
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 5 (2012) pp. 030-040

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Test case design for transactional flows using a

dependency-based approach

Rubén Casado
1
, Javier Tuya

1
, Claude Godart

2
 and Muhammad Younas

3

1 Department of Computing, University of Oviedo,

Gijón, Spain

rcasado@uniovi.es

tuya@uniovi.es

2 LORIA laboratory, University of Lorraine

Nancy, France

claude.godart@loria.fr

3 Department of Computing and Communication Technologies, Oxford Brookes University,

Oxford, United Kingdom

m.younas@brookes.ac.uk

Abstract: Transactions are a key issue to develop reliable web

service based applications. The advanced models used to manage

this kind of transactions rely on the dependencies between the

involved activities (subtransactions). Dependencies are

constraints on the processing produced by the concurrent

execution of interdependent activities. Existing work uses formal

approaches to verify the consistency and correctness of

dependencies in web service transactions, but there is no work

on testing their implementation. This paper identifies and

defines a set of possible dependencies using logical expressions.

These expressions define the preconditions necessary for

executing the subtransactions primitive tasks. By using those

conditions, we propose a family of test criteria based on

control-flow for checking the dependencies between

subtransactions. The test criteria provide guidance for test case

generation in order to specifically test the implementation of web

service subtransactions dependencies.

Keywords: Web service testing, transactions, dependencies

I. Introduction
Transaction management is a key technology to build efficient

and reliable distributed applications. A transaction is defined

as a set of operations of an application such that all the

operations achieve a mutually agreed outcome. The

conventional way for achieving such outcome is the

enforcement of the Atomicity, Consistency, Isolation and

Durability (ACID) properties which set forward four goals

that every transaction management system must ensure. In

Web Services (WS) environment the management of

transactions is complex as it involves heterogeneous and

autonomous services which are loosely coupled, can have

long duration and are distributed across the Internet. This

scenario forbids the use of locks on resources, and hence

makes roll-back activities unsuitable. Various Advanced

Transaction Models (ATM) [1] have been proposed for WS.

These models mainly relax the strict atomicity and isolation

policy of ACID and use a compensation-based policy to

achieve an agreed outcome. Each subtransaction has

associated a compensatory action that undoes, from a

semantic point of view, the action committed by the

subtransaction.

A WS transaction comprises a group of a smaller and

(partially) independent subtransactions executed by different

WS. To coordinate the execution of the subtransactions, a set

of relationships called subtransaction dependencies are

specified. Dependencies are constraints enforced on the

processing of the concurrently executing interdependent

subtransactions. Dependencies are important in order to

ensure the flexibility required to support exceptions,

alternatives and compensations of subtransactions.

Existing works [2, 3] have addressed the verification of the

dependencies model in WS transactional compositions. In

these works, the authors propose a formal approach to verify

the consistency and correctness between activities. However,

these approaches do not ensure that the implementation

satisfies the property since there is no formal link between the

design model and their implementation. Thus, it is difficult to

predict that the software fulfills those constraints since the

implementation phase may include faults.

Testing is the process of exercising software to determine

whether it satisfies specified requirements. Despite some

works have been recently published about testing WS

transactions [4, 5], there are no approaches focusing on the

dependencies [6, 7]. In [8] we propose a method for defining

and testing subtransactions dependencies in WS transactions.

Firstly we identify and define a set of possible dependencies

using logical expressions. A set of conditions for beginning,

completing and aborting (called subtransactions primitive

tasks) are derived from the logical expressions. Secondly we

propose a family of test criteria, based on control-flow, for

checking the dependencies between subtransactions. The test

criteria provide guidance for test case generation in order to

specifically test the implementation of web service

MIR Labs, USA

ISSN 2150-7988 Volume 5 (2013) pp. 030-040

 31

subtransactions dependencies. In this paper we extend that

work as follows: (i) we propose an algorithm to automatically

obtain the test conditions according to the criteria. (ii) we

evaluate the criteria using a mutation-based evaluation

approach.

The rest of the paper is organized as follows. Section II

defines the dependencies that occur in a WS transaction. Our

approach formally defines, for each subtransaction, three set

of conditions (BeginCond, CommitCond, and AbortCond)

using logical expressions. Section III presents a family of

dependency-based test criteria by using the conditions derived

from the dependencies. Those criteria (partially inspired on

control-flow testing criteria [9]) are based on two concepts:

which primitive tasks are the tests focused on and how the

conditions are exercised. In order to show the use of our

approach, an example is presented in Section IV. Section V

presents the mutation-based evaluation. Finally, conclusions

and future work are presented in Section VI. Extra

information about the algorithms and evaluation are found in

the Appendixes.

II. WS Transaction Dependencies Model
 WS is a technology for automating Internet-based

interactions. Enterprises are able to outsource their internal

business processes as services and make them accessible via

the web. Then they can dynamically combine individual

services to provide new value-added process. A web service

transaction (wT) is a conglomeration of existing WS working

in tandem to offer an agreed combined outcome. The business

process modeled as a wT is composed by a set of activities

(subtransactions) and a set of relationships (dependencies)

between such activities. Each activity (e.g. to book a flight) is

executed by an individual web service. The dependencies

specify how services are coupled and how the behavior of

certain services influences the behavior of other services. So

we define a web service transaction as �� �� �, � � where
� � 	
�, … ,
� is a set of subtransactions and � �
	��
� ,
���, … , ��
� ,
���� is a set of dependencies between
the subtransactions.

Any subtransaction
� has a set of primitive tasks that we

assume are executed as atomic actions:

• B�s��: The subtransaction s� begins executing.
• C�s��: The subtransaction s� successfully commits.

