 2000, with a First Class Honors. At present, he
is a post doctoral candidate at RMIT University, Australia.
His research interests are Agent Oriented Software Engineer-
ing (AOSE), web based applications and web Services, Soft-
ware Engineering process models/methodologies and Ma-
chine Learning.

