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Abstract: To accelerate the processing for integration, regis-
tration, representation and recognition of point clouds, it is of
growing necessity to simplify the surface of 3-D models. This
paper proposes a Retinex theory based points sampling method
and the effectiveness of the sampling results are demonstrated
by the point cloud registration and mesh simplification. The
points sampling method considers both the local details and the
overall shape of the model. The local details are captured by a
graph-based segmentation, while for the overall shape, the ap-
proach voxelizes the model and samples points in terms of the
entropy of the shape index of vertices in voxels. We present
a number of results to show that the method significantly sim-
plifies the surface without losing local details and global shape.
The effectiveness of this method is finally demonstrated by point
cloud registration results of overlapping range images and mesh
simplification errors.
Keywords: Retinex, sampling, registration, point cloud, local,
global.

I. Introduction

Laser range scanners have become more and more popular
for 3D measurement. The output of laser range scanners is
a set of structured data points with or without reflectance
strength information, depicting the reflectance characteris-
tics of the 3D objects of interest. The structured data points
can easily be triangulated and rendered as range images.
However, most of the range scanners usually generate huge
amounts of data points. A complete model could contain mil-
lions of points and often leads to expensive processing time.
This creates facing great challenges, such as storage, editing
and transmission. Thus efficient and accurate simplification
of point cloud is necessary and the simplified points cloud
has become a powerful alternative to the original data. The
simplified points usually can be sampled through a combi-
nation of various mesh operations, such as feature points de-
tection and segmentation. The sampled points can accelerate
either the display or processing of the large 3D data. In the
point sampling, it is important to choose the representative
and distinctive points. The points must have some significant
properties, such as invariant to affine transformations and ro-
bust to the noise and robust to different tessellations. Points
sampling is necessary to select distinctive points on a model
and thus gains efficiency in their processing. Some tasks that
benefit from this capability are object registration, integra-
tion, simplification, retrieval, texture mapping, and deforma-

tion.
In the past years the evaluations of point feature detectors
in the matching, recognition or texture classification have
been proposed. The popular Harris corner detector [4] is im-
proved upon Moravec’s corner detector by investigating lo-
cal auto-correlation function of the signal which reflects the
local distribution of gradient directions in the image. Shi-
Tomasi feature detector [5] is strongly based on the Harris
detector. The difference between them is that this detector
computes the minimum of the absolute values of the eigen-
values of the structural tensor. SIFT detector [6] is based on
the algorithm developed by Lowe in order to detect the scale-
invariant image features, which consists of keypoints detect-
ing and tracking. Lo [8] presented a 2.5D SIFT algorithm
that extracted robust feature points on range images, which
is by concatenating the histogram of the range surface topol-
ogy types. However, these methods have two drawbacks: the
limited repeatability of a feature point detector and the drift
of the feature point.
Nehab et al. [19] presented a stratified sampling strategy for
3D data that is a technique to generate evenly spaced samples
by subdividing the sampling domain into non-overlapping
parts and sampling independently from each part. Osada et
al. [9] proposed a method which is uniformly sampled on a
triangulation mesh. This sampling approach basically gener-
ated random sample points in the randomly picked triangles
with equal probability per unit area. Turk [10] described a
sampling approach that started from an uniform sampling of
the mesh and placed a charged particle at each sampled posi-
tion, where the particles are allowed to repel each other until
equilibrium is reached during the constraining on the remain
surface.
Moreover, the techniques of interest points detection is ex-
panded to the human visual system area: Itti et al. [28] cre-
ated a computational model of saliency-based spatial atten-
tion derived from a biologically plausible architecture. The
saliency maps for features of luminance, color and orienta-
tion at different scales were computed. Hu et al. [29] pro-
posed saliency maps by thresholding the color, intensity and
orientation maps. In this method, the histogram entropy
thresholding analysis was employed. More recently, the se-
lection of interest points is exploited to the notion of saliency
in the 3D domain. Lee et al. [30] defined a mesh saliency
for the mesh simplification. This approach is using a center-
surround operator on the local curvature as the discrimina-
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Figure. 1: The results at different stages of the proposed al-
gorithm: (a) Input model;(b) Retinex applied on the shape
index. Red area presents the smooth region and blue presents
the concave/convex area; (c) Segmentation. Different color
presents different regions on the surface; (d) Points sampled

