
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 5(2012) pp. 050–059
c© MIR Labs, www.mirlabs.net/ijcisim/index.html

Towards the Evolution of Publish/Subscribe
Internetworking Mechanisms with PSIRP

Augusto Morales Dominguez1, Oscar Novo2, Walter Wong3 and Ramon Alcarria1

1Technical University of Madrid
Madrid, Spain

amorales@dit.upm.es
ralcarria@dit.upm.es

2Ericsson Research
Jorvas, Finland

oscar.novo@ericsson.com

3University of Campinas
Campinas, Brazil

wong@dca.fee.unicamp.br

Abstract:
Despite its enormous success, the current Internet’s architec-
ture has not evolved in a scalable manner. There are many
issues concerning simple services that need complex network
systems in order to work. Future Internet Architectures are
candidates to solve some of the problems related to the current
Internet. This paper describes and evaluates a mechanism to
adapt and migrate the current Internet services to future net-
work architectures based on the Publish/Subscribe paradigm.
This paper also contributes to a soft transition mechanism for
seamless interoperability of the PubSubHubbub protocol to a
Future Internet Architecture.
Keywords: Publish/Subscribe, PuSH, Future Internet, PubSub-
Hubbub, internetworking, PSIRP

I. Introduction

The original idea of Internet was based on enabling com-
munication between two machines following the end-to-end
principle [15]. This functionality did not require many
complex communication layers, as long as it could transport
data from the sender to the receiver. However, the Internet’s
evolution has turned it into a mixture of different protocols,
models and architectures that brings an unnecessary com-
plexity [6] in the way nodes access to information. Taking
this into consideration, there are several research topics that
propose a new information-centric approach [7, 16] where
Internet is used to transfer information .

These research topics are focused on the concept that
standard users or information consumers do not have to be
concerned about the source of information, as long as they
can receive their data. In this case the network itself has
not only to provide the information, but also a mechanism
to locate it. This is a different approach from the current
host-centric network which Internet is based on.

Nonetheless, this information-centric approach [7, 16]
has risen as an opportunity to improve the architectural
limitations of current networks. One of the trends in
information-centric networks is to base the communication,
between network elements that are interested in information,
on the Publish/Subscribe paradigm [5]. This approach
replaces the traditional end-to-end communication paradigm
and its limitations concerning routing, privacy, security and
mobility. In this paradigm, there is an important decoupling
between location and information. In addition to that,
publishers and subscribers do not need to be synchronized,
which improves the overall network by simplifying data
access mechanisms, and therefore, saving network resources.

The design of information-centric networks [1, 3] should
take into consideration several requirements, including ad-
dressability, compatibility, and interoperability with existing
systems as well as compatibility with resource locators.
These requirements are directly related to new applications
that will be supported and use this new communication
paradigm. However, one of the most important factors is the
compatibility with existing Web technologies and Internet.
The importance of Web technologies is based on the fact
that it has been the core of the current communication
models and one of the reasons for the Internet’s success.
Consequently, these requirements alter the multitude of
new applications that will be supported and use this new
communication paradigm.

This paper proposes and tests an alternative for integrating
information-centric networks with existing host centric
networks, using Publish/Subscribe mechanism as the key
concept. There are many protocols that can be used for
this aim. However, we have focused on the PubSubHub-

MIR Labs, USA

ISSN 2150-7988 Volume 5(2013) pp. 050–059

bub (PuSH) protocol 1, which uses publish and subscribe
concepts in an application level and support real-time
communication as well. The integration has discovered
several issues and opportunities. One of these opportunities
is data identification, link, and conversion through different
networks. Following sections describe these opportunities in
more detail.

The organization of this paper is as follows. Section II
describes the background information for our work. Sec-
tion III presents the design of our host-to-information-centric
networking proxy, outlining the main features. Section IV
presents the implementation and Section V evaluates our pro-
posed architecture. Finally, Section VI summarizes the pa-
per.

II. Background

In this section, we briefly describe the background informa-
tion of our work: the PubSubHubbub Protocol and the PSIRP
Architecture.

A. The PubSubHubbub Protocol

PubSubHubbub is an open, server-to-server protocol
for distributed communication over the Internet using
Atom [10] and RSS 2 as a source format. It was created as
a mechanism to advance the state of the discussion in the
Publish/Subscribe space.

A decentralized Publish/Subscribe layer is missing from the
Internet architecture and its existence would enable new fea-
tures to the Internet, such as decentralized social networking.

In PubSubHubbub (PuSH), all content exchange between
publishers and subscribers runs through servers called hubs.
The hubs receive subscription requests from subscribers, post
updates to subscribers, and provides an endpoint URL to
which the publishers can post their feeds and updates.

