
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 5 (2012) pp. 060-068
© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs USA

On the Development of Browser Games – Current
Technologies and the Future

Juha-Matti Vanhatupa

Department of Software Systems,

Tampere University of Technology,
P.O.Box 553, FIN-33101 Tampere, Finland

juha.vanhatupa@tut.fi

Abstract: Browser games are played directly in web
browsers. Consequently they do not need software installation.
A modern browser game is a sophisticated combination of client
and server software. Nowadays there is a wide range of
different technologies used to implement browser games.
Traditional implementation technologies have gained new
competitors, browser plugin players, which allow sophisticated
graphics. In this paper we present technologies that are used to
implement browser games and also accessories used in those.
Especially we concentrate on use of game engines in browser
game development, and give thoughts what kind of features
such game engine should possess. Towards the end of the paper
we discuss the future of the browser game genre, and also the
future possibilities of a web browser as a gaming platform.

Keywords: browser games, multiplayer games, web technologies,
web browser, application runtime, server-side scripting.

I. Introduction
Browser games are computer games played directly in the web
browser and do not need software installation. This
accessibility has made those extremely popular and browser
games have lured many players who would never buy a
regular computer game to start playing.

In the recent years, the evolution of browser games has
been fast and a lot of new ones have been launched. There is
also been evolution on technologies used in browser games.
Traditional implementation technologies, PHP, ASP and Java
jsp-pages have gained new competitors in the form of browser
plugin players, which allow use of sophisticated 3D graphics.

In addition to implementation technologies, different kinds
of accessories for browser games have appeared. The games
can be located inside an application platform, for example
Facebook social utility [16]. Different browser plugins are
used to enchant play experience either to process game data
for the player, or to modify the game graphics. Game engines
have a strong position in regular computer game development
and recently those have appeared into browser game
development also. Most likely eventually those will establish
same position in browser game development also.

In our previous paper [53] we presented a definition for a
browser game, different browser game types, and financial
opportunities related to the genre. The paper was later
extended with community aspect and published in [54]. In
this paper, we present technologies used to implement
browser games and technologies used in browser game
accessories. The rationale is that because of different software
platforms (Web vs. binary), a game engine for browser games
needs different kind of features than a traditional game
engine. Currently there is no common understanding what
features are important for such game engine. In this paper we
present a proposal for these feature sets. We also discuss the
future of the browser game genre as a whole. This paper is
based on earlier conference article [55], but it has been
extended with numerous technical details and with game
engine specifications aspect.

The rest of the paper is structured as follows. In Section 2
we present our definition of a browser game and background
from our previous article. In Section 3 we present
technologies used in browser games. In Section 4 we discuss
accessories used alongside browser games. In Section 5 we go
through background of game engines, and in Section 6 we
discuss game engines for browser game development. In
Section 7 we focus on use of web browser as a gaming
platform. In Section 8 we discuss the future of the browser
games. In Section 9 we present related work, before
concluding remarks in Section 10

II. Background
In this paper, we are interested and discuss browser-based
games, which fulfill properties presented in our earlier paper
[53]. Our category is quite similar to the category of long-term
browser-based games, often referred as persistent
browser-based games, presented in [45]. The main difference
is that our definition is stricter, for example the game must be
a multiplayer game to belong our browser game genre. There
are also lots of other browser-based games, since for-example
a solitaire played in Internet does not fulfill multiplayer
property and by no means is an always running persistent

ISSN 2150-7988 Volume 5 (2013) pp. 060-068

Juha-Matti Vanhatupa 61

world necessary for a browser-based game. In this article, we
use term browser game and are interested about
browser-based games, which fulfill following properties:

1) the game is a multiplayer game,

2) the game can be played directly in web browser (no
separate game specific software installation),

3) the game is always on,

4) the game duration is long or eternal and

5) each player has an account, which is used to play the
game.

Properties 3 and 4 together with the fact that results of several
actions – for example moving troops or reallocating resources
– can be seen only after real world time has passed, creates an
unique type of gameplay to browser games. The player can
make a few actions requiring only a moment of real world
time and return later to see the results of these actions.
Whereas regular computer games and massively multiplayer
online role-playing games (MMORPGs) require hours long
continuous play. The study [30] among over 8200 players of
strategy browser game Travian [48] suggests that flexibility,
in essence easy-in easy-out gameplay, was one of the two
primary reasons to play browser games. The other primary
reason found was social relationship involved in the game
play. Browser games are social games, and huge online
communities have birth alongside browser games [54]. The
online comminute gathered alongside the game can be a huge
motivating factor for playing, and when considering to quit
playing, the community might be the reason why players keep
playing [45].