tive feature. Pauly et al. [31] presented a multi-scale tech-
nique for extracting line-type features on a point-sampled
geometry. A measure of surface variation and persistence
of feature-points over different scales was used. Shilane et
al. [32] defined distinction as the retrieval performance of a
local shape descriptor. After a training phase, the retrieval
performance of each descriptor has been evaluated and only
the most distinctive are retained. Frome et al. [33] introduced
regional point descriptors, which contain 3D shape and har-
monic shape context. This approach extracts the points by
random sub-sampling the whole set of points. Owing to its
efficiency of visual persuasion in traditional art and techni-
cal illustrations, visual saliency has now been widely used
in many computer graphics applications, including saliency
guided shape enhancement [34]. Miao et al. [35] proposed a
normal perturbation technique to enhance the visually salient
features of 3Dshapes explicitly. This method demonstrate
that saliency guided shading scheme can improve the depic-
tion of the underlying shape and the perception of its salient
features.
The Retinex theory is originally proposed by Land and Mc-
Cann in 1971 [18]. The goal of the Retinex method is to
decompose a given image into a reflectance image and an
illumination image. The benefits of such decomposition in-
clude the ability to remove the illumination effects, enhance
the image which includes spatially varying illumination and
correct the colors in the image by removing illumination in-
duced color shifts [12]. Many applications have adapted the
Retinex algorithm, such as image editing, multi-spectral im-
age fusion and high dynamic range compression. Jobson et
al. [15] proposed a single scale Retinex (SSR) that employs
a simple linear filter with Gaussian kernel. He also extended
SSR to muliti scale Retinex (MSR) [16] by combining sev-
eral low-pass filtered copies of the logarithm of Retinex im-
age using different cut-off frequencies for each low-pass fil-
ter. Gross and Brajovie [14] used an anisotropic filter to
reduce the halo effects to some extent. Self quotient image
(SQI) has been proposed resulting in impressive improve-
ment of performance in dealing with illumination variation
problem. Elad [12] introduced an algorithm that uses two
specially tailored bilateral filters. The first filter evaluated
the illumination and the other calculated the reflectance.
This paper proposes a new Retinex theory based points sam-
pling method and it consists of five phases: Mesh filtering,

Figure. 2: (a) Original mesh. (b) Original mesh colored by
shape index. (c) Mesh smoothed by non-local means filter.
(d) Smoothed mesh colored by shape index

Retinex, segmentation and sampling. A bilateral filters based
Retinex method is then introduced that uses segmentation to
extract the local details. Some experiments are demonstrated
and the effectiveness of this method is finally demonstrated
by different registration and simplification methods.

II. Algorithm

In this section we propose an algorithm to detect and sample
the meaningful points on 3D surface. The proposed method
is combined four steps: (1)Mesh filtering. (2)Retinex decom-
position. (3)Segmentation. (4)Points sampling. Fig. 1 shows
the structure of our method.

A. Mesh filtering

The acquired data of the 3D model usually contains imag-
ing noise from various sources, such as scanning noise. It
is very important to remove the noise while preserving the
underlying sampled surface, in particular its fine features. In
order to produce more accurate results, this paper employs
the Non-local mean filter [36] which is a simple but efficient
method to smooth the polyhedral surface and improve the ap-
pearance of the object. Basically this algorithm reduces the
high frequency surface information and tends to flatten the
surface.
The basic idea of non-local mean filter is that it assumes an
extensive amount of self similarity is contained in an image.
Thus, similarity is measured based on the geometrical con-
figuration in the whole neighborhood instead of measured
based on every single pixel. Let I be a given image. Based
on a weighted average of all pixels in its neighborhood Θ,
the value I ′(u) at pixel u can be estimated by