• A�s��: The subtransaction s� aborts.
An abortion may occur due to either a fault during the

execution or an explicit cancellation. When a subtransaction

aborts, its compensatory action will be executed if it exists. In

our model, a compensatory action is defined as another

subtransaction part of the same wT. The original

subtransaction and their compensatory action are, therefore,

related by concrete dependencies as is shown later.

A. Dependencies

Each dependency ��
� ,
�� defines a relationship

between two subtransactions
� and
� . The formal definition

of the possible dependencies is presented below. The

dependencies are divided in three groups (necessary,

sufficient, and composite) according to their constraints:

Necessary conditions dependencies: In order to be able to

execute any primitive task �, a subtransaction
� may require

the execution of other primitive task of a subtransaction
�.
So
� cannot execute � until
� has executed . Formally,

��
�� 	⇒ 	 �
�� 	� 	��
��. These dependencies are labeled
as #$% & '(&)*+ (abbreviated as ax) where #$%,)*+ ∈
	$-./(, %'00/1, #$'21� . Due to there are three different
primitive task and all combinations are possible, nine

dependencies are defined as is shown in Table 1. For example

begin-on-begin dependency, $$�
� ,
�� , specifies that the
beginning of
� is a necessary condition to enable the

beginning of
� .
Sufficient conditions dependencies. The execution of any

primitive task � of a subtransaction
� may force the

execution of another primitive task of a subtransaction
� .
So if
� executes � , then
� also executes . Formally,

P �
�� 	⇒ 	 �
�� . These dependencies are labeled as

3'2%-	#$% & '(&)*+ (abbreviated as fax). The nine

possible dependencies of this kind are presented in Table 2.

For example force begin-on-abort dependency, 3$#�
� ,
��,
defines that if
�abort then
� has to begin.

Composite dependencies. This group is composed by the

dependencies where more than one relationship are taken in

account. They are shown in Table 3.

 Begin Commit Abort

Begin $$�
�,
��	 $%�
�,
��	 $#�
�,
��	
Commit %$�
�,
��	 %%�
�,
��	 %#�
�,
��	
Abort #$�
�,
��	 #%�
�,
��	 ##�
�,
��	

Table 1. Necessary conditions dependencies

 Begin Commit Abort

Begin 3$$�
�,
�� 3$%�
�,
�� 3$#�
�,
��
Commit 3%$�
�,
�� 3%%�
�,
�� 3%#�
�,
��
Abort 3#$�
�,
�� 3#%�
�,
�� 3##�
�,
��

Table 2. Sufficent conditions dependencies

B. Modeling wT using dependencies

Using the above dependencies we can define aspects related

to the management of the transactional process. A

compensatory action associated to a subtransaction is defined

as two dependencies 3%# and $#. A
� replaceable by
� can
be defined as a dependency -�
� ,
�� ,
-�
� ,
�� or a
combination of both, depending of the specific context.

Control flow patterns [10], such as AND-join, AND-split,

OR-join, XOR-split, parallel-overlapping, parallel-including

and so on, can be modeled with these dependencies.

AND-join pattern defines that a group of subtransactions

have to execute a primitive task before another(s)

subtransaction(s) can execute a primitive task. Since it defines

necessary conditions to execute a primitive task related to the

execution of others subtransactions’ primitive task, it is

modeled as a set of necessary conditions dependencies. For

example $%�
� ,
�� and $%�
� ,
�� define a AND-join pattern

between
� ,
� ,
� where the commitment of
� ,
� is needed
to begin
�.

OR-join pattern defines a relationship between a group of

subtransactions, say
� ,
� , and another one, say
� . The
execution of the primitive task of any subtransaction
� ,
� is
a sufficient condition to execute the primitive task of
�. So

 Casado, Podart, Godart and Younas

Test Case Design for Transactional Flows Using a Dependency-based Approach 32

this pattern is modeled as two sufficient conditions

dependencies 3$%�
� ,
�� and 3$%�
� ,
��
AND-split pattern defines that once a subtransaction has

executed a primitive task, another(s) subtransaction(s) can

execute a primitive task. A common use is the serial

execution, defined as $%�
� ,
��, where the subtransaction
�
has to wait until
� has committed before it can begin.

XOR-split pattern defines a relationship between a group

of subtransactions, say
� ,
� , and another one, say
� . This
relationship specifies that one and only one subtransaction

must commit in order to enable
� to begin. According to the
definition, XOR-split pattern is defined by a composite

dependency -�
� ,
�� and two necessary conditions

dependencies 3$%�
� ,
�� and 3$%4
� ,
�5.
Two different subtransactions, say
� ,
� , follow the

parallel overlapping pattern if and only if the begin of
�
precedes the begin of
� , the begin of
� precedes the
commitment of
� , and the commitment of
� precedes the
commitment of
� . This pattern is defined as three

dependencies 4
� ,
�5 , %$�
� ,
�� and %%4
� ,
�5. In a similar

way, they follow the parallel including pattern if and only if

the begin of
� precedes the begin of
�but the commitment of

� precedes the commitment of
�. This pattern is defined as
two dependencies $$4
� ,
�5 and %%4
� ,
�5.

Name Description Definition Example

Weak commit

dependency,

�%�
�,
��

If both sx and sy commit, then the

commitment of
� precedes the
commitment of sy.