B. High-Level PuSH Protocol Flow

Figure. 1: High-level PuSH Protocol Flow

In Figure 1, a potential subscriber initiates a HTTP transac-
tion requesting (1) the feed to which it wants to subscribe.
Once the feed is received, the subscriber discovers (2) the
publisher hub URL inside the feed. This information is de-
clared in the Atom [10] or RSS feed document via the

1PubSubHubbub Project Homepage -
http://code.google.com/p/pubsubhubbub/

2RSS 2.0 Specification - http://www.rssboard.org/rss-specification

< link rel = ”hub” href = ”URL” > element. The href
attribute contains the publisher hub’s endpoint URL.
If the Atom [10] or RSS feed document defines a publisher
hub URL, the subscriber registers (3) to the publisher hub
URL through its own hub making an HTTP POST request
to the hub URL. Additionally, the subscriber subscribes to
the topic that he is interested at. A topic identifies the feeds
to which the clients can subscribe to changes. Finally, when
the publisher publishes (4) new content, the publisher hub
fetches the publisher web feed and delivers (5) the new con-
tent to all registered subscribers by multicast.

C. The PSIRP Architecture

Research on information centric networks [13] [11] is
one of the many alternatives for designing the future In-
ternet Architecture. The EU FP7 Publish and Subscribe
Internet Routing Paradigm (PSIRP)3 (and its continuation
PURSUIT) project has proposed one of these alternative
architectures. The PSIRP architecture [14] proposes a
clean slate approach for the Internet, rethinking the basics
of the Internet model. The main idea is to substitute the
send/receive primitives from the current Internet with
publish/susbcribe down to the stack, i.e., rather than using
the IP address to send and receive data, PSIRP proposes
to publish data into the network and subscribe the data
from the network. Such approach has some advantages, for
instance, publishers and subscribers do not need to know
about the location of each one (there is not prior knowledge
of IP addresses) and subscribers can asynchronously receive
data from the network whenever it is ready (thus, clients
do not need to poll the servers frequently). Addition-
ally, features such as mobility, security and network-level
caching is natively supported in the publish/subscribe model.

PSIRP focuses on information rather than connections, thus,
clients focus on content identifiers rather than server’s IP
address where the content is located. In order to achieve that,
each piece of data has two types of identifiers associated, the
rendezvous identifier (Rid) and scope identifier (Sid). The
Rid is associated to each publication, where a publication
is the smallest piece of data identifiable, e.g., a Web-page,
a news feed or even a movie. Note that the identification
issue regards to the semantic meaning of the publication and
not its size. Therefore, Rids can be used to identify a broad
range of content in the network. The Rid is generated using
a strong cryptographic hash function over the publication
itself, for example, a SHA-1 cryptographic hash function
over the content. Thus, the generated identifier is strong
and collision resistant and able to be used as unique and
permanent content identifier. Any tampering attempt against
the publication will result in a different Rid.

The Sid represents one scope in the Internet, resembling a
virtual private network in the current Internet. One scope
represents an information domain but it is not limited to a
location, so it can be related to other kind of logical data, for
example, favorite videos and feeds, dislike images, etc. In
this way a scope allows to organize the information and set a

3PSIRP Project Homepage - http://www.psirp.org

Dominguez , Novo, Wong and Alcarria51

meaning to it. The Sid is randomly generated using a strong
cryptographic hash function, embedding security within the
identifiers. This way of information organized via flat and
independent labeling is effective since the architecture can
provide all its features: routing, security and identification,
using the information itself.

The PSIRP architecture is based on the following basic [17]
functions: Rendezvous, Topology Formation and For-
warding Fuction, which are depicted in the Figure 2. The
Rendezvous function is primarily concerned with associat-
ing subscriber and publishers under a specific information
scope, so that it can provide a control function for both
roles. Subscribers publish their interests into the network
and the interest packets are forwarded and stored in local
rendezvous. Whenever there is a publication, there is a
matching of interests between publishers and subscribers
and the content is delivered to the subscribers through
Topology Formation and Forwarding Function.

The Topology Formation is responsible for creating forward-
ing paths from the publishers to the subscribers. Whenever
requested by the Rendezvous, the Topology Formation
computes a set of paths interconnecting the publisher to
all subscribers. Note there that there can be more than
one subscribers, through it may require some multicast
communication abstraction. The Forwarding function is
responsible for forwarding each publication at each hop
to the correct destination. Rather than regular IP-based
forwarding, PSIRP use Bloom filter-based forwarding to
deliver the data [12].

The complete picture works as follows: subscribers sub-
scribe to publications and send a publication containing the
interest to the network. The network knows how to deliver
to the local rendezvous server through initial configuration
(e.g. bootstrapping process) and the interest is placed in the
server. Upon receiving a publication matching the interest,
it triggers the Topology Formation to find the path between
publisher and subscribers and asks for a set of bloom filters
for content delivery to the interested subscribers, which is
delivered to the publisher. Then, the publisher publishes
the data with these identifiers and the network perform a
check-and-forward at each hop until the data is delivered to
the subscribers.