I ′(u) =

∑
v∈Θ ψ(u, v)I(v)∑

v∈Θ ψ(u, v)
(1)

where the weight ψ(u, v) = exp(−∥Θu−Θv∥2
2,a

d2 ) is com-
puted by the similarity of the Gaussian neighborhood be-
tween pixels u and v. Θu is a square neighborhood centered
at pixel u. a is the standard deviation of the Gaussian kernel
and d is the delay parameter.
In this section, the non-local means filter is extended to pro-
cess the shape index of a 3D mesh. Koenderink [17] has
suggested that the shape index ϑ could give a simple mea-
surement of the local shape. It can present the flat concave
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Figure. 3: Retinex applied on the models. (a)tubby; (b)bird;
(c)buddha; (d)duck

and convex rejoin significantly. The shape index can be esti-
mated by the principal curvature:

ϑ =
2

π
arctan

k2 + k1
k2 − k1

(2)

where k1 and k2 are the principle curvature which can be
calculated by Taubin [20].
The non-local means filter can be applied to diffuse the shape
index field as the shape index can be considered as a signal
defined over its domain. In order to determine the given ver-
tex’s similarity with the neighborhood, the B-spline [37] al-
gorithm is employed. The similarity between neighborhoods
in a mesh can be measured by computing the corresponding
vertex on the surface, because the underlying control net is
topologically similar to the image grid structure when using
B-spline surfaces:

Q(u, v) =
4∑

i=1

4∑
i=1

Bi,jN(i, k)(u)Mj,l(v) (3)

where Bi,j are control points and in their natural ordering,
Ni,k(u) and Mj,l(v) are the B-spline basic function in the
biparametric u and v directions, respectively. We use the 2-
ring vertices of vi as the input data, then project the input
data points and scale them to the range [0,1].
Fig. ?? shows the result of the proposed mesh filtering
method on range image data. The result shows that the
method not only smoothes the surface, but also retains vi-
sually meaningful details.

B. Retinex based decomposition

Most 3-D images are captured by cameras and scanners, thus
they usually contain imaging noise from various sources or
the images are visually undesirable. Retinex theory [11]
deals with the removal of unfavourable illumination effects
from images in order to improve their quality. The theoretic
foundation of the Retinex is that an image I(x, y) is regarded
as a product I(x, y) = L(x, y) ∗R(x, y), where L(x, y) is
the illumination image and R(x, y) is the reflectance image.
Generally, L(x, y) is determined by the illumination source
and R(x, y) is determined by the characteristics of the im-
aged object. This paper presents a Retinex theory based bi-
lateral filter to compensate the illumination for segmentation
by using the shape index image. The illumination L is esti-
mated by a shift invariant Gaussian filter. The bilateral filter-

Figure. 4: Odd column: Graph-based segmentation without
Retinex applied; Even Column: Graph-based segmentation
with Retinex applied

ing can be described as follows:

h(x) = k−1(x)

∫ ∞

−∞

∫ ∞

−∞
f(xn)g(xn, x)s(f(xn), f(x))d(xn)

(4)
where the normalization

k(x) =

∫ ∞

−∞

∫ ∞

−∞
g(xn, x)s(f(xn), f(x))d(xn) (5)

where g(xn, x) measures the geometric closeness between
the center of neighbourhood x and a nearby pixel xn and it
can be expressed by Eq. 6.

g(xn, x) = e
− 1

2 (
d(xn,x)

σd
)2 (6)

where d(xn, x)is the Euclidean distance between xn and x,
σd denotes the geometric spread chosen based on the desired
amount of low-passing filtering. s(f(xn), f(x)) measures
the photometric similarity between the x and xn. The simi-
larity function s can be defined as:

s(f(xn), f(x)) = e−
1
2 (

d(f(xn),f(x))
σr

)2 (7)

where d(f(xn), f(x)) is the distance between the two shape
index values f(xn) and f(x). σd is the photometric spread
in the image range that is set to achieve the desired amount
of combination of shape index values. By estimating the il-
lumination L, the reflectance image R is defined as follows:

R(x, y) = log(I(x, y) + 1)− log(L(x, y) + 1) (8)

where I(x, y) is the input shape index image which is esti-
mated in the previous section and L(x, y) is the illumination
image. Fig. 3 illustrates some examples by applying Retinex
theory. It is clearly shown that this method can distinctly
recognize the flat, concave and convex regions.