Originally browser games appeared at 1990s, for example
the Earth 2025 [15] was released in October 1996. It is said to
be the first one of unique, interactive games designed to be
played directly on the web. Nowadays web access has become
almost standard in modern houses and modern mobile phones
are able to access the web. This development has lead to the
explosion of the number of browser games. One important
motivator in recent growth of browser games is the popularity
of application platforms like Facebook social utility [16].
Facebook lets users to program their own browser games, and
supports several programming languages.

MMORPGs are also popular multiplayer games. Those are
separated from browser games, because those games have
installation software, which must be bought. However, the
gameplay of a role-playing browser game, for example
RuneScape [44] can be very close a regular MMORPG as it is
can also be played in hours long intensive sessions. Thus the
different genres easily merge to gain the best properties of
both genres.

III. Browser Game Technologies
A browser game consists of several components. The
server-side application runs the game and is executed at the
server. A web browser used to access the game acts as the
client-side application. Databases are used in the server-side

to store huge amount of data needed in browser games.
Components of a browser game are presented in Figure 1.

Figure 1. Browser game components.

A. Server Application
The server side applications must be robust and fast reacting.
Main technologies are application runtimes, which are
installed into web browser as plugins and server-side
scripting. In addition to these two main technologies there are
others used to implement the user interface and
communication with server, and these are listed as a third
group.

1) Application runtimes
Adobe Flash player [2] is a cross-platform browser-based
application runtime. It is usually used for dynamic games
with 2D graphics. Flash player combines animation engine
with programming environment. Flash is built on an
object-oriented language called ActionScript [1]. Flash Player
has advantage in running graphics when compared to server
side-scripting as PHP. However, 3D graphics are not as good
as 2D graphics in Flash. Flash Player has small system
resource requirements and can be run in Windows, Linux and
Mac operating systems. A good example of browser game
using Flash Player is Dark Orbit [13], a strategy / shooter
game with over 35 million registered users. The player
controls his starship and fights against other players. Dark
Orbit also offers chance to win real money.

Adobe Shockwave Player [3] can be used 3D games with
rich graphic environment. However, at the moment it is
mostly used for single player games played in web browsers
instead of multiplayer browser games. Shockwave Player is
not available for Linux operating system.

Microsoft Silverlight [36] is a development platform that
can be used to create applications for web, desktop and mobile
devices. Silverlight applications can be written in any .NET
programming language and .NET development tools can be
used in programming Silverlight applications. At the moment
there is not yet many browser games developed using
Silverlight, but it is a potential environment for those games.
There is an open source implementation for Linux named

 On the Development of Browser Games – Current Technologies and the Future 62

Moonlight [39], which is developed by Novell in cooperation
with Microsoft.

Java applets [27] are usually small applications run in the
Java runtime in web browser. However, it can be used for
full-scale browser games, RuneScape [44] is a very popular
game launched already 1999 is done using a Java applet.

Unity web player [50] can run games built using Unity
game engine [51]. The games build on top of Unity have
smooth graphics. For example, Battlestar Galactica Online
[9] launched at February 2011(beta test), gathered two
million registered players in three months [10], and at the
moment has almost nine million registered players. However,
Unity web player is not available on Linux and in general it
has not yet spread wide.

Modern application runtimes can run many different
operating systems. Available operating systems for
application runtimes are presented in Table 1.

Table 1. Application runtimes in different operating

systems.

Application
runtime

Windows Linux Mac

Flash Player Yes Yes Yes

Shockwave Yes - Yes

Silverlight Yes (Yes) 1 Yes

Java Yes Yes Yes

Unity Yes - Yes

1) Silverlight has an open source implementation for Linux.

2) Server-side Scripting
PHP [42] is a general purpose scripting language, especially
suited for web development. PHP scripts can be embedded
into HTML [23] documents. When a client browser requests
file from the server, PHP is first interpreted in the server to
HTML and then delivered to the browser. PHP is widely used
in text-based browser games. It is more popular in browser
games than its competitors, for example Perl or Python.

Perl programming language [41] used with CGI [11] are
widely used for web development. Perl has powerful text
processing facilities, and those are also useful when dealing
with SQL. It is made to be easy to use, efficient and complete;
however, using Perl, it is also easy to make unsecure web
application.

Python [43] is another widely used programming language
for web applications. It has a wide collection of web
development tools and framework. However, those are not
designed for web game development.

JavaServer Pages (JSP) [29] is a technology used to create
dynamic web pages, which separates the user interface from
content generation. JSP technology uses XML-like tags to
encapsulate the logic that generates the content for web page.
The page accesses server-side resources such as JavaBeans
through those tags. JavaServer Pages is an extension of Java
Servlet technology, which makes easier to combine fixed or
static templates with dynamic content. Hyperiums [25] is a

strategy browser game running since 2001 build on Java
technologies. Hyperiums is purely text-based.