6�
�� 	⇒ 	 	6�
�� 	⇒ 	 76�
�� 	� 	6�
��8	�

If a paper is accepted in a conference then it

was sent before the deadline

Weak abort

dependency,

�#4
�,
�5

If
� aborts and
� has not been
committed, then
� aborts 9�
�� ⇒ 	 :;<64
�5 � 	9�
��= ⇒ 	94
�5>

If the user cancels the information request
process, the query is not sent to the

database

Termination

dependency,

1�
�,
��

�� cannot commit or abort until
�
either commits or aborts 64
�5 ∨ 9�
�� ⇒ 	6�
�� ∨ 9�
��

The final outcome of a process cannot be

sent until other process has finished

Exclusion

dependency,

-�
�,
��

Only one of both
� and
� can
commit <6�
�� ⇒ 	94
�5= ∧ 76�
�� 	⇒ 	9�
��8

When two hotel providers have been

queried, only one can confirm the
reservation

Strong exclusion
dependency,

s-�
�,
��
One of both
� and
� must commit <9�
�� ⇒ 	64
�5= ∧ 79�
�� 	⇒ 	6�
��8

If there are two possible means of transport,
one of them has to be booked for finishing

the travel reservation

Table 3.Composite dependencies

C. From a business process to primitive tasks relationships.

A business process can be modeled in terms of primitive tasks

relationships. Let assume as example the WS transaction

depicted in Figure 1.

Figure 1. WS transaction example

The initial step is to define the subtransactions involved in

the process. According to the figure, we partially define the

process as �� � 	�, ��, � � 	
A,
�,
B,
C,
D�.
The next step is to identify the control flow patterns (e.g.

AND-split) and the transaction management aspects (e.g.

replaceable subtransactions). The example shows a workflow

where
A	is the first subtransaction to be executed. When
A
has committed,
� and
Bcan begin (AND-split). Both
� and

Bare required to commit before
Ccan begin (AND-join). If

�is aborted after it had committed, it is necessary to execute

D to undone its action (compensatory action, denoted by the

broken line). Those relationships are modeled using the

dependencies as had been shown before. So we define the set

of dependencies as

� � 	$%�
A,
��, $%�
A,
B�, $%�
�,
C�, $%�
B,
C�, 3%#�
�,
D�,
$#�
�,
D��

Logical conditions are specified tailoring the dependencies.

They define a logical expression that fire a primitive task once

is evaluated as true. In other words, they specify a

precondition to be enforced before the subtransaction can

execute the task. E-./(6'(��
�� defines the logical

expression, derived from
�´s dependencies, that controls the
subtransaction
� beginning. It is structured as

E-./(6'(��
�� � �F� 	∧ …	∧ 	F�� 	∨ 	4�� 	∨ …	∨ 	�G5 , where
N is a necessary condition and S a sufficient condition. In a

similar way we can define 6'00/16'(��
�� and

9$'216'(��
��. In this way, the last step in the business
process modeling is to define the E-./(6'(�, 6'00/16'(�
and 9$'216'(� expressions for all the subtransactions. To
define those expressions is necessary to check all the

dependencies where the primitive task is involved. If the

dependency defines a necessary condition, it will be added to

the left part of the expression (F�H� , linked by). If it is a

sufficient condition, it will be added to the right part of the

expression (�GH� , linked by). The logical expressions for

the example are presented in Table 4. The symbol * means

that there are no conditions, in other words, the logical

expression is always true.

 IJKLMNOMP�QL� NORRLSNOMP�QL� TUOVSNOMP�QL�
WX * * *

WY 6�
A� * *

WZ 6�
A�* * *

W[6�
��∧ 6�
B�		 * *

W\ 9�
�� 9�
�� *

Table 4. Boolean Expressions in the Example

 33

III. Dependency-based testing
The main goal of this work is to define test criteria for testing

the dependencies. We base our approach on the

subtransactions primitive tasks relationships. A test criterion

is defined as a set of rules that impose test requirements and

must be fulfilled by the test cases. A coverage criterion

provides guidance for tests definition making this process

more efficient and effective. Many test coverage criteria have

been proposed such as path coverage, branch coverage, data

flow coverage and so on [11]. These criteria are applied over

some kind of model of the software under test. For example

path coverage can be used on a graph that represents the states

and transitions of a software component. We define test

criteria to be applied on the dependencies model explained in

Section II.

We propose a set of criteria based on two primitive set of

criteria: task-based and conditions-based. Task-based refers

to the primitive task(s) that are checked in the subtransactions.

Conditions-based refers to the criteria used to check the

conditions that compose the logical

expressions E-./(6'(� , 6'00/16'(� and 9$'216'(� .

Finally, these two primitive criteria are combined to

define a family of test criteria.

A. Task-based criteria.

They are regarding the subtransactions primitive tasks to be

exercised. Three criteria are defined:

All-begin criterion (ABC): All the subtransactions must

begin at least once.

All-commit criterion (ACC): All the subtransactions must

commit at least once.

All-commit-abort criterion (ACAC): All the subtransactions

must commit and abort at least once.

ACC subsumes ABC since any subtransaction needs to

begin before committing. Obviously ACAC includes ACC

and, therefore, also include ABC. A more exhaustive criterion

requires more primitive tasks to be executed and therefore, a

higher effort testing process.

Let define a test suite as � � 	1%�, … , 1%�, where each 1%�

is a test case that describes which primitive tasks have to be

executed (and which not) in an execution of a web transaction

�� � 	�, ��.We can formally the previous criteria as follow:

� satisfies the all-begin criterion for wT if ∀
� ∈ �, ∃ 1%G

 �/ E-./(6'(��
�� � 12x-.

� satisfies the all-commit criterion for wT if ∀
� ∈ �,

∃ 1%G �/ 6'00/16'(��
�� � 12x-.