C. Segmentation

In order to sample the local points which could represent
the local details, segmentation is an important step. Felzen-
szwalab [13] introduces an efficient graph-based image seg-
mentation based on pairwise region comparison. It produces
segmentations that obey the global properties of being not too
coarse and not too fine by using a specific region function. In
this paper, the graph-based segmentation is employed to seg-
ment the reflectance image which is estimated by Eq. 8. The
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Figure. 5: Points sampled on model tubby1-2, bird1-2, buddha1-2 and duck1-2 with simplification rate 90%. Top row: local
points sampled. Bottom row: combined global and local sampled points in an appropriate combination rate.

pairwise comparison predication is defined by Eq. 9 in order
to evaluate whether or not there is evidence for a boundary
between two regions in a segment.

D(R1, R2) =

{
true if Dif(R1, R2) > MInt(R1, R2)
false otherwise

(9)
where Dif(R1, R2) denotes the difference between two re-
gions R1 and R2:

Dif(R1, R2) = min
vi∈R1,vj∈2,(vi,vj)∈E

w(e) (10)

where w(e) = ∥Int(vi)− Int(vj)∥ is the corresponding
weight of the edge that was estimated by the shape index.
MInt(R1, R2) denotes the minimal invariant difference:

MInt(R1, R2) = min(Int(R1) + τ(R1), Int(R2) + τ(R2))
(11)

where the invariants difference is defined as

Int(R) = max
e∈MST (R,E)

w(e) (12)

the MST is the minimum spanning tree, τ is the threshold
function which controls the degree to which the difference
between two components must be greater than their internal
differences in order for there to be evidence of a boundary
between them (D to be true). The segmentation obeys the
properties of being neither too coarse nor too fine, according
to the following definitions:
Definition 1: A segmentation S is too fine if there are pairs of
region R1, R2 ∈ S where no evidence for a boundary exists
between them.
Definition 2: A segmentation S is too coarse if there exists a
proper refinement of S that is not too fine.
The most important reason to implement the segmentation
in this method is that it can perceptually capture important
grouping or regions that often reflect global aspects of the
image. Fig. 4(a) and (c) show the results of the graph-based
segmentation without Retinex applied. It is clearly shown
that the bird and tubby models have been over-segmented
and need to be improved. Fig. 4(b) and (d) show the results

of the graph-based segmentation with Retinex applied, the
segmented results are significantly improved, where the over-
segments are merged or removed.

D. Points sampling

1) Local points sampling

Because the surface has been segmented into a limited num-
ber of regions, the feature points can be selected from each
region. The selection criterion selects points from each seg-
ment by thresholding the absolute shape index values. The
top row of Fig. 5 shows the results after local point sam-
pling where only a few points are selected in the flat region,
whereas more are selected in the regions with more detail,
such as the eyes of the bird and tubby. The points that have
been sampled by the local sampling algorithm sometimes fo-
cus too much attention on the local details and overlook the
overall shape. Hence, the selected points may not represent
the model shape well and might miss meaningful parts of the
shape. In order to address the problem, global sampling is
applied in this paper.

2) Global points sampling

In this section, a modified stratified point sampling
method [19] is employed. This algorithm voxelizes the sur-
face and selects one or more points from each voxel based
on the entropy of the shape index of vertecies and restricted
to the original model’s surface. The entropy measures how
the shape index of vertices in a voxel varies. The larger the
variation, the larger the entropy, the more detail the voxel
contains. Thus the entropy can be used to guide the points
sampling. This algorithm is basically divided into four steps:

• The first step voxelizes the model by the bounding
boxes and the model can be divided into several sub
boxes. The resolution of the voxelization is specified
by the user.

• Based on the histogram of shape index, the entropy can
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Figure. 6: The evolution of the RMSE errors (a) and Metro
errors (b) with different parameter T , tested on tubby, bird,
buddha and duck.

be calculated by

H(X) =

n∑
i=1

− P (ri) ∗ log2(P (ri)) (13)

where P (ri) is the probability of vertex ri in a local
voxel, n denotes the total number of the vertices.