Whenever publishers require a publication issue, they have
to use two identifiers: Rid and Sid. Since Rid and Sid are
decoupled from location, these identifiers can be generated
using random or hashing functions. On the other hand, when
subscribers want to access specific data, they only need to
know the Rid and Sid, and the network will take care of rout-
ing, access control and data forwarding.

III. Architectural proposal

One of the issues in the current Internet is the asynchronous
characteristic of several applications and services, for
instance, web feed distribution. Web feed distribution can be
done using different techniques. One of the most common
techniques is polling. Polling can affect the overall network

Figure. 2: PSIRP Architecture

performance, particularly; it can be significant when the
core network does not have enough capacity for managing
traffic. Consequently, there is resource wasting that could be
transferred to other applications that need more priority and
bandwidth. If we analyze this simplistic content distribution
scenario and take it to a larger scale, we can conclude
that Internet is capable of carrying out these simple ser-
vices but it is not being utilized efficiently to its full potential.

There are other approaches that help to improve the per-
formance. However, they also overuse resources through
continuous synchronizing. In conclusion, even if a technique
tries to improve the overall network using asynchronous
communication, the Internet architecture limits the number
of opportunities to improve the whole network.

The architecture described in this paper tries to deal with this
problem. Based on the Publish/Subscribe paradigm, the pro-
posed architecture describes mechanisms required to bridge
the host-centric and information-centric model together. The
PSIRP architecture works with an alternative communica-
tion scheme which is not compatible with any of the cur-
rent host centric networks and applications. Therefore, an
interoperability mechanism is needed between both architec-
tures. In addition, we have concentrated on the PubSubHub-
bub (PuSH) protocol, as the reference application protocol,
because of its similarity with concepts used by information
centric network.

A. Network Architecture Overview

Figure. 3: PSIRP/PuSH architecture

As shown in Figure 3, the architecture accomplishes seam-

Towards the Evolution of Publish/Subscribe In terne t working Mechanism with PSRIP 52

less interoperability between host-centric and information-
centric domains. As a first requirement, the host-centric
domain has to be agnostic around an existent lower layer
where data are transmitted, routed and managed. For this
task, the architecture is mainly based on network proxies
called PubSub Proxy Hubs (PSPH), which carry out all
the processes of translating, routing and adapting the
information between the different domains. One of the key
architecture’s challenges is to translate the information, and
its inherited attached location, to a native data network. In
a host centric network, the data meaning is given by the
location, for example, in the PuSH protocol the feed content
has the topic URL. So, it shows who is the data owner as well
as where it could be found. This concept does not exist in
the information-centric network because network elements
do not need it. Thus, the PSPHs keep this relationship across
different domains in order to transfer data back and forth,
without losing the information’s meaning. PSPH are in
charge of creating new information scopes which contains
the content of the feeds. In our proposed architecture the
PSPHs are in charge of the protocol communication. In
the asynchronous communication case, in the PSIRP side,
the architecture relies the message forwarding process
through the Rendezvous point existing in the PSIRP. This
task is executed using mechanisms provided by the PSIRP
architecture [17]. However, in the host centric side, the
PSPH requires to alter the end-to-end connection in order
to ensure compatibility with applications. So the PSPH
manages the TCP sessions at expenses of the performance.

On the border of each host centric domain a PSPH im-
plements the transforming mechanisms for carrying data
through TCP/IP and the information-centric network. As
the PuSH protocol needs some elements in order to deliver
information, there are PuSH hubs which manage the sub-
scription and publishing information related to the parties
interested on the feeds. These hubs communicate with the
PSPH following the PuSH standard using HTTP messages.
A PSPH also integrates some functionalities of the PuSH
hub, because it has to process the data flow and filter the
information.

Basically, when a client subscribes to a specific URL topic,
which represents the information the client wants, this re-
quest goes to the PuSH Hubs and then it communicates with
the PSPH using the PuSH protocol. The PSPH transforms the
requested information (the URL topic) into an information-
centric compatible request, previously generating the scope
identifiers <Sid,Rid>, and then expressing its interest on
this kind of information through the PSIRP network. In the
publisher side, when the content producer publishes data, it
goes to the PuSH server using PuSH messaging who informs
the PSPH regarding this new information. Thus, the PSPH
publishes the information in the PSIRP network using scope
identifiers, which were generated following a process we will
explain later. In order to deliver information from the PSIRP
publisher side to the subscriber, both identifiers Sid and Rid
must match.

B. Application Programming Interfaces

In the following section, we present the layer topology and
APIs used in the different parts of the architecture. It is in-
teresting to note that our proposed architecture does not have
any specific method in the terminal side. The communication
between the terminal and the PuSH hubs can be done using
different communication techniques. That communication is
not part of the architecture proposed in this paper.