� satisfies the all-commit-abort criterion for wT if

∀
� ∈ �, ∃ 1%G �/ 6'00/16'(��
�� � 12x- ∧ ∃ 1%y �/

9$'216'(��
�� � 12x-.

B. Conditions-based criteria.

They are to check the conditions that compose the logical

expressions E-./(6'(�, 6'00/16'(� and 9$'216'(�:

Decision criterion (DC): Every logical expression has taken

true and false outcome at least once.

Decision/Condition criterion (DCC): Every logical

expression has taken true and false outcome and all conditions

in each logical expression have taken true and false outcome

at least once.

Modified condition/decision coverage (MCDC) [8]: Every

logical expression has taken true and false outcome at least

once, all conditions in each logical expression have taken true

and false outcome at least once, and each condition has been

shown to independently affect the logical expression´s

outcome (both true and false).

DCC subsumes DC and MCDC subsumes both DC and

DCC. In the same way as task-based criteria, a deeper

criterion requires a higher testing effort.

These criteria are formally defined as follow. Let define a

transaction �� � 	�, ��, a test suite � � 	1%�, … , 1%� and a

logical expression { ∈ {BeginCond, CommitCond,

AbortCond}.

T satisfies DC for wT if ∀
� ∈ �, ∃ 1%G �/ {�
�� �

12x- ∧ ∃ 1%y �/ {�
�� � 3#|
-.

T satisfies the DCC for wT if ∀
� ∈ � , (∃ 1%G �/

{�
�� � 12x- ∧ ∃ 1%y ∈ �/ {�
�� � 3#|
-) ∧ (∀ %'(� ∈

 {�
��, ∃ 1%} �/ %'(� � 12x- ∧ ∃ 1%} �/ %'(� � 3#|
-)

T satisfies the MCDC for wT if ∀
� ∈ � , (∃ 1%G �/

{�
�� � 12x- ∧ ∃ 1%y ∈ �/ {�
�� � 3#|
-) ∧ (∀ %'(� ∈

 {�
�� , ∃ 1%~ �/ {�
�� � 12x- ⇒ �;%'(� ⇒ {�
�� �

3#|
-� ∧ ∃ 1%� �/ {�
�� � 3#|
- ⇒ �;%'(� ⇒ {�
�� �

12x-�

C. Dependency-based criteria.

Combining both primitive criteria, we define a family of

criteria for testing dependencies in web services transactions.

For each task-based criteria any conditions-based criteria can

be applied. So we define nine criteria labeled as T-C where T

is a task-based criterion and C is a condition-based criterion.

T defines what primitive task will be exercised and, therefore,

what logical expressions will be used. C defines what criterion

will be used to exercise the conditions in such logical

expressions. The proposed criteria are ABC-DC, ABC-DCC,

ABC-MCDC, ACC-DC, ACC-DCC, ACC-MCDC, ACAC-DC,

ACAC-DCC, ACAC-MCDC.

For example, in the ACC-DCC criterion, ACC requires all

the subtransactions to commit, so the logical expressions to be

used are 6'00/16'(��
��. DCC requires all the conditions

in each logical expression to take true and false outcome at

least once. So ACC-DCC criterion is defined as follow:

ACC-DCC: All the subtransactions must commit at least

in one test case, all subtransaction must not commit at least in

one another test case and all conditions in the committing

logical expression have taken true and false outcome at least

in one test case. Formally, let �� � 	�, �� , and � �

	1%�, … , 1%� , ∀
� ∈ � , (∃ 1%G �/ 6'00/16'(��
�� �

12x- ∧ ∃ 1%y ∈ �/ 6'00/16'(��
�� � 3#|
-) ∧

(∀ %'(� ∈ 6'00/16'(��
�� , ∃ 1%} �/ %'(� � 12x- ∧

∃ 1%} �/ %'(� � 3#|
-)

In the same way as is shown for ACC-DCC, the rest of

dependency-based criteria can be defined.

IV. Example
In order to show the complementarity of our approach with

existing verification-based techniques, we will use the

example presented in [3]. In that work, the authors presented a

method to ensure the correctness of WS compositions. Here,

 Casado, Podart, Godart and Younas

Test Case Design for Transactional Flows Using a Dependency-based Approach 34

we use the test criteria to check those identified requirements

in the design phase regarding the implementation.

The example is an application dedicated to the online

purchase of personal computer (OCP). This application is

carried out by a composite service as illustrated in Figure 2.

We assume the process design has been correctly verified so

our goal is to find faults in the implementation. Services

involved in this application are: the Customer Requirements

Specification (CRS) service used to receive the customer

order and to review the customer requirements, the Order

Items (OI) service used to order the computer components if

the online store does not have all of it, the Payment by Credit

Card (PCC) service used to guarantee the payment by credit

card, the Computer Assembly (CA) service used to ensure the

computer assembly once the payment is done and the required

components are available, and the Deliver Computer (DC)

service used to deliver the computer to the customer (provided

either by Fedex (DF) or TNT (DT)).

Figure 2. OCP application

The whole purchase process is identified as a WS

transaction. As is identified in [3], several dependencies are

necessary between the subtransactions. Some dependencies

are directly defined by the flow patterns (e.g. AND-split

pattern). On the other hand, some dependencies are required

due to the relationship between subtransactions. If OI service

is does not complete, the payment service PCC has to be

compensated. In the same way, OI is compensated by cOI

since if PCC fails, the order must be undone. Also there is a

dependency between the delivery services since only one and

only one must commit. The WS transaction is modeled as is

shown in Section II.B. The logical expressions derived from

the dependencies in the OCP example is shown in Table 5.