Active Server Pages (ASP) [34] is Microsoft’s first
server-side scripting environment. It allows creating and
running dynamic, interactive web server applications.
Usually VBScript is used with ASP, but it can be programmed
with any programming language, which supports ActiveX
scripting. ASP.NET [35] is a successor of ASP and no further
versions of ASP are planned.

Server-side JavaScript (SSJS) [12] refers to JavaScript [28]
run in the server-side, not downloaded by the application. In
addition to client-side JavaScript, server-side JavaScript
allows an application to communicate with a database,
sharing information between the users and perform file
manipulations on a server. Server-side JavaScript web pages
can also contain client-side JavaScript code.

3) User Interface and Communication
In addition to application runtimes and server-side scripting
other technologies are used too. However, a browser games
are rarely implemented using only those, commonly those are
used as a combination with mentioned ones. For example
JavaScript can be used to handle mouse clicks, and AJAX to
transfer data to PHP script acting as a game logic.

JavaScript [28] is a scripting language that can be used to
add dynamic content to web pages. It can be used to
implement web games and simple graphics. JavaScript was
originally created to run in the client-side, but since SSJS is
now available, a term client-side JavaScript (CSJS) is also in
use. WebGL [57] is an extension of JavaScript that allows use
of 3D graphics in a web browser. Currently, WebGL is
supported by Google Chrome, Mozilla Firefox 4, Safari and
Opera browsers.

AJAX [7] is a combination of web development
technologies used in the client-side to create interactive web
applications. These technologies communicate with the
server without interfering with the shown web page.
JavaScript is used to combine these technologies. Since AJAX
is a combination of technologies already exists in browsers,
AJAX requires no plugins or other additional components.
However, AJAX/JavaScript combination has difficulties to
handle differences between web browsers and need explicit
code to cover those.

B. Client Application
The only client application needed to run a browser game is
usually a web browser. The applications are also independent
from the operating system of the client computer. Figure 2
shows a typical user interface of browser game, Hattrick
football manager game [20].

However, each operating system cannot run every browser,
and this sometimes limits playing of a certain browser game.
Similar limitations relate also to other software in different
operating systems, for example, at the moment iPad is lacking
Adobe Flash Player support and browser games using it
cannot be played with iPad.

63

Figure 2. Hattrick Browser game user interface (Copyright
Hattrick Ltd, used with permission).

Modern mobile phones can execute web browsers quite
easily and those have increased popularity of browser games.
Many browser games offer mobile interfaces, which are
simpler versions of actual ones. Those have fewer graphic and
game user interface is structured for narrow screens of mobile
phones. Special installable versions of browser games for
mobile phones have also been made. These special versions
use the same resources as original browser games.

C. Databases
Browser games need reliable and fast databases. Since any
database errors and breakdowns can affect the gaming
experience of thousands players, reliability is an important
requirement. However, it is not extraordinary that a game
situation in a browser game needs to be reversed because of a
database error. Usually a game is shut down for some time
and reversed to previous valid situation.

Knowledge about which database is actually used is usually
secret for security reasons. Most likely choices for database
management systems in browser games are for instance
MySQL [40] or similar. For example, Hattrick football
management browser game mentioned above is believed to
run Microsoft SQL [37] on a Hitachi server park; however the
actual implementation of the game database system is known
only by the Hattrick Team [22].

D. Architecture
In [26] Häsel introduces two architectural choices for browser
games. The first, client-server architecture is traditionally
used for online games. The server keeps clients up to data and
client requests are delivered to the server, which responds and
sends data to the other clients.

The second, peer-to-peer architecture relies on peers that
have same responsibilities. Each peer has also own copy of the
game state. Peer-to-peer architecture uses less bandwidth and
can be more effective than client-server architecture. In this
architecture cheating can be hard to prevent as each player
has own copy of the game state, which can be vulnerable to
abuse.

IV. Accessories
In addition to the browser game itself, other applications can
be used in when playing the game or in the development
phase. The game can be located inside an application
platform, for example in the Facebook social utility [16].
Modern downloadable games are usually developed using
game engines, but those are yet rarely used in browser game
development. Browser plugins can enchant play experience,
either processing game data for the player or by modifying the
game graphics. Traditional installable application can also be
used for some specific tasks, where installation as a browser
plugin would not give any advantage, e.g. complicated
calculations, which are made weekly in real time.

A. Application Platforms
Browser games located in separate application platforms, for
example Facebook platform, can be programmed in several
different programming languages. The application code itself
is run in a separate server. Separate application platform can
offer lot of publicity for the application. However, if function
calls are linked through application platform API to the
application, it can downgrade the performance.