• The third step chooses one or more points from each
sub box based on the estimated entropies. Normally,
the maximum entropy is always chosen.

• The minimum distances between the samples are used
to address the possibility that the generated samples are
close to the boundary between two or more adjacent
voxels which might be too close to each other.

3) Points combination

In order to achieve a better simplification result, the sampled
local and global points are combined. By denoting the points
from local sampling as Ls and the points from global sam-
pling asGs, the simplification approach is defined as follows:

SIM = T · Ls + (1− T )Gs (14)

where T denotes the weight of local sampling and T ∈ [0, 1].
If T is small, the method presents the global shape well, but
may lose a lot of local shape information. When T is large,
the local shape could be represented well but the global shape
may be destroyed. So an appropriate value for T needs to be
defined. Based on the evolution of the simplified mesh errors
which is introduced in [1], we define T = 0.65 in this paper.
The bottom row of Fig. 5 shows the sampled points which are
generated by combining the global and local sampled points

Table 1: RMSE (∗10−3) and Metro Errors measured for
some models using QSlim and SSim

Simp. RMSE Metro
Model rate QSim SSim QSim SSim

50% 14.61 12.11 0.26 0.23
tubby 90% 17.20 13.32 0.31 0.27

95% 19.73 15.30 0.33 0.32
50% 16.81 9.45 0.35 0.21

bird 90% 16.22 11.02 0.41 0.33
95% 21.03 11.63 0.50 0.39
50% 16.33 10.00 0.47 0.33

buddha 90% 17.85 12.12 0.58 0.42
95% 23.28 13.39 0.61 0.51
50% 12.44 11.16 0.21 0.19

duck 90% 15.33 14.21 0.30 0.23
95% 18.46 17.34 0.37 0.31
50% 21.54 16.53 0.45 0.39

lobster 90% 25.42 18.21 0.57 0.42
95% 28.32 21.24 0.67 0.53

with an appropriate combination rate. It can be seen that
the sampled points have more potential to represent the local
details and global shape.

III. Experimental results

Neither the range image segmentation nor the range image
points sampling has the groundtruth, so the sampling accu-
racy cannot be determined. To solve this problem, mesh
simplification and point cloud registration approaches are ap-
plied. The simplification and registration errors indicate the
efficiency of the proposed point sampling method.

A. Simplification

The sampled points also can be seem as a simplifed point
cloud. The simplifed point cloud could be triangulated into
mesh easily. The measured errors between the simplified and
orginal mesh always present the effectiveness of the simplifi-
cation. In order to evaluate the effect of the simplification cri-
teria, our algorithm (SSim) has been compared with the ge-
ometric QSlim [39] algorithm which uses the best half-edge
collapse. The QSlim algorithm was chosen because of the
high-quality of its approximations and its code is freely avail-
able. Although the QSlim algorithm was proposed some time
ago, it still achieves competitive results. For the compara-
tive study, a publicly available range image database hosted
by the signal analysis and machine perception laboratory at
Ohio State University was used [40]. To this end, several
experiments with meshes of differing complexities were per-
formed. All models were simplified on a computer with Intel
Core 2 Duo CPU E8400, 3.00GHz. The visual and geometric
errors are the differences between the original mesh and sim-
plified mesh, which were measured using root mean squared
error(RMSE) and Metro error. RMSE is used as an efficient
measurement in the mesh simplification. In the mesh com-
parison tool named Metro [38], the Hausdorff distance be-
tween two polygonal meshes was measured:

