
International Journal of Computer Information Systems and Industrial Management Applications.

c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Lifelog Data Model and Management: Study on
Research Challenges

Pil Ho Kim1 and Fausto Giunchiglia2

1Department of Information Science and Computer Engineering,
University of Trento,

Via Sommarive, 5 I-38123 POVO, Italy
pilho.kim@disi.unitn.it

2Department of Information Science and Computer Engineering,
University of Trento,

Via Sommarive, 5 I-38123 POVO, Italy
fausto@dit.unitn.it

Abstract: Utilizing a computer to manage an enormous
amount of information like lifelogs needs concrete digitized data
models on information sources and their connections. For lifel-
ogging, we need to model one’s life in a way that a computer
can translate and manage information where many research ef-
forts are still needed to close the gap between real life models
and computerized data models. This work studies a fundamen-
tal lifelog data modeling method from a digitized information
perspective that translates real life events into a composition of
digitized and timestamped data streams. It should be noted that
a variety of events occurred in one’s real life can’t be fully cap-
tured by limited numbers and types of sensors. It is also im-
practical to ask a user to manually tag entire events and their
minute detail relations. Thus we aim to develop the lifelog man-
agement system architecture and service structures for people
to facilitate mapping a sequence of sensor streams with real life
activities. Technically we focus on time series data modeling
and management as the first step toward lifelog data fusion and
complex event detection.

Keywords: Event, Information Management, Lifelog, Lifelog
Data Model, Real Life Logging.

I. Introduction

A data logging activity recording and tracing one’s real life
events is called a personal lifelogging. Its application do-
mains include but are not limited to personal/enterprise in-
formation management, health-care system and surveillance
for the public or for the military. Recent digitized and de-
veloped technologies have dramatically changed the way we
store information about ourselves. Now lifelogging activities
are broadly linked to our daily lives seamlessly and transpar-
ently processing our emails, photographs, geo-spatial loca-
tions and health records archiving them back to the cloud
storage.

However, objective data that has been collected using a va-
riety of sensors gives different subjective feelings to a user by
her experiences with that event. This gap between objective

data and subjective feelings is filled up with a myriad of rela-
tions that have been built upon by the time a user is exposed
to the data, which can be thus evolving with time. Lifelog
research is an effort to analyze such real lifelogs to create
informative and digitized stories of a person’s life that chal-
lenges issues in handling disparate media types and various
complex technologies for the analysis.

The concept of lifelogging was first proposed early in 1945
by Vannevar Bush [4] and has been quoted in many related
works [4, 6, 7, 18, 5, 1, 11]. However its technical data mod-
eling methods or practices have not been well established up
to now. In this aspect, Sellen et. al [20] have well sum-
marized issues in which they argued that rather than trying
to capture everything, lifelog system design should focus on
the psychological basis of human memory to reliably orga-
nize and search an infinite digital archive. Technical chal-
lenges are then the indexing of heterogeneous media includ-
ing image, audio, video and human knowledge on their syn-
tactic and ontological meaning expansion. These issues also
clearly distinguish lifelog data management from legacy data
archiving activities in many aspects.

The following sections address and introduce our ap-
proaches to achieve above goals. Section II discusses re-
search challenges of life logs with case studies. Section III
introduces a primary raw sensor data preprocessing method
converting them into time series streams. Section IV, V
and VI detail the E-model architecture that we developed to
merge streams for deep and explorative analysis. Promis-
ing case studies are reported in Section VII that by using E-
model’s new and intuitive lifelog recalling services they can
be developed without much burden. Finally, Section VIII
concludes this paper with the summary of our works.

II. Challenges in Lifelog Analysis

Lifelog inherently involves many heterogeneous data objects
in which many data object types and structures are not pre-
determined when setting up the initial data back-end system.

1

ISSN 2150-7988 Volume 5 (2012) pp.115-125

MIR Labs, USA

(2013) pp.115-125

Its collection gets more complex as more archives and their
various analysis results are added on and, for instance, in the
query composition for information retrieval. However blind
training methods to automatically structure relations [17, 5]
between such complex data objects often lack the context of
events without which recognized events do not make sense
for real-life cases. Instead we think a comprehensive back-
end system that facilitates a user or a system to store com-
plex data and to navigate through complex network is more
necessary to find clues for information retrieval based on the
generalized understanding on events of interests. To make
problems and research goals concrete, let us review a number
of representative scenarios that frequently happen in lifelog
research works [14] and set up our research goals.