Application platform can be an advantageous environment
for a browser game, since the player has already registered to
the platform and he can start playing simply clicking the
game. This further lowers the starting threshold for a browser
game. Other benefit is that the players attract other players to
play certain games. A word about good games spreads rapidly
inside an application platform, either by a platform specific
way, like invitations in Facebook, or by using forums inside it.
This kind of spreading is natural since many application
platforms are social networking platforms, and therefore
reflect the social relationships of their users [33].

B. Game Engines
Game engines [18] are the most important tools in traditional
computer game development, but those have not established
in browser game development. There are potential for game
engines in browser game development, since browser games
have many common features, which could be implemented in
a product platform instead of the game itself. At present, some
game engines have been developed for browser game
development.

Unity game engine [51] can be used to develop browser
games, which run on Unity web player [50]. The game engine
is originally developed for regular computer game computer
games. Unity offers support for networking, scripting,
physics, lightning and advanced graphics. Unity can be
scripted using three programming languages, JavaScript, C#,
or dialect of Python named Boo.

Unusual Engine [52] is a game engine for browser-based
games. It is build on a standard Adobe Flash [2] and
ActionScript 3 [1]. Features of Unusual Engine include
networking, 2D and 3D graphics, physic engine, sound,
scripting, animation. Unusual Engine also has Facebook
support. Game engines are discussed in more detail in the
following sections.

Juha-Matti Vanhatupa

 On the Development of Browser Games – Current Technologies and the Future 64

C. Browser Plugins
A browser game can offer separate interfaces for browser
plugins. Good example of separate interface for browser
plugins is in Hattrick [20]. Application developers can
develop programs and get those approved by the Hattrick
team; those programs can be noticed from CHPP (Certified
Hattrick Product Provider) logo. There are general guidelines
on what a CHPP program may do and or not. For example, a
CHPP program may not track opponent’s player formation
changes, injuries or sold players. The system also makes it
possible to arrange friendly matches through Facebook.

Graphic packages installed as browser plugins can modify
browser game graphics. There can be several different themes
for game. These graphic packages do not change the rules of
the game and use of those has no in-game benefits. For
example there are several graphic packages for Travian.
Those change the appearance of buildings, maps, units, or any
other graphics item available in Travian.

Browser plugins are rarely used to implement basic
functionality of a browser game. However, for example The
Nethernet [47] is played through a special Firefox toolbar.
The story of game is about an Internet war between Order and
Chaos. The players browse the web and leave traps and other
tools to the websites, which affect others visiting same
websites. The Nethernet toolbar needs to be installed to play
the game, and it is installed to the web browser as plugin and
not as a traditional software installation.

D. Other Accessories
Separate installable applications are used as accessories,
when playing a browser games. Those can be more suitable
than browser plugins if the operation is only needed from time
to time and it would be overkill to launch the application
every time the browser game is played. For example, Hattrick
Manager [21] calculates optional line-up for the player’s
team, tracks players training progress, and offers many ways
to sort and present game data.

There are no limitations for programming languages used
in those external applications. However, the application needs
to be able to call functions in the browser game API if it wants
to access it. Usually these external applications must access
the browser game API to load the game data, which is then
used in the application.

V. Traditional Game Engines
A modern game engine is a massive collection of software
components. Typical components of a traditional game
engine are presented as layer architecture in Figure 3. The
core system refers to the most essential systems required by
the game engine, for example memory management, IO
access, and possibly other components required by the used
programming language and environment. In most game
engines the game loop, which calls other components, is
located into the core system.

Figure 3. Game engine components.

In addition to the run-time component of a game engine,
several separated tools are used when creating the game. Most
of these tools relate to content creation, for example, game
world editor, 3D modeling tool (for creating game characters
and items), audio tool. In theory, for those tools it does not
matter is the game browser-based or a regular computer
game. However, at the moment, browsers are not capable of
executing similar quality computer graphics as can be used in
traditional computer games. Although the situation is
changing and browsers are becoming more powerful
application platform.

VI. Game Engines for Browser Games
A game engine for browser games needs different kind of
features than a traditional game engine used to build
installable computer games. We have divided the features into
mandatory and optional categories. Mandatory features are
useful for all browser games. Optional features are features
that game engine for browser-based games can benefit,
however those features i) are not useful for every type of
browser games or ii) the benefit of having those is rather
small. In addition to these groups we have listed few features
that are common in traditional game engines, but are not
significantly useful in when building browser games.

A. Mandatory Features
Registration is the only mandatory step needed to start
playing a browser-based game. Since every browser-based
game needs registration system, the functionality could be
easily moved to the game engine. An application platform can
also be used to automate the registration process, and
therefore lower the starting threshold for playing the game.
Though, if application platform handles the registration,
registration functionality of the game engine is still needed to
execute player data to the game database.

Networking component is responsible for handling
network connections. The game engine would also ensure
that game data relates to correct players. In the game code the
players are seen only as a game object and no information
about how the player is connected is present, that information
is handled in the game engine.