1) PubSub Proxy Hub

The PubSub Proxy Hub (PSPH) follows the topology refer-
ence of the figure 4.

Figure. 4: PuSH/PSIRP Layer Topology

The first layer is called Control Function and it is in charge
of maintaining the subscription status of every PubSub Proxy
Hub. The subscription information is generated using the
correspondences between the callback URL, (of the specific
Hub) and the URL topic. Therefore, all the subscription
statuses are stored using Bloom Filters [2]. This function
allows a seamless interaction between the PuSH Hubs and
the PSPH without modifying any part of the PubSubHubbub
network.

The PSPH has to deal with two different naming systems:
the Sid/Rid and the URLs. In this way, it is necessary to
guarantee a stable relationship between them in order to
keep data consistency, as well as to maintain compatibility.
The URL is provided by the hierarchical model of the
Internet which prevents a naming duplication; as a result,
the PSPH must offer the same functionality in the PSIRP
side. Therefore, the Mapping/Conversion data function is
in charge of creating, manipulating and adapting identifiers.
This function also keeps the relationships ordered in a
hierarchical manner, which helps to easily look for corre-
spondences. Since the Rid/Sid are 256 bits identifiers, the
new PSIRP publications would overlap highly unlikely, so
this function allows the PSPH to handle two different kinds
of identifiers that point out the same information.

Dominguez , Novo, Wong and Alcarria53

The PSIRP API performs as the bridge with the PSIRP
Network, which publishes the information into the PSIRP
domain using Sid and Rid. The PSIRP API calls the
publish and subscribe primitives that later are received by
the Rendezvous nodes. Considering that the native Pub-
lish/Subscribe API provided by the Blackadder4 is pro-
grammed in C, and the other Proxy’s functions are Java
based, we employed an intermediate Java Native Interface
(JNI). This interface fulfills the bi-directional calling require-
ments for the PSPH implementation, and abstracts other in-
ternal identifiers (e.g. LIPSIN). Hence, PSPHs are designed
to perform as standard PSIRP nodes, but could also instanti-
ate the Rendezvous and Topology Manager functions without
affecting their core function.

2) PSIRP Network API

The PSIRP API makes use of the Blackadder v0.2.0 as
the PSIRP network platform. The current Blackadder
implementation offers two Java APIs: a SWIG-based and a
Java JNI library. We integrated the JNI library which - at
expenses of simplicity - offers better performance.

The first version of our prototype [4] used the Blackhawk
v0.3.05 implementation instead which, regardless of the ver-
sion number, is an older API version and less efficient.

C. Designed Architecture Features

There are different data mechanisms in the PubSubHubbub
and PSIRP domains. The PubSubHubbub domain uses stan-
dard URL in order to define where information is located, as
well as its meaning. This URL, called topic, identifies the
feeds to which the standard clients can subscribe to changes.
In this way, in the host centric domain, the client has only to
know the URL in order to obtain the information a publisher
is delivering using standard TCP/IP communication. On the
other hand, in the PSIRP network there are not TCP/IP pack-
ets. The information is distributed using publications iden-
tified with a <Sid,Rid>pair. When a publisher requests to
publish a new piece of information, it gathers up a Rid and
pushes it to the system. In the same way, when a subscriber
wants to get this piece of information, it acquires the Rid
and asks the Rendezvous system to arrange the data to be
received. Once the Rendezvous system has identified a pub-
lication that has a publisher and subscribers, the network re-
quests the topology system to build a forwarding tree from
the current data location to the subscribers. In this context,
the architecture has mechanisms for ensuring compatibility
between Sid/Rid and URL through the PSPH, which is in
charge of keeping relationships between the two different
naming systems involved.

1) Application Extensibility

The architecture allows flexibility in the case where other ap-
plications need to communicate through the PSIRP network.
The Control Function is completely detached from the PuSH
implementation, as well as the scope identifiers (Sid and Rid)

4Blackadder API v0.2.0 - https://github.com/fp7-pursuit/blackadder
5Blackhawk API v0.3.0 - code.psirp.org

are not limited by the information’s location. Therefore, in
order to support a different protocol the PSPH needs to im-
plement it, by adding an additional software module and of-
fering an interface to the Control Function which will take
care of the bridging mechanisms. This interface could be for
example an abstract JAVA interface (which was employed
in the validation scenario), or an XML-RPC based one. By
following this interface-based scheme new protocols can be
easily plugged, without affecting other PSPH’ tasks, as well
as, maintain flexibility from its location in the network.

2) Application Addressability

In the architecture, PSPHs are the only elements that in-
teract with all the domains. In our architecture the ap-
plication addressability cannot be completely managed by
the PSPH without interfering the network flow. In a stan-
dard scenario, the PSPH does not control the naming res-
olution system used by every PuSH hub or terminal. So,
it should communicate with the DNS system and update a
specific SRV record. An example of this SRV record [9]
might be: psirp. tcp.ericsson.com. 86400 IN SRV 0 5 1025
psph.ericsson.com. Therefore, any application could be eas-
ily addressable using an already present and simple process.
This is one of the available alternatives for not modifying ap-
plications and allows them access to information located in
other domains.