A. Complex Data Analysis Case

Let us start with a relatively simple personal lifelogging case
in which a person captures her daily activities using her smart
phone and neck-held camera or Google Glass like body-
mounted sensor device by which she tracks her locations,
takes photos and movies, and exchanges emails and SNS
messages with others. We assume that all such activities are
fairly well time-stamped and uploaded to the cloud server.
While the given lifelogging environment looks simple, ac-
tual lifelog data often needs very powerful data analysis tech-
niques to retrieve events of user’s interests.

For instance in image processing, many photos are
taken under various circumstances where lighting conditions
and/or motion stability varies significantly by cases. Con-
sidering the fact that most image processing algorithms are
affected by such environmental conditions, no single algo-
rithm can act on all cases. Even an object detecting algo-
rithm, which is well-trained to detect one or more numbers
of event types, often needs a different run-time configuration
per environmental changes. It also may need prior works
to balance and control the quality of images to keep the al-
gorithm performance high and reliable. Therefore we often
apply multiple algorithms to detect similar events from data.
Although their outputs might be disparate in terms of data
structures or in values, they semantically indicate very cor-
related events. What we need is then a mechanism to blend
and assimilate outputs to draw semantically matching tags to
merge event analysis results. In fact, this image processing
case is not limited to image types but often occurs in most
lifelog media types and their data analysis technologies.

B. Inherited Data Analysis Case

In addition to the image data case shown above, research
works on diverse types of lifelog data result in many het-
erogeneous data where the way to merge and process could
be very complex. For example in geo-spatial data, original
satellite GPS data can be further analyzed to deduce person’s
moving direction, speed and paths. Moreover moving speed
can be semantically categorized to indicate user’s activity
status such as whether she was standing, walking, running
or riding a vehicle. Reversed geo-coded street addresses can
also be tagged by a user as, for instance, her home address,
work address or the restaurant where she had a dinner with a
number of friends.

All above data are stemmed from, or partially related
with, original GPS data although data structures (also called
schema) of descendant data objects are all different in the
view of database object management. Its back-end should
take this into account or else data silos would quickly be
filled up with overly diverse data objects in different struc-
tures which would increase the complexity in managing the
data objects. Also this issue affects almost all aspects of
lifelogs ranging from data logging, analyzing, and proving
a service back to a user. Though this problem has been a big
challenging issue in lifelog research fields, it has mostly been
handled using proprietary storage solutions without address-
ing a generalized event model for lifelogs.

C. Federated Data Grouping Case

The above problem becomes more complex when merging
multiple federated personal lifelogs to create the group of
lifelogs. Each one may have used different types of sensors
and analyzing their interactions would need significant ef-
forts even just to bring them onto the table for comparison.
In addition, ownerships of events, complex structural analy-
sis on social relations or tracking physical events shared by
members are all similar challenging topics to the back-end
database system.

D. Research Goals

From the above observation, we can deduce a number of
database design criteria to model real life events. Firstly
a structured data model works well for sensor stream data,
which are mostly structured and well time-sampled whether
in tabular format or in tree format, due to its efficiency in pre-
determined structured data parsing and the benefits from the
established legacy database system. Secondly data assimila-
tion for expanding the search over to other lifelogs or other
types of similar results of one’s own logs needs a graph-type
database back-end that supports a variety of value examina-
tion functions on complex relations for navigation.

III. Time Series Modeling: Converting Sensor
Stream to Time Series Data

Data modeling is finding a pattern from the data stream that
best describes essential properties of data and distinguishes
it from other models. In this aspect lifelog data streams have
one distinct property which is that they are a collection of
events occurred in our life time. Thus recording its times-
tamp means that they are historical record while its other en-
tities and their relational structures are disparate by the na-
ture of lifelogs, which might be text, a record or a hierarchi-
cal graph-type instance. This can be generalized as a sensor
stream in diverse data structures with a time record, i.e. a
time series heterogenous data. To be more concrete, let us
first define the generalized time series data structure.

A. Time Series Data Model

Definition 1 A time series data, st, is a digitized instance of
changes in its source stream, which can be expressed as a
tuple of entities:

st = [t,D] , (1)

Kim and Giunchiglia116

where s is a sensor, t is real-world time and D is the instance
of associated entities st (ex. GPS information, image Exif
data or file data). The data structure of D could be a simple
vector, an array (whether in hierarchical), or anything else
variable by associated sensors and a system that extracts the
raw data from the sensor.