Security features should be implemented in the game
engine, and in addition also in the game itself, because
security is cross-cutting aspect. Building security for
browser-based game starts from design of the game
application logic. Since the data send from the client can be
manipulated, the client should not be able directly to
command the server: (add points to this player or move this
player to …). The server should always check what the game
status is and ensure validity of client commands.

65

Database access is essential for every browser-based
game. It suits well for implemented in game engine level. A
game engine can offer easy access interface for using the
database, in this way the SQL statements are used only in the
game engine. The game code calls the game engine and data
that needs to be updated into the database is, for example
delivered as a parameter.

Player messaging system lets players send messages to
each others. It works as in-game email system. This kind of
slow messaging is suitable for most browser-based games.
However, many browser games based on the player’s fast
reflexes, for example shooter games, are too fast proceeding
that the players has no time for writing messages during
matchers. In those games, the messaging system could be
used between matches. In general, a player message system is
very useful feature for a game engine.

Graphic interface offers functions for easily presenting
graphics. It is necessary for all other types than text-based
games. Publishing text-based games to be played in browser is
truly a minor activity nowadays, therefore it can be
generalized that graphic interface is a mandatory feature.
Quality of a graphic interface can vary a lot from a few
functions capable of creating 2D graphics into full-scale 3D
interface.

B. Optional Features
Real-time player chat is a real-time chat between players.
Need for instant messaging depends heavily on the type of the
game. It might not be realistic to offer instant open chat in a
browser-based game with a thousand players. However, in
such game, a clan might need an internal communication
channel, and for example IRC is commonly used for such.

Audio component is also most useful in fast proceeding
action browser-based games. Many strategy browser-based
games do not include sound effects or music any kind. The
game flow of those games is slow; therefore sounds are not
needed for confirmations to user actions. In addition strategic
browser-based games are commonly played in public places
for example, in workplaces; the players would mute the
sounds anyway.

Animation system refers to ready-made interface offering
possibility to add animations to graphic objects in the game.
Benefits of animation interface are linked with level of
graphics needed by the game. Usually benefits of possibility to
animate graphics are very limited in development of strategic
browser-based games. However, a ready-made animation
interface could be very useful in fast-proceeding action
games.

Facebook support is one potential feature for a game
engine at the moment. Facebook social utility [16] is currently
the most popular website in the United States; it is very
popular in elsewhere too. An application platform can be
advantageous environment for browser-based game, since
those automate the registration process and can offer publicity
for the game.

Artificial intelligence (AI) engine is useful in most
browser-based games. However, all of them do not include
computer controlled players. For most browser-based games

AI engine does not need to be very sophisticated, basic
functionality that enables simple AI enemies to be
implemented easily is enough.

Physic engine is a common feature in traditional game
engines. However, its usefulness is questionable in a game
engine for browser-based games, because only a small amount
of those use a kind of 3D graphics that benefits from a physic
engine. Although there are many non-browser, installable
games using heavily physic engine. For example Angry birds
[6], is currently very popular, because modern touch screen
devices have made new forms of gaming possible. There are
also browser-based conversions of these games; however,
usually those are not multiplayer games and do not fill other
properties also.

C. Left out
A scripting interface is a very common feature of traditional
game engines. It can speed up the development of game
rapidly and can be left open, to provide an interface for
players to build their own modifications from the game.
However, many browser-based games are already built using
a script language; therefore there is no use of building a
separate interface for another scripting language. In addition,
because a server-side part of the browser-based game is
located to a server, it would be unwise to let players execute
their own script code to the game.

VII. Web Browser as a Gaming Platform
The Web has gone through a long evolution from a simple
document browsing and distributing environment to a rich
software platform [8]. These early roots of Web are still
evident and traditionally it has been difficult to build
sophisticated, interactive applications without using plugins.
This situation has hindered browser game development;
earlier browser games were purely text-based. Recently
plugins have spread and quality of graphics and other features
of browser games have improved.
 Forthcoming technologies will improve the situation even
further, those aim at improving the use of the Web as a real
application platform. The forthcoming HTML5 standard [24]
adds new features to existing HTML standard. From several
new features, some affecting game development are: ability to
embed video and audio directly to web pages, drag-and-drop
capabilities, graphic features and offline storage database.
This offline storage database possibly can be used to allow the
player make his moves in browser game even the network
connection is not available, and update the moves when the
network reconnects.
 WebGL [57], already mentioned in the technologies
section, is a cross-platform web standard for hardware
accelerated 3D graphics. It allows use of 3D graphics natively
in the web browser without plugins. Because this eliminates
the need to install separate plugins for gaming, it can have
great impact to browser game development and increase the
popularity of browser games.
 In general, the future of web browser as a gaming platform
seems bright. Currently new browser games are already in

Juha-Matti Vanhatupa

 On the Development of Browser Games – Current Technologies and the Future 66

quality close to their installable cousins and forthcoming
technologies will shorten the gap between those even further.