3) Server Selection

Our proxy-based architecture can introduce disadvantages
concerning reliability; as well as a single failure point could
affect the whole network and be a bottleneck. However,
the architecture allows introducing several PSPHs as the en-
trance point of the PSIRP network. In this case, network
elements can discover current available or preferred PSPHs,
in order to send the information. In the particular case of
the PuSH protocol, the presence of several Hubs allows to
have some sort of redundancy. In the same way, the pub-
lisher exactly defines which PuSH hub will be publishing
its information. So a subscriber will ask directly for this
data. However in complex scenarios with multiple PSPHs
and PuSH Hubs per domain, there may be information that
needs to be filtered before it reaches subscriber’s terminal. So
the existence of several PSPHs could leverage into data du-
plication. However, the PSIRP API performs data versioning
tasks, so every new generated publication unit is delivered as
a controlled event and the Rendezvous function keeps track
of it. Consequently, the proxy selection process in the host-
centric domain does not alter the PSIRP capabilities of car-
rying data, so most-sophisticated reliability mechanisms or
even load balancing techniques could be implemented.

IV. Implementation

The prototype is focused on two specific scenarios. In
the first scenario, the native Publish/Subscribe network
(PSIRP) carries feeds between the PubSubHubbub elements.
Feeds are published in the publisher domain, and then, the
subscriber gets them using a standard web browser. The
second scenario implements a synchronous chat application.

54Towards the Evolution of Publish/Subscribe In terne t working Mechanism with PSRIP

Figure. 5: Communication Diagram

The terminals used for testing end-to-end communication
ran Windows and Linux operating systems. The PSIRP net-
work is composed by two PSPH machines that are connected
through a 100/1000 Mbps Ethernet switch. Every PSPH has
two network cards attached, one for the PSIRP domain and
another for the PuSH domain. Since the PSIRP network does
not required IP packets in order to work, the PSPHs do not
have any other sort of IP layer configurations in the PSIRP
side. The additional network card has an IP which is part of
its specific PuSH hub. In addition, the PuSH Hubs are pro-
grammed in Java JDK 1.6, and run Ubuntu 10.04 64 bits, and
make use of the latest PSIRP implementation called Black-
adder v0.2.0, which is more efficient than the old Blackhawk
v0.3.0 implementation.

A. Publish/Subscribe Feed Scenario

When a client subscribes to a specific URL topic, which rep-
resents the information the client wants, this request goes to
the PuSH Hubs and then it communicates with the PSPH
using the PuSH protocol. The PSPH transforms the re-
quested information (the URL topic) into an information-
centric compatible request, previously generating the scope
identifiers <Sid,Rid>, and then express it interest on this
kind of information through the PSIRP network. In the pub-
lisher side, when the content producer publishes data, it goes
to the PuSH server using PuSH messaging who informs the
PSPH regarding this new information. Thus, the PSPH pub-
lishes the information in the PSIRP network using scope
identifiers. In order to deliver information from the PSIRP
publisher side to the subscriber, both identifiers Sid and Rid
must match.

1) Publish/Subscribe Feed Network Flow

In the first step (1), the Publisher informs the PSPH B that
there is new content available in its feed provider while

attach the href URL that identifies its feed. This PSPH
integrates the PuSH Hub’s functionalities in order to support
feed publishing and simplify the communication diagram.
Afterwards, the PSPH sends (2a) a content fetch request to
the right feed provider and gets (2b) the content which needs
to be published. Once it has the information, it publishes
(3) its willingness to provide content delimited by the Sid
and Rid, through the PSIRP network. These identifiers are
generated by the Conversion Function using the href URL as
the seed. In this step, the PSPH B initializes the PSIRP API,
which will be listening until it is informed that a subscriber
is interested in its content. In the same manner, the Mapping
function maintains a registry of active topics for controlling
the way future content, which match existing Sid/Rid, will
be published.

The client, within the Subscriber domain, who already
knows the href URL where data is located, subscribes (4) to
its preferred PuSH Hub. Then, the PuSH Hub sends (5) a
subscription message to the PSPH using the PubSubHubbub
protocol. The PuSH effectively locates the PSPH A IP
address by asking its DNS SRV record [9]. In the next steps,
the PSPH A issues (6) a subscription information using the
new Sid/Rid identifier. These scope identifiers are generated
by the Mapping/Conversion function by splitting the Fully
Qualified Domain Name (FQDN) and the host part of the
href URL. In this point, the subscription data is stored by
the Control Function using a Bloom Filter. Then, the PSPH
A makes use of the PSIRP API in order to send (6) the
subscription information to the PSIRP network.