����� � 	���� , �����
���� � 	6��, ��, %��, �66, %�66, 69, ��, ���
�_�6� � 	$%�6��, ���, $%�6��, �66�,				$%���, 69�,
		$%��66, 69�, $%�69, ���, $%�69, ���,
		3%#���, %�66�, $%��66, %�66�, 3%#��66, %���,
		$%���, %���, -���, ���, 3-���, ���	�

 IJKLMNOMP�QL� NORRLSNOMP�QL� TUOVSNOMP�QL�
N�� * * *

�� 6�6��� * *

��� 9��66�∧ 	6���� 9��66� *

�NN 6�6��� * *

��NN 9����∧ 	6��66� 9���� *

NT 6���� ∧ 6��66� * *

�� 6�69� * 6����
�� 6�69� * 6����

Table 5. Logical expressions in OCP application

A. Use of test criteria

Since there are infinite possible test cases, it is necessary to

define a subset of all possible tests. A test criterion will

provide guidance for test cases generation. A test case is a

specific way of executing the application in order to cover one

or more requirements defined by the test criterion. To our

field, such requirements are the value of the conditions that

compose the logical expressions. So a test case describes

which primitive tasks have to be executed (and which not) in

an execution of a web transaction.

Once the dependency-based criterion is chosen, the next

step is to systematically apply it over the model. Let assume

we want to apply ABC-MCDC for OCP application. The

task-based (ABC) criterion specifies that all subtransactions

have to begin at least in one test case and not to begin in at

least another different test case, so the BeginCond expressions

will be used. Since the condition-based criterion is MCDC,

every condition of each BeginCond expression has to take a

true outcome in at least one test case and a false outcome in at

least another different test case and, in both case, the value has

been shown to affect the final expression´s outcome. For

example the BeginCond for CA subtransaction is

E-./(6'(��69� � 6���� ∧ 6��66�, as is shown in Table
V. MCDC criterion applied over E-./(6'(��69� require
one test case where the expression takes the false outcome due

to 6��66� is false. 6��66� may be false because it has not

begun. In order to make true C(OI), it requires CRS

subtransaction to commit. So the conditions are defined

(T=true, F=false) as B(CRS)=T, C(CRS)=T, B(OI)=T,

C(OI)=T, B(PCC)=T. It defines a situation where CRS

receives and successfully reviews the customer requirements

and then contacts with OI and PCC. While the OI service

achieves correctly its goal (begin and commit the

subtransaction), the PCC service does not execute its

subtransaction. In this way, according to the defined

dependencies, CA service must not begin and thus, the rest of

process is not executed. The rest of test case according to the

criteria can be defined in the same way. As example, we

present in Appendix A the algorithm to apply the ABC-DC

and obtain automatically the test conditions according to such

criterion.

The application of the proposed test criteria allows

deriving positive and negative test cases.

A positive test case exercises the application in a right

way, in other words, according to the specification. For

example the test scenario TC1 identified in Figure 3 achieved

using ABC-DC criterion. Dash means that it does not matter

what is the value. The test scenario defines the following

execution: The Customer Requirements Service (CRS)

receives y reviews successfully the customer order. The Order

Items service (OI) has successfully ordered the required items

and the payment has been successfully done using the

Payment service (PCC). These two actions have been begun

in parallel. Later, the computer is successfully assembled.

Finally the two delivery services are notified to check their

availability to be used. This test case could detect failures of

extra dependency implementation; for example, if OI waits to

order the items until PCC has charged the payment, the whole

process will take longer time keeping the resources busy and

maybe rejecting new orders where they are actually free.

 35

A negative test case exercises the application in a wrong

way. It means that the execution tries to break the

specification. This kind of test case can detect fault of

dependencies implementation omission. For example the test

scenario TC2 identified in Figure 3, achieved using the

ABC-DC criterion too. This test case tries to order and to

charge without reviewing the customer requirements. If the

scenario can be executed, a failure will be detected: the

constraints of successfully committing of CRS before OI and

PCC can begin are not implemented. So a purchase of

incompatible items for a personal computer can be allowed.

Figure 3. Test case design

V. Evaluation
In order to evaluate the test scenarios generated guided by our

test criteria, we follow the method proposed in [12]. The

method, based in specification-based mutation, allows

measuring completeness, adequacy and coverage of test sets.

Mutation analysis is a fault-based testing technique that uses

mutation operators to introduce small changes into a

specification, producing faulty versions called mutants. For

instance, an insertion mutation operator can replace a boolean

condition with a disjunction of the condition and another

boolean condition. Applying the set of operators

systematically generates a set of mutants. If a test set can

distinguish a specification from each slight variation, the test

set is exercising the specification adequately. When a test set

identifies a mutant, it is said that the mutant was killed. Better

test sets are those which kill more mutants. Here we apply

mutation operator over the logical expressions defined by the

dependencies. We generate first order mutants of the

specification, in others words, only one fault is injected in

each mutant. We use a subset of the mutation operations

proposed in [13]:

Mutation of actions

Action Replacement Operator (ARO): Replace a

subtransaction action by another. For example, replace

E-./(6'(��
�� � 64
G5 ∧ E�
y� with E-./(6'(��
�� �
94
G5 ∧ E�
y�

Missing Action Operator (MAO): Omit an action. For

instance, replace E-./(6'(��
�� � 64
G5 ∧ E�
y� with

E-./(6'(��
�� � 64
G5

Action Insertion Operator (AIO): Insert an action, that is,

replace a condition c with % ∗ � where d is another action of
any subtransaction involved in the expression, ∗	 is either
conjunction o disjunction. For example, replace