VIII. Future of Browser Games
The software industry is currently experiencing a paradigm
shift towards web-based software [46]. The majority of new
software applications intended for desktop computers are web
applications. Web-based software requires no installation or
manual upgrades and their distribution is superior to
conventional desktop-style applications.

We believe that the trend includes computer games as well
as other software applications, and playing directly from the
web without installation on the local computer, is finally the
future of all computer games. Playing can be also paid directly
on web. At the moment, almost all browser games are free to
play, but when the regular computer games transforms to be
played from the web, the profit must be created by monthly
payments. However, the gameplay of browser games and
regular computer games are different: short sessions often and
constantly on versus hours long intensive play. Therefore they
remain as separate game genres; even if both would be played
using web browser.

There are also signs that people use more time using
applications, which use the web directly, but less time on
browsing the web [4]. If this trend continues and external
applications are created to connect web resources, it helps the
user to access the browser game without selecting the game
from his bookmarks or typing the web address. Although the
player would use a platform specific, external application
(native app) when accessing the game from his computer or
mobile phone, the game is still accessible from public
computers through a web browser. This battle between
browser-based and native applications [38] will settle in the
future. However, as presented for success of browser games it
does not matter if native apps are created to access those. Of
course, it can be argued if a browser game accessed by native
app is truly a browser game, because native app is installable
software, but this is discussion is very close to nit-picking.

In the future mobile phones are even more close to personal
computers. This opens more market for browser games,
because people carry gaming device all the time, instead of
that gaming is limited to the time they are at front of a
computer.

Although, game engines have not established position in
browser game development, it is probable that those will be
important tools in the future in the field. Currently
application platforms automate the registration process in
browser games, but there are lots of common development
issues, for example networking, database access, player chats,
graphics, which can be implemented in a game engine. A
game engine for browser games would also add security
features like authentication of browser clients.

In addition to technologic issues, the success of browser
games depends on social aspect. The nature of browser games
is highly addictive, and usually the time spent on a browser
game increase daily. When the player starts playing a new
browser game, the game might need only a minute at the first

day. Then two minutes at the second day, and so on. In
strategy games the controlled territory expanses and the
player needs more time just to play at same level as before.
Even in manager games, where the basic functionality of the
game, for example matches played per week, is not
expanding, time used for searching new players and other
supportive actions increases as the player advances in the
game. The amount of real world time that the game demands
for the player to be affective in the game world and
interference with the gamers’ personal life, are two important
reasons why people quit playing online games [5]. However,
the social pressure can be smaller and constant playing more
acceptable, if the browser game is located inside a popular
application platform, which the player’s family and friends
use a lot. These social reasons to quit playing are difficult to
overcome by new technology innovations.

IX. Related Work
Development of sophisticated web applications has become
increasingly complex. Kuuskeri and Mikkonen [32] aim at
implementing “fat clients” and running application mostly on
the client. They have created a set of guidelines how
applications should be divided between the server and the
client. By following these directives application developers
can address the issues of complexity that are common in
modern web development. Their implementation is done
using server-side JavaScript. “Fat clients” could reduce the
server load and make a browser game run smoother as the
client could handle most user events. Security issues are
intentionally left out of the paper. However, those are very
important in browser games and secure environment is one
requirement for successful browser game.

The main drawback for games to use a peer-to-peer
architecture is lack of a central authority that regulates access
and prevents cheating. Hampel et al. [19] present a
peer-to-peer architecture based on an overlay network using
distributed hash tables with support for persistent object
storage and event distribution. They present concept of sets of
controlled peers that supervise each others. This kind of
redundancy can prevent cheating and improve stability by
eliminating single point of failures. Goodman and Verbrugge
[17] present a design for a cheat-resistant, scalable hybrid
network model for massive multiplayer online games. In their
design, the gamestate is still controlled by a centralized
server, acting both a login point and arbiter of client behavior.
Computations are distributed between clients to reduce
computational load and thus increase scalability of the central
server. Calculations are verified through a simple peer
auditing scheme. They present that cheating can be effectively
controlled in a semi peer-to-peer system with good scalability
and acceptable overhead.

Performance is one important requirement for
implementation technology of a browser game. PHP is a
widely used scripting language in text-based browser games.
Trent et al. [49] present performance comparison of PHP and
JSP as server-side scripting languages. They present that
under high loads JSP tends to perform better than PHP,

67

however, if a 5%-10% difference in throughput and
performance is acceptable, then implementers of a web
system can achieve similar results using either PHP or JSP.

In addition to already presented game engines for browser
games, Unity [51] and Unusual Engine [52], there are also
other game engines for browser game development.