When the PSIRP Rendezvous node receives the subscription
information from the PSPH A, it matches this subscription
with a publication that already exists in the network. Thus,
the Rendezvous Node sends (7) an Init Dissemination
Strategy messages to the Publisher. This message allows,

Dominguez , Novo, Wong and Alcarria55

the PSIRP API, sending (8a) the feed content to the
subscriber’s network address, through the LIPSIN [12]
identifier. From now on, every time a new piece of data
matching with a PSIRP identifier is available, the PSPH gets
the information event from the PSIRP network and recovers
the corresponding topic. Following this, the control func-
tion verifies the subscription status of the PuSH Hubs, and
pushes (8b) asynchronously the information to the right Hub.

In the next phases, the client gets the information (9) from
the PuSH Hub, using standard HTTP GET polling request
generated by its web-browser. The method the client uses to
receive these data is completely separated from the proposed
architecture. Indeed, there are other efficient mechanisms,
such as HTTP long polling or WebSocket6, which are more
suitable for this task.

In the final step, the PSPH B gets content (9, 10a, 10b) as
before. However, as it becomes aware of a previous publica-
tion under the same scope, and the subscribed has not been
unsubscribed, it directly republishes (11a) the new content to
the subscriber. In the same way, the PSPH A transmits (11b)
the information to the PuSH Hub and the client gets (12) the
content.

B. Bidirectional Chat Communication Scenario

The chat scenario shares similar characteristics with the
scenario explained in section IV-A. As we described in
section III-B.1, the PSPHs are slightly modified in the
Control Function Interface as the first entry point of chat
messages. We used the following XML data format for
transmitting messages between chat participants:

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:dc=
"http://purl.org/dc/elements/1.1/" version="2.0">

<channel>
<title>New message from:</title>
<link>http://ericsson.com/alice</link>
<description>Hello Bob! How are you?</description>
<dc:creator>alice@ericsson.com</dc:creator>

</channel>
</rss>

This scenario takes the chat participant username and the
domain (e.g. alice@mydomain.com) as the chat participant
identifiers, which are included in the same XML. This
scenario implements a similar hashing technique than the
one used in the scenario described in section IV-A in order
to generate Sid and Rid for the PSIRP network. In the whole
scenario, both chat participants subscribe to their buddies’
messages through the PSPH. However, they do not notice
the existence of the PSIRP network. This scenario assumed
that chat participants already know their buddys username
and domain. The chat scenario demonstrates that PSPHs
can support subscriptions and publications under the same
TCP/IP interface and accomplish bi-directional communica-
tion; however, there are still factors, which should be taken
into consideration, such as: user identification, security
and discovery mechanisms, but are out of the scope of this
publication.

6WebSocket API Homepage - http://dev.w3.org/html5/websockets/

Figure. 6: Chat Communication Scenario

C. Deployment of Applications

Because data discovering mechanisms are out of the scope
of this article, we assume the subscriber is aware about the
information which wants to subscribe. In both scenarios, a
terminal first subscribes to the PuSH Hubs using its web-
browser. Next, this PuSH hub communicates with the PSPH.
Consequently, our scenario does not need any specific con-
figuration in the terminal side. The same fact occurs in the
publisher’s side which does not need to be modified.
All the PuSH hubs follow the PubSubHubbub reference Hub
7. In the case different applications wish to communicate
through the PSIRP network, the PSPH has to implement ad-
ditional logic in order to understand the new protocol and the
data content. Thus, the control function could have filtered
information, register the clients subscription, and generate
the identifiers. In the Publisher’s side applications must fol-
low the same process.

V. Experiments

The purpose of this section is to evaluate the properties of
the PubSub Proxy Hub (PSPH), as well as, compare differ-
ent options to have a more efficient PSPH. The results of
these experiments led us to take some implementation deci-
sions in our new version of the prototype. The experiments
were based on the same PSIRP testing network described in
section IV.

A. Impact of the Publication’s Data Payload on the PSPH
Node

The first measurement examines how the payload of a
publication messages affects the processing time of the
PSPH node. The measurements of the different payloads
range from 287 bytes to 1442 bytes. The minimum payload
is marked as 287 bytes which is the smallest consistent
payload the PSPH node should send or receive following the
Atom RFC [10]. The maximum payload is 1442 (1500 - 58
= 1442). This 58 bytes is the theoretical maximum TCP/IP
overhead. If a packet is larger than this value, the packet is
fragmented before arrives to the PSPH.

Figure 7 shows the data delay aggregated by the PSPH node
as the data payload increases. The X axis shows the data
payload while the Y axis shows the time (in seconds) since
the publication is issued to the network until the PSPH node,
which acts as subscriber, receives the information.
The results show that the average delay is 9.607ms. As the
delays are quite consistent, we confirm that the implemen-

7http://code.google.com/p/pubsubhubbub/wiki/DeveloperGettingStartedGuide

56Towards the Evolution of Publish/Subscribe In terne t working Mechanism with PSRIP

Figure. 7: Impact of the Publication’s Data Payload

tation performs stable and there is not a real impact in the
PSPH node.