E-./(6'(��
�� � 64
G5 ∧ E�
y� with E-./(6'(��
�� �
64
G5 ∧ E�
y� 	∧ 	6�
}�

Mutation of logical operators

Logical Operator Replacement (LOR): Replace a logical

operator (∧, ∨) by another logical operator. For example,

replace E-./(6'(��
�� � 64
G5 ∧ E�
y� with

E-./(6'(��
�� � 64
G5 ∨ E�
y�

Mutation of subtransactions

Subtransaction Replacement Operator (SRO): Replace a

subtransaction involved in an action by another. For example,

replace E-./(6'(��
�� � 64
G5 ∧ E�
y� with

E-./(6'(��
�� � 6�
}� ∧ E�
y�

A. Early results

Our method allows automatically deriving test conditions

for validating the dependencies implementation. As a first

approach, the test sets for OPC application are defined using

ABC-DC, ACAC-DC and ACC-MCDC criteria. They are

shown in Appendix B.

As we explained section IV, the test conditions define two

kinds of test scenarios. Positive test scenarios exercise the

application in a right way, in other words, according to the

specification (e.g TC1.2). Negative test scenarios exercise the

application in a wrong way. That is mean that the execution

try to break the specification (e.g. TC1.6).

The evaluation carried out shows that all mutated

specifications were killed by the test cases generated using

our approach. Some faulty specifications, achieved using the

mutation operators, are shown in Appendix C. For example

MUT1 introduces a relaxation in cPCC begin conditions due

to the original specification requires OI to be aborted while

MUT1 only requires OI to be begun. This mutation is killed

with the test scenario defined in TC3.2. In that case, the

expected result is that cPCC does not begin since OI begins

and commit but not aborts, but according to MUT1 cPCC

would begin. In a similar way MUT2 and MUT3 can be killed

by different test scenarios.

VI. Conclusions
 Transactions are key issues to ensure consistency in WS

compositions. Since the ACID properties became unsuitable

in a loosely coupled world of services, new models have been

proposed to deal with the problem of achieving an agreed

outcome without locking the resources. These advanced

models decompose the transaction in smaller independent

subtransactions and rely on strict dependencies between them.

The literature presents many works about dependencies

verification at design phase and this paper complements such

works addressing the verification of the implementation with

regard to the specification. In this paper we have presented a

set of test criteria to guide the test case generation. The criteria

are based in the logical conditions defined by the

dependencies that manage the execution of the

subtransactions primitive tasks. Our work is focused on

failure detection of the dependency requirements after the

implementation phase. So this work is a complementary

approach to the formal verification-based approach proposed

in [3]. Whereas the formal verification checks if the

specification is wrong, our approach allows detecting if the

implementation does not match the specification.

Although the proposed criteria allow deriving test cases

from a specification, more research is needed to improve the

method. A deeper analysis will contribute to identify

relationships between the test effort of each criteria and its

 Casado, Podart, Godart and Younas

Test Case Design for Transactional Flows

effectiveness. The mutation based evaluation

are in the right track.

Acknowledgment

This work has been performed under the research project

TIN2010-20057-C03-01, funded by the Spanish Ministry of

Science and Technology. This work also has been funded by

the research grant BES-2008-004355.

References

[1] A. K. Elmagarmid. Database transaction models for

advanced applications: Morgan Kaufmann

Publishers, 1992.

[2] W. Gaaloul, M. Rouached, C. Godart, and M.

Hauswirth. "Verifying composite service

transactional behavior using event calculus". In

Proceedings of the 2007 OTM Confederated

international conference on On the move to

meaningful internet systems: CoopIS, DOA,

ODBASE, GADA, and IS - Volume Part I

Portugal, pp. 353-370, 2007.

[3] S. Bhiri, O. Perrin, and C. Godart. "Ensuring

required failure atomicity of composite Web

services". In Proceedings of the 14th international

conference on World Wide Web

138-147, 2005.

[4] R. Casado, J. Tuya, and M. Younas.

Long-Lived Web Services Transactions Using a

Risk-Based Approach". In 10th International

Conference on Quality Software (QSIC)

337-340, 2010.

[5] R. Casado, J. Tuya, and M. Younas. "Testing the

Reliability of Web Services Transactions in

Cooperative Applications". In 27th ACM Symposium

on Applied Computing (SAC), Ri

Trento, Italy, 2012.

[6] M. Bozkurt, M. Harman, and Y. Hassoun. "Testing

Web Services: A survey". Department of

Computer Science, King's College London,

Technical Report TR-10-012010.

[7] G. Canfora and M. Penta. "Service

Architectures Testing: A Survey", in

Engineering: International Summer Schools, ISSSE

2006-2008, Salerno, Italy, Revised Tutorial Lectures

ed: Springer-Verlag, pp. 78-105,

[8] R. Casado, J. Tuya, and C. Godart.

"Dependency-based criteria for testing web services

transactional workflows". In

Conference on Next Generation Web Services

Practices (NWeSP), Salamanca, Spain, pp. 74

2011.

Test Case Design for Transactional Flows Using a Dependency-based Approach

evaluation shows that we

This work has been performed under the research project

01, funded by the Spanish Ministry of

Science and Technology. This work also has been funded by

Database transaction models for

: Morgan Kaufmann

W. Gaaloul, M. Rouached, C. Godart, and M.

Hauswirth. "Verifying composite service

transactional behavior using event calculus". In

the 2007 OTM Confederated

international conference on On the move to

meaningful internet systems: CoopIS, DOA,

Volume Part I, Vilamoura,

S. Bhiri, O. Perrin, and C. Godart. "Ensuring

atomicity of composite Web

Proceedings of the 14th international

conference on World Wide Web, Chiba, Japan, pp.