E(S,S′) =

√
1

AREA

∫
d(p, S′)2ds (15)

where the S is an orientable surface, AREA is the area of
the surface S and d(p, S′) is the distance between a point p
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Figure. 7: Simplification by using QSim and SSim and simplification rate 90% on tubby, bird, buddha, duck, angel, lobster,
frog and valve. Top column: Original; Middle column QSim; Bottom column: SSim

of S and S′.
In order to obtain an efficient fusion of global sampled points
and local sampled points, it is necessary to determine an ap-
propriate value for the parameter T . Fig. 6 compares the
SSim errors of tubby, buddha, bird and duck, which were
measured by RMSE and Metro for different values of T un-
der the condition that the simplification rate is 90% (it means
90% of vertices are removed). For T = 0, all the points are
selected globally and it obtains a large error. For T = 1, only
local points are selected without the global shape informa-
tion and as shown in Fig. 6, large errors occurred. It can
be observed that when T = 0.6, the angel and bird produce
the minimal error value of both RMSE and Metro. When
T = 0.7, the tubby and duck meet the minimal error value
of both RMSE and Metro. The best T can be slightly differ-
ent for different modes. The results suggest this paper chose
T = 0.65 in the remaining experiments.
Fig. 7 shows the results for the tubby, buddha, bird, duck,
angel, lobster, frog and valve models in terms of 90%
simplification rate by using QSim and SSim respectively. In
all the cases it can be observed that both methods contain
the major topology characteristics of the initial models. But
careful observation shows that SSim is better than the QSim
for all the models in retaining local details. For example,
on the model tubby, the eye area and ears are retained bet-
ter by SSim. For model bird, the face and neck are over
smoothed by QSim, but the characteristics of face and neck
are still preserved well by SSim. For model buddha, the hair
and eyebrow are preserved better by SSim and the hair is re-
moved completely by QSim. Table.1 shows the RMSE and
Metro errors of SSim and QSim for all models. It can be ob-
served that if the simplification rate increases, the RMSE and

Metro errors become much larger for both QSim and SSim as
expected. Even though, the errors for SSim are much lower
than those of QSim. Fig. 8 shows snapshot of the small topo-
logical feature preservation in terms of 90% simplification
rate, where the eye region on the bird surface is preserved
well with SSim, but the shape of eye is over smoothed by
QSim. For the surface of the buddha, the hair is removed
completely by QSim, but the outline of the curls is still pre-
served well by SSim. The nostril of the frog is almost re-
moved after QSim, but preserved well by SSim. All results
show that SSim can preserve small topological features faith-
fully.

B. Registration

In this article, the registration algorithm FICP [23] and Soft-
ICP [24] are selected due to their high accuracy. The reg-
istration results can be determined from the rotation angles,
average and standard deviation of errors of RCs [24, 25].
Since the FICP and SoftICP algorithms require a good ini-
tialisation of camera motion parameters, this section reports
results from relatively small motions. Fig. 9 shows the Soft-
ICP and FICP registration results which are demonstrated by
our algorithm and a comparative algorithm. It can be ob-
served that SoftICP algorithm registers all images accurately
when sampling rates P = 95% (it means 95% of vertices are
removed) and P = 10% were chosen, which indicates that
accurate registration of overlapping range images is feasible
based on sampling. However, with P = 5%, the inaccurate
registration results occur to either the SoftICP algorithm or
the FICP. This is because too few points can hardly charac-
terise the geometry of the range images and thus pose the
registration problem. From the experimental results, it can
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Figure. 8: Small topological feature preservation on bird,
buddha, frog and lobster with 90% simplification rate

be seen that the SoftICP algorithm yields relatively stable re-
sults for each high quality image, and the FICP achieves a
worse result than the SoftICP but it is still acceptable. In
summary, the registration accuracy depends on how many
points have been sampled. If the percentage of the sampled
points is too small, a poor registration result may occur. The
more points sampled, the higher accuracy achieved at the
cost of longer time. If the range images are in low quality,
all algorithms will perform poorly which suggests that more
accurate and stable algorithms still need to be developed in
future.
In this section, we perform a comparative study of the strati-
fied points sampling (SPS) [19] algorithm and our algorithm
(SBS). SPS method samples points independently from each
part and generates evenly spaced samples by subdividing the
sampling domain into non-overlapping parts. The algorithm
is easily implemented and achieves good results. Experimen-
tal results are presented in Fig. 9. It can be seen that high per-
centage of data sampling often leads to an accuracy estimated
rotation angle, yielding smaller average registration errors. It
can also be seen that the SoftICP algorithm sometimes oscil-
lates in the evolution of image registration. If the percentage
of data sampling is between 95% to 10%, the estimated ro-
tation angles decrease slowly. If the percentage of data sam-
pling is below 10%, the estimated rotation angles are reduced
more rapidly. This conclusion has been demonstrated by the
experimental results while the FICP and SoftICP registration
algorithms are implemented.
A careful analysis shows that our algorithm drops its perfor-
mance more slowly than the SPS algorithm. For example,
while the former performs very well even P = 5%, the lat-