Vision [56] is a commercial multi-platform game engine by
Trinigy. Vision was originally released in 2003. By using
WebVision, projects made using Vision game engine can be
ported to be the browser-based. WebVision is free for anyone
licensing Vision game engine.

Aves is a HTML5 game development framework for
JavaScript that does not use plugins to run. At the moment
Aves is owned by Zynga and it is not available for market,
however there has been discussion about releasing the gaming
component of Aves as open source. Most likely we will see
more game engines using JavaScript/HTML5 combination in
the future as the forthcoming standard HTML5 becomes
general.

Lively Kernel [31] is a platform for developing and hosting
client side applications implemented in JavaScript only.
Although Lively Kernel is not designed to be a game engine,
there are game applications present also in it, and it
implements some features required for a game engine. For
example user chat and user identification (registration) are
present in the latest version.

Facebook [16] platform already mentioned earlier contains
wide range of game applications. Di Loreto and Abdelkader
[14] show that in the Facebook context playfulness is linked to
blending of personal aspects and social aspects. The presence
of friends in Facebook is the lever to push players return to use
the application. In the end, the users themselves create
playfulness.

X. Conclusions
Since web access has become common and modern mobile
phones can also be used to play browser games, people have
more opportunities to play. Generally, the future of browser
games looks bright and it is probable that new technologies,
for example specific game engines for browser games, allow
even more sophisticated browser games. However,
non-technical issues are also affecting success of browser
games. Browser games are always running, therefore they are
very addictive and need a lot of time.

In this paper, we presented current technologies used to
implement browser games. Evolution has brought browser
games in quality closer to their regular counterparts. Most
likely this trend continues when game engines for browser
games become common and produce same quality
improvement as they did to the regular computer games. New
forthcoming web standards and technologies, such as HTML5
will also make the Web better gaming platform, improving
the quality of browser games.

Based on recent development towards web-based apps, we
claim that finally all computer games are played directly in
the web and not installed to the local computer. The trend will
cause improvement on web technologies, since almost all

software development is then web application programming
and the current wide collection of different web technologies
evolves into more sophisticated technologies and standards.
Possibly with the evolution of web technologies, the number
of technologies used to implement browser games, will
decrease, and some set of technologies and game engines,
instead of the current wide collection, will have a dominant
position in the browser game development.

References
[1] ActionScript Technology Center,

http://www.adobe.com/devnet/actionscript.html
[2] Adobe Flash Player,

http://www.adobe.com/products/flashplayer/
[3] Adobe Shockwave Player,

http://www.adobe.com/products/shockwaveplayer/
[4] C. Anderson and M. Wolff, “The Web is Dead. Long

Live the Internet”. Wired. pp. 118-127, 2010.
[5] D. Anderson, “The Dark Side of MMOGs: Why People

Quit Playing”. In Proceedings of CGAMES’2009, pp.
76–80, 2009.

[6] Angry Birds game, http://www.angrybirds.com/
[7] AJAX,

http://www.adaptivepath.com/ideas/essays/archives/00
0385.php

[8] M. Anttonen, A. Salminen, T. Mikkonen and A.
Taivalsaari. ”Transforming the Web into a Real
Application Platform: New Technologies, Emerging
Trends and Missing Pieces”. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC 2011),
pp. 800-807, 2011.

[9] Battlestar Galactica Online, browser game,
 http://us.battlestar-galactica.bigpoint.com/

[10] Bigpoint company press release,
http://bigpoint.net/2011/05/battlestar-galactica-online-
blasts-past-two-million-registered-players-in-three-mo
nths

[11] Common gateway interface, http://www.w3.org/CGI/
[12] CommonJS, a project defining APIs for JavaScript

outside the browser, http://www.commonjs.org/
[13] Dark Orbit browser game, http://www.darkorbit.com/
[14] I. Di Loreto and G. Abdelkader, “Facebook Games:

Between Social and Personal Aspect”. International
Journal of Computer Information Systems and
Industrial Applications, III, pp. 713–723, 2011.

[15] Earth 2025 browser game,
http://games.swirve.com/earth

[16] Facebook social utility, http://www.facebook.com/
[17] J. Goodman, C. Verbrugge, “A Peer Auditing Scheme for

Cheat Detection in MMOGs”. In Proceedings of 7th
ACM SIGCOMM Workshop on Network and System
Support for Games (Net Games’08), 2008.

[18] J. Gregory, Game Engine Architecture. AK Peters, Ltd,
2009.

[19] T. Hampel, T. Bopp, and R. Hinn, “A Peer-to-Peer
Architecture for Massive Multiplayer Online Games”.
In Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games (Net
Games’06), 2006.