R. Casado, J. Tuya, and M. Younas. "Testing

Lived Web Services Transactions Using a

10th International

Quality Software (QSIC), pp.

R. Casado, J. Tuya, and M. Younas. "Testing the

Reliability of Web Services Transactions in

27th ACM Symposium

, Riva del Garda,

M. Bozkurt, M. Harman, and Y. Hassoun. "Testing

Web Services: A survey". Department of

Science, King's College London,

012010.

G. Canfora and M. Penta. "Service-Oriented

Architectures Testing: A Survey", in Software

Engineering: International Summer Schools, ISSSE

2008, Salerno, Italy, Revised Tutorial Lectures,

 2009.

R. Casado, J. Tuya, and C. Godart.

based criteria for testing web services

transactional workflows". In 7th International

Next Generation Web Services

, Salamanca, Spain, pp. 74-79,

[9] G. J. Myers. The art of software testing

York, 1979.

[10] S. Bhiri, C. Godart, and O. Perrin. "Transactional

patterns for reliable web services compositions". In

Proceedings of the 6th international conference on

Web engineering, Palo Alto, California, USA, pp.

137-144, 2006.

[11] H. Zhu, P. A. V. Hall, and J. H. R. May. "Software

unit test coverage and adequacy",

Surv., vol. 29, pp. 366

[12] E. A. Paul. "A Specification

to Evaluate Test Sets". pp. 239

[13] E. B. Paul. "Mutation Operators for Specifications".

pp. 81-81, 2000.

Author Biographies

Rubén Casado received the B.Sc. degree in computer
science in 2005 and the M.Sc. in computer science in 2008

from University of Oviedo, Spain. He is currently a PhD

candidate at University of Oviedo. He has collaborated
with Oxford Brook University (Oxford, UK) and

LORIA/INRIA team (Nancy, France) as visiting

researcher. His research interests include
web services and distributed transaction process

Javier Tuya is Full Professor at University of Oviedo,

Spain, where is the research leader of the Software
Engineering Research Group. He received his PhD

Engineering from the University of Oviedo

of the Indra-Uniovi Chair, member
JTC1/SC7/WG26 wo

Software Testing

corresponding AENOR National Body working group
His research interest

process improvement, verification

software testing.

Claude Godart is Full

Henri Poincare´, Nancy 1, France. He is
SCORE team, LORIA laboratory and INRIA team

the responsible for the Computer Sciences Department of

ESSTIN, Nancy, France.
research papers and has supervised 24 PhD theses.

proper interests include consistency of data in distributed

systems, workflow models and systems, web services and
virtual enterprises.

Muhammad Younas

science in the Department of Computing

Communication Technologies

University, Oxford, UK. He received his
computer science from the University

He has a strong record of publica

journals, conferences and work
three books and been involved in organizing many

international conferences.

Web and database technologies, transaction processing,
agent technology, and mobile computing..

36

of software testing, Wiley, New

S. Bhiri, C. Godart, and O. Perrin. "Transactional

patterns for reliable web services compositions". In

Proceedings of the 6th international conference on

, Palo Alto, California, USA, pp.

H. Zhu, P. A. V. Hall, and J. H. R. May. "Software

unit test coverage and adequacy", ACM Comput.

vol. 29, pp. 366-427, 1997.

E. A. Paul. "A Specification-Based Coverage Metric

to Evaluate Test Sets". pp. 239-239, 1999.

B. Paul. "Mutation Operators for Specifications".

received the B.Sc. degree in computer
science in 2005 and the M.Sc. in computer science in 2008

from University of Oviedo, Spain. He is currently a PhD

candidate at University of Oviedo. He has collaborated
with Oxford Brook University (Oxford, UK) and

LORIA/INRIA team (Nancy, France) as visiting

researcher. His research interests include software testing,
web services and distributed transaction processing.

is Full Professor at University of Oviedo,

the research leader of the Software
neering Research Group. He received his PhD in

from the University of Oviedo. He is Director

Uniovi Chair, member of the ISO/IEC
working group for the ISO/IEC 29119

 standard and convener of the

corresponding AENOR National Body working group.
His research interests include software engineering,

process improvement, verification & validation, and

is Full-Time Professor at University

Henri Poincare´, Nancy 1, France. He is member of the
SCORE team, LORIA laboratory and INRIA team. He is

the responsible for the Computer Sciences Department of

y, France. He has published more than 180
and has supervised 24 PhD theses. His

proper interests include consistency of data in distributed

flow models and systems, web services and
.

Muhammad Younas is a Senior Lecturer in computer
science in the Department of Computing and

Communication Technologies, Oxford Brookes

University, Oxford, UK. He received his PhD degree in
computer science from the University of Sheffield, UK.

He has a strong record of publications in international

journals, conferences and workshops. He has also edited
and been involved in organizing many

international conferences. His research interests include

and database technologies, transaction processing,
y, and mobile computing..