B. Impact of the Number of Publications on the PSPH Node

The second measurement examined how the number of
publications affects the PSPH latency. As explained in
section III-A, the PSPH node must perform a conversion
function for every topic URL and the Sid /Rid identifiers.
These processes not only affect the subscription events
that have to be inserted into the PSIRP network but also it
increases the conversion and matching functions that must
be carried out. For this reason, we focused on keeping a
sustainable delay since data is received until the data is
available to the right subscribers.

In the first version of our prototype [4], we matched topic
URL events and their corresponding subscribers using
standard Java vectors classes. This method, which allowed
us to keep ordered topics and subscribers information, was
enough for a basic tested scenario where topics keep below
than 50. However, as the figure 8 shows, this method lacks of
performance when the PSPH node needs to register multiple
topics. Thus, we have implemented a new storage strategy
for topics by using Bloom Filters8, which have proved to
offer space and time advantages over hash tables, arrays and
other data structures.

Figure. 8: Impact of the Number of Publications

Figure 8 depicts the advantages we introduce by using Bloom

8Java-BloomFilter API- https://github.com/magnuss/java-bloomfilter

Filters in the matching processes. We have set the Bloom
Filter’s expected number of elements in ten millions, and the
false positive probability to 0.00001%. In the first evalua-
tion phase the vector strategy performs better than the Bloom
Filter strategy, mainly, because the PSPH node has to ini-
tialize the Bloom Filter and the vector comparison make use
of already loaded java classes. The topics’ processing time
threshold starts in 50, and we can clearly sustain that us-
ing Bloom Filters provides much better performance than the
previous strategy.

C. Impact of the Bloom Filter’s key-selection on the PSPH
Node

The PSPH node - when acts as a subscriber node- has
to maintain a persistent state between the topic URL and
the subscribers subscribed to that topic. Our implementa-
tion uses Bloom Filters to keep this data persistent. How-
ever, there are two different alternatives to store the topic-
subscribers correspondence information in the Bloom Filter.
The first alternative carries out a Subscriber-based matching,
in which the Bloom Filter is sorted out by subscribers. The
Topic-based matching approach sorts out the data by topics.

Figure. 9: Bloom Filter’s key-selection

The third measure studies how the key selection of the
Bloom Filter affects its processing time. This option con-
siders the case when some data has been sent to the PSPH
nodes and the PSPH node has to distribute this data to the
different subscribers in the host centric network.

Figure 9 shows the difference in delay in the matching pro-
cess using both approaches while increasing the amount of
topics that are recorded in the matching registry. The Topic-
based matching approach is four times faster, on average,
than the Subscriber-based matching approach. These results
emphasize the use of the Topic-based matching approach in
the implementation.

VI. Conclusion

We have presented and evaluated an alternative for inte-
grating current host centric network with a Future Internet
Architecture 9, as well as proved that a real time feed
protocol such as PubSubHubbub can be supported over
PSIRP [8] by developing our proxy-based architecture. Our

9http://www.psirp.org

Dominguez , Novo, Wong and Alcarria57

contribution does not pretend to demonstrate which of the
several Future Internet Network Architectures provide the
best advantages. However, it is clear that even with the
deployment of novelty network, migration mechanisms are
still needed. Some architecture model proposals for Future
Internet are based on the Publish/Subscribe paradigm,
which presents many advantages over the classic send-
receive paradigm, such as decoupling between location
and information and asynchronous communication. Hence,
with the purpose of providing a feasible migration path, it is
necessary to define interoperable solutions among current In-
ternet services and the capabilities offered by Future Internet.

The architecture proposed in this paper achieves interoper-
ability between the currently evolving PSIRP architecture,
which proposes a new Internet model based on Information-
centric networks, and the PuSH protocol, which enables dis-
tributed communication between publishers and subscribers.
In addition we have validated solutions for migrating a chat
application into the PSIRP network using PubSub Proxy
Hubs, as an additional example of future service interoper-
ability. Other issues have been addressed, such as subscrip-
tion, mapping and conversion of different identifiers. Since
information and location are decoupled in the PSIRP archi-
tecture, our paper proposes a solution for taking advantage of
this characteristic by generating compatible identifiers from
standard Internet resource identifiers.
In conclusion, after the evaluation phase, we confirmed that
the amount of subscription entries in the PSPH node can be
increased using a Topic-based Bloom Filter strategy. We
have also found that our Proxy barely affects the performance
of the Inter-network communication, when the size of the
payload increases. Thus, as our architecture’s implemen-
tation scales well for feed content, we have provided stan-
dard evaluation information which could be useful for future
large-scale deployments with multiple PSPHs.