[20] Hattrick browser game, http://www.hattrick.org/

Juha-Matti Vanhatupa

 On the Development of Browser Games – Current Technologies and the Future 68

[21] Hattrick Manager Application www site,
http:// www.hattrickmanager.org/

[22] Hattrick Wiki Datapage page,
http://wiki.hattrick.org/wiki/Database

[23] HTML, http://www.w3.org/html/
[24] HTML5, http://www.w3.org/TR/html5/
[25] Hyperiums browser game, http://www.hyperiums.com/
[26] M. Häsel, “Rich Internet Architectures for

Browser-Based Multiplayer Real-Time Games – Design
and Implementation Issues of virtual-kicker.com”. In
Proceedings of Network-Based Information Systems:
First International Conference (NBiS 2007), LNCS,
vol. 4658, pp. 157–166, 2007.

[27] Java Applets, http://java.sun.com/applets/
[28] JavaScript Mozilla’s Official documentation,

https://developer.mozilla.org/en/JavaScript
[29] JavaServer Pages,

http://java.sun.com/products/jsp/overview.html
[30] C. Klimmt, H. Schmid, and J. Orthmann, “Exploring the

Enjoyment of Playing Browser Games”.
CyberPsychology & Behavior, XII (2), pp. 231-234,
2009.

[31] J. Kuuskeri, J. Lautamäki and T. Mikkonen,
”Peer-to-Peer Collaboration in the Lively Kernel”. In
Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC 2010), pp. 812-817, 2010.

[32] J. Kuuskeri, and T. Mikkonen, “Partitioning Web
Applications Between the Server and the Client”. In
Proceedings of 2009 ACM Symposium on Applied
Computing (SAC 2009), pp. 647–652, 2009.

[33] N. Mattar and T. Pfeiffer, “Interactive 3D Graphs for
Web-based Social Networking Platforms”. International
Journal of Computer Information Systems and
Industrial Applications, III, pp. 427-434, 2011.

[34] Microsoft Active Server Pages (ASP),
http://msdn.microsoft.com/en-us/library/aa286483.asp
x

[35] Microsoft ASP.NET, http://www.asp.net/
[36] Microsoft Silverlight,

http://www.microsoft.com/silverlight/
[37] Microsoft SQL Server,

http://www.microsoft.com/sqlserver/en/us/default.aspx
[38] T. Mikkonen and A. Taivalsaari. ”Reports of the Web’s

Death are Greatly Exaggerated”, Computer, XLIV (5),
pp. 30-36, 2011.

[39] Moonlight, http://www.mono-project.com/Moonlight
[40] MySQL,

http://www.mysql.com/products/enterprise/database/
[41] Perl programming language, http://www.perl.org/
[42] PHP scripting language, http://www.php.net/

[43] Python programming language, http://www.python.org/
[44] RuneScape browser game,

http://www.runescape.com/title.ws
[45] D. Schultheiss, N.D. Bowman, C. Schumann,

“Community vs solo-playing in multiplayer internet
games”. In Proceedings of The [Player] Conference,
pp. 452-471, 2008.

[46] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A.
Salminen, ”The Death of Binary Software: End User
Software Moves to the Web”. In Proceedings of The
Ninth International Conference on Creating,
Connecting and Collaborating through Computing
(C5’11), IEEE, 2011.

[47] The Nethernet browser game, http://www.pmog.com/
[48] Travian browser game, http://www.travian.com/
[49] S. Trent, M. Tatsubori, T. Suzumura, A. Tozawa and T.

Onodera, “Performance Comparison of PHP and JSP as
Server-Side Scripting Languages”. In Proceedings of
Middleware 2008, ACM/IFIP/USENIX 9th
International Middleware Conference, pp. 164-182,
2008.

[50] Unity Web Player, http://unity3d.com/webplayer/
[51] Unity game engine, http://unity3d.com/
[52] Unusual Engine, http://www.unusualengine.com/
[53] J-M. Vanhatupa. “Browser Games: The New Frontier of

Social Gaming”. In Proceedings of The Second
conference on Wireless & Mobile Networks (WiMo
2010), pp. 349-355, 2010.

[54] J-M. Vanhatupa. “Browser Games for Online
Communities”, International Journal of Wireless &
Mobile Networks, II (3), pp. 39-47, 2010.

[55] J-M. Vanhatupa. “On the Development of Browser
Games – Technologies of an Emerging Genre”, In
Proceedings of 7th International Conference on Next
Generation Web Services and Practices (NWeSP), pp.
363-368, 2011.

[56] Vision game engine,
http://www.trinigy.net/en/products/vision-engine

[57] WebGL, http://www.khronos.org/webgl/

Author Biographies
Juha-Matti Vanhatupa Juha-Matti Vanhatupa is a
postgraduate student in Department of Software Systems
at Tampere University of Technology. He received M.Sc.
in software engineering at 2007. His research interests
include browser games, tool support for game
programming and content generation for computer games.