37

Appendix A

Algorithm ABC-DC (input wT: web_transaction; output ts: test_suite)
{

s_stack: stack of subtransactions
s: subtransaction
tc: test case
ts: test suite

s_stack = S(wT)
while (s_stack is not empty)
{

s = s_stack.pop
if (there is not tc in ts where begin(s) = true)
{

tc= empty;
tc+= (begin(s)=true);
tc+= BC_true (s);
ts+=tc;

}
if (there is not tc in ts where begin(s) = false)
{

tc= empty;
tc+= (begin(s)=false);
tc+= BC_false (s);
ts+=tc;

}
}
return tc;

}

auxiliary procedure BC_true (input s: subtransaction; output tc: test_case)
{

tc: test_case
s: subtransaction

tc=empty;
if (BeginCond(s) = true)
{
 return tc
}
else
{
 for each condition c in BeginCond(s)
 {

s=subtransaction involved in c
tc+= (Begin(s)=false)
tc+=BC_recursive(s)
if (BeginCond(s) is true when c is true)

return tc;
}

}
}

auxiliary procedure BC_false (input s: subtransaction; output tc: test_case)
{

tc: test_case
s: subtransaction

tc=empty;
if (BeginCond(s) = false or BeginCond(s) is empty)
{
 return tc
}
else
{
 for each condition c in BeginCond(s)
 {

s=subtransaction involved in c
tc+= (Begin(s)=false)
tc+=BC_recursive(s)
if (BeginCond(s) is false when c is false)

return tc;
}

}
}

 Casado, Podart, Godart and Younas

Test Case Design for Transactional Flows Using a Dependency-based Approach 38

Appendix B

 CRS OI cOI PCC cPCC CA DF DT

TC1.1 Begin,

Commit

Begin, Commit - Begin,

Commit

- Begin,

Commit

Begin Begin

TC1.2 Begin,

Commit

- - Begin,

Commit

- - - -

TC1.3 Begin,

Commit

Begin, Commit - - - - - -

TC1.4 Begin Begin,

Commit, Abort

- Begin,

Commit

Begin - - -

TC1.5 Begin - Begin Begin,

Commit,

Abort

Begin,

Commit

- - -

TC1.6 - Begin - Begin - - - -

Test conditions for OPC application using ABC-DC criterion

 CRS OI cOI PCC cPCC CA DF DT

TC2.1 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

- Begin,

Commit

TC2.2 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

Begin,

Commit

Begin,

Commit,

Abort

TC2.3 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

Begin,

Commit,

Abort

Begin,

Commit

TC2.4 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit,

Abort

- -

TC2.5 Begin,

Commit

Begin,

Commit,

Abort

- Begin,

Commit

Begin,

Commit

- - -

TC2.6 Begin,

Commit

Begin,

Commit,

Abort

- Begin,

Commit

Begin,

Commit,

Abort

- - -

TC2.7 Begin,

Commit

Begin,

Commit

Begin,

Commit

Begin,

Commit,

Abort

- - - -

TC2.8 Begin,

Commit

Begin,

Commit

Begin,

Commit,

Abort

Begin,

Commit,

Abort

- - - -

TC2.9 Begin,

Commit,

Abort

- - - - - - -

Test conditions for OPC application using ACAC-DC criterion

39

 CRS OI cOI PCC cPCC CA DF DT

TC3.1 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

- Begin,

Commit

TC3.2 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

Begin,

Commit

-

TC3.3 Begin,

Commit

- - Begin,

Commit

- - - -

TC3.4 Begin,

Commit

Begin,

Commit

- - - - - -

TC3.5 Begin,

Commit

Begin,

Commit,

Abort

- Begin,

Commit

Begin,

Commit

- - -

TC3.6 Begin,

Commit

Begin,

Commit,

Abort

- Begin - - - -

TC3.7 Begin,

Commit

Begin,

Commit

Begin,

Commit

Begin,

Commit,

Abort

- - - -

TC3.8 Begin,

Commit

Begin - Begin,

Commit,

Abort

- - - -

TC3.9 Begin - - - - - - -

Test conditions for OPC application using ACC-MCDC criterion

Appendix C

MUT1 E-./(6'(��
�� 6'00/16'(��
�� 9$'216'(��
��
6�� * * *

�� 6�6��� * *

%�� 9��66� ∧ 	6���� 9��66� *

�66 6�6��� * *

%�66 E���� ∧ 	6��66� 9���� *

69 6���� ∧ 6��66� * *

�� 6�69� * 6����
�� 6�69� * 6����

Examples of specification mutation using ARO

MUT2 E-./(6'(��
�� 6'00/16'(��
�� 9$'216'(��
��
6�� * * *

�� 6�6��� * *

%�� 9��66� 9��66� *

�66 6�6��� * *

%�66 9���� ∧ 	6��66� 9���� *

69 6���� ∧ 6��66� * *

�� 6�69� * 6����
�� 6�69� * 6����

Examples of specification mutation using MAO

 Casado, Podart, Godart and Younas

Test Case Design for Transactional Flows Using a Dependency-based Approach 40

MUT3 E-./(6'(��
�� 6'00/16'(��
�� 9$'216'(��
��
6�� * * *

�� 6�6��� * *

%�� 9��66� ∧ 	6���� 9��66� *

�66 6�6��� * *

%�66 �9���� ∧ 	6��66��
∨ 	6����

9���� *

69 6���� ∧ 6��66� * *

�� 6�69� * 6����
�� 6�69� * 6����

Examples of specification mutation using AIO

MUT4 E-./(6'(��
�� 6'00/16'(��
�� 9$'216'(��
��
6�� * * *

�� 6�6��� * *

%�� 9��66� ∧ 	6���� 9��66� *

�66 6�6��� * *

%�66 9���� ∧ 	6��66� 9���� *

69 6���� ∨ 6��66� * *

�� 6�69� * 6����
�� 6�69� * 6����

Examples of specification mutation using LOR

MUT5 E-./(6'(��
�� 6'00/16'(��
�� 9$'216'(��
��
6�� * * *

�� 6�6��� * *

%�� 9��66� ∧ 	6���� 9��66� *

�66 6�6��� * *

%�66 9���� ∧ 	6��66� 9���� *

69 6���� ∧ 6��66� * *

�� 6���� * 6����
�� 6�69� * 6����

Examples of specification mutation using SRO