Acknowledgments

We would like to thank Jimmy Kjällman for his help with the
Blackhawk and the Blackadder implementation’s. Also, we
would like to thank Kristian Slavov.

References

[1] S. Arianfar, P. Nikander, and J. Ott. On content-centric
router design and implications. ACM Workshop on
Rearchitecting the Internet (ReArch) at Conext 2010,
2010.

[2] Andrei Broder and Michael Mitzenmacher. Network
applications of bloom filters: A survey. Internet Math-
ematics, pages 636 – 646, 2002.

[3] Lagutin D and Tarkoma S. Forwarding challenges and
solutions for a publish/subscribe network. ICT Mobile
Summit 2009, 2009.

[4] Augusto Morales Domingues, Oscar Novo, Walter
Wong, and Tomas Robles Valladares. Publish/subscribe
communication mechanisms over psirp. Next Genera-
tion Web Services Practices (NWeSP), 2011 7th Inter-

national Conference on, pages 268 – 273, December
2011.

[5] P. Eugster, P. Felber, R Guerraqui, and A. Kermarrec.
The many faces of publish/subscribe. ACM Computing
Surveys, 2003.

[6] Anja Feldmann. Internet clean-slate design: What and
why? Computer Communication Review, ACM SIG-
COMM, 2007.

[7] Nikolaos Fotiou, George C. Polyzos, and Dirk Trossen.
Illustrating a publish-subscribe internet architecture.
Journal on Telecommunication Systems, 2011.

[8] Nikos Fotiou, George C. Polyzos, Pekka Nikander, and
Dirk Trossen. Developing information networking fur-
ther: From psirp to pursuit. an invited paper in 7th
International ICST Conference on Broadband Commu-
nications, Athens, Greece, 2010.

[9] IETF. RFC 2782. A DNS RR for specifying the location
of services (DNS SRV).

[10] IETF. RFC 4287. The Atom Syndication Format, 2005
December.

[11] Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, and Rebecca L.
Braynard. Networking named content. Proceedings of
the 5th international conference on Emerging network-
ing experiments and technologies, Rome, Italy, 2009.

[12] Petri Jokela, Andras Zahemszky, Christian Esteve
Rothenberg, Somaya Arianfar, and Pekka Nikander.
Lipsin: line speed publish/subscribe inter-networking.
SIGCOMM ’09: Proc. of the ACM SIGCOMM 2009
Conference on Data Communication, 2009.

[13] G. Pallis and A. Vakali. Insight and perspectives for
content delivery networks. Communication Magazine.
ACM 49, 2006.

[14] PSIRP. PSIRP Publish-Subscribe Internet Routing
Paradigm. Deliverable D3.5. Final Description of the
Implementation, 2010.

[15] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Trans. Comput.
Syst., 2:277–288, November 1984.

[16] Dirk Trossen, Mikko Sarela, and Karen Sollins. Argu-
ments for an information-centric internetworking archi-
tecture. SIGCOMM Comput. Commun, 2010.

[17] A. Zahemszky, A. Csaszar, P. Nikander, and C.E.
Rothenberg. Exploring the pub/sub routing & forward-
ing space. IEEE International Conference on Commu-
nications Workshops, 2009.

58Towards the Evolution of Publish/Subscribe In terne t working Mechanism with PSRIP

Author Biographies

Augusto Morales received his B. Sc
(2007) from the University of Panama,
and his M.Sc. (2010) from the Tech-
nical University of Madrid, Spain.
Since 2008 he has been working in
several areas related Distributed pub-
lish/subscribe Middlewares, Service
Architectures and Network Security
while he pursues his PhD. He holds

several IT Certifications such as CEH, Security+, Linux+ and
CCSE. He is member of IEEE and ACM

Oscar Novo received his M. Sc. de-
grees in Telecommunication Software
and Computer Science from the Aalto
University (Finland) and from the
Universidad Politècnica de Catalunya
(Spain). He is currently working at
Ericsson Research in Finland. His
research interests include signaling,
multimedia applications, and transport

protocols.

Walter Wong received his B. Sc and
M. Sc and Ph.D. degrees in 2005,
2007 and 2011 from the University of
Campinas, Brazil. Since 2011 he is
reseacher at CPqD and University of
Campinas. His research interests in-
clude clean-slate architectures, secu-
rity protocols and naming systems.

Ramon Alcarria received his Mas-
ter’s degree in Telecommunication En-
gineering from the Technical Univer-
sity of Madrid in 2008. Currently, he
continues his studies as a PhD student
and participates in several national and
international research projects. His re-
search interests are Service Architec-
tures, Sensor Networks, Service Com-

position and Prosumer Environments. He is a member of
IEEE, IEEE Communication Society and ACM.

Dominguez , Novo, Wong and Alcarria59