ter produces worse results even when P is as large as 10%.
The evolution trend of the estimated rotation angle for reg-
istration based on the SPS algorithm is almost the same as
our method: the fewer points sampled the smaller the esti-
mated rotation angle. It is shown in Fig. 9(a) that our algo-
rithm is significantly more accurate in the sense of average
registration error over finally established point matches than
SPS algorithm. For the FICP registration of the tubby 1-2
when P = 10%, SPS algorithm leads to an average registra-
tion error of 0.65mm and estimated rotation angle error is
3.2◦, while the corresponding parameters for our algorithm
are 0.3mm and 1.5◦ respectively. For the SoftICP registra-
tion of the tubby 1-2, the average registration error of the
SPS sampled data is 0.32mm and estimated rotation error is
1.5◦, while the corresponding parameters for our algorithm
are 0.29mm and 0.6◦ respectively. It can be concluded that
the SBS algorithm achieves higher accuracy than SPS algo-
rithm in either SoftICP or FICP registration method. This is
because the SPS algorithm has sampled the points indepen-
dently from each part which is leading to sensitive to appear-
ance and disappearance of points.
We evalute the computation time of the proposed algorithm
and SPS algorithm in Fig. 9(d). Obviously, the computa-
tion time is reduced rapidly when the percentage of sam-
pling drops. For the SoftICP registration on tubby 1-2 when
P = 95%, our algorithm leads to a computation time that is
15s, when P = 5%, the computation time is 3s. While the
corresponding parameters for SPS algorithm are 17s and 4s.
For the SoftICP registration on buddha 1-2 when P = 95%,
our algorithm leads to a computation time is 23s, when
P = 5%, the computation time is 3s. While the correspond-
ing parameters for SPS algorithm are 24.5s and 4.5s. It can
be concluded that the SBS algorithm takes shorter computa-
tion time than SPS algorithm in either SoftICP or FICP reg-
istration method. Thus, we can say that the proposed method
is more reasonable in terms of both accuracy and efficiency.

IV. Conclusions

This paper presents a novel approach to sample point from
the input 3D data and the sampled points are representatively
and distinctively. We propose a hybrid approach which com-
bines mesh filtering, surface segmentation and point sam-
pling. The proposed algorithm starts from a non-local mean
filter on the shape index field in order to remove the noise.
Then the segmentation approach combined with the Retinex
method based on bilateral filtering for the illumination com-
pensation of smoothed surface. Based on the segmentation
regions, the points are selected by thresholding the shape in-
dex values. The method runs sufficiently quickly to be used
as a preprocessing step to a variety of algorithms. The pro-
posed sampling algorithm can detect the interest points ac-
cording to the geometry and surface appearance information,
and achieve the accurate registration and siplification results.
The registration results show that when based on our method
to sample points, it yields more accurate results using either
SoftICP or FICP. The performances of simplification on var-
ious data show that our approach not only can represent the
overall shape fidelity but also has the capability to retain the
topology and small features well. The quality of images is
vital to accurate segmentation, points sampling and image

A Retinex theory based points sampling method 7



Figure. 9: The FICP and SoftICP registration results based on our method (SBS) and stratified points sampling method
(SPS). Applied on several range images respectively. First row: tubby1-2; Second row: bird1-2; Third row: buddha1-2 and
fourth row: duck1-2. The expected rotation is 20◦. P is the percentage that sample points from the points cloud. (a) The
average of registration errors eµ. (b) The standard deviation of registration errors eδ . (c) The calibrated rotation angle errors
∆θ̂. (d)Computation times in seconds for different algorithms.

registration. Directions for future work include improvement
of the feature points extraction, saliency detection and design
of appearance-preserving simplification.
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