In this era of big data, most back-end systems work as an
archive engine to put all data into the database for the detailed
or future analysis. Let us start with a use case where we use
RDBMS as a back-end. Then the structure of D should be
a 1-dimensional unordered entity, which makes the structure
of st as:

st = [t, d1, d2, ..., dn] , (2)

where di is a column instance of table s, which is the collec-
tion st in a tabular form. Assuming that we have M sensors,
then we need to manage M relational tables where each ta-
ble must have a timestamp column of which the name of a
timestamp column might be unified or priori known for in-
terpretation.

One distinct feature of this time series design is that it fa-
cilitates the software design for building up the base class to
process heterogenous sensor data. One base class may unify
common procedures related with streaming data in-and-out
procedures. For instance, when we need to handle a number
of different time-stamped data like GPS records or photos,
its time records and associated data (ex. Exif information of
image, geo-spatial locations in GPS records) should each be
extracted with different algorithms. Although the data ex-
tracted using such tools might be different in terms of struc-
ture, the common feature is that by applying stream data we
get a timestamped output object. This procedure thus be-
comes a functional process that reads sensor data to output a
timestamp data stream.

f(s) = [t,D] . (3)

The base class, f , may unify the above process so that
whenever we need to handle a new data type, additional in-
herited classes can be composed with existing sensor classes
without huddles. Thus rather than having heterogenous func-
tions for each sensor type like f , g, ..., z, they can be inher-
ited embedding the common properties like f1, f2, ..., fM .
Also by putting some external program invoking procedures
into f , the analytic power of the f can be unlimited and its
code can be independent to the types of media. Note that this
function is a sensor stream pre-processor to archive the data,
not for filtering or windowing the temporal data.

The above process also facilitates the information retrieval
by temporal range selection. An example SQL statement that
retrieves unions of all tables is shown in Figure 1. The result
retrieved by this query will show the distribution of each sen-
sor stream on which we may apply a sort of clustering algo-
rithm to classify them by their density, probability or by the
rule of some activity patterns.

This also shows well the limitation of structured data anal-
ysis that a query statement will get more complex as more
sensor types are added. In a structured query, a data value
evaluation must conform strictly to its pre-defined data struc-
ture. Also navigating related, whether in spatio-temporal or

semantically, data streams are significantly inefficient. Writ-
ing such a query is also complex and often impractical be-
cause whenever we need to handle a new data stream type,
entire codes need to be modified or updated. This adds a big
burden in information management and thus also in querying
and walking over related information needs some different
data structure.
(

SELECT
eTimeStamp,
"sensor_1" AS sensor_name

FROM sensor_table_1
WHERE eTimeStamp BETWEEN d1 AND d2

)
UNION
...
(

SELECT
eTimeStamp,
"sensor_M" AS sensor_name

FROM sensor_table_M
WHERE eTimeStamp BETWEEN d1 AND d2

)
ORDER BY eTimeStamp

Figure. 1: Time series query within the selected time inter-
val.

IV. Lifelog Data Model: E-model

For the application like lifelog, which needs a very abstract
and generalized data structure to accommodate and man-
age heterogenous data streams coming from disparate data
sources, a graph data model fits by theory with its rich sup-
ports for object inheritance, abstraction (or abstract nodes)
and multiple relations (or labeled edges), which feasiblly rep-
resents complex information networks. However putting all
data into such a network-type graph is not practical seeing
how it would cause a graph to be too big to manage and
query.

Thus we renovated E-model [12] for lifelogging, in which
various data models can co-exist in rich relations. We use
it as the table top for on-demand analysis to put instances
of different data models at one place for in-depth analysis.
One idea of E-model is to allow the insertion of new data
instances in their own structured form while the access to
those instances is also limited to go through its original query
mechanism. However at the moment of query, data instances
of interests (ex. a portion selected using the query in Fig-
ure 1) are translated into the E-model graph on-line for graph
search. To achieve the above goal, E-model is designed as
follows.

A. E-model Data Structure

The conceptual E-model structure is depicted in Figure 2 us-
ing the ORM method [10]. ORM provides a more efficient
graphical model description method than the set represen-
tation, which needs additional descriptions of the role and
constraints of objects. ORM simplifies the design process
by using natural language information analysis (NIAM) [16]
as well as intuitive diagrams that can be populated with in-
stances. This is done by examining the information in terms
of simple or elementary facts like objects and roles to provide
a conceptual approach to modeling. We do not get into its de-
tails on ORM but will explain features related with E-model.

Lifelog Data Modeland Management : Study on Research Challenges 117

E-node

(EventID)+

A source event … has a relationship …

with a target event ...

°ir

C-Data

(DataID)+

<
<

 .
..
 i
s
 r

e
p
re

s
e
n
te

d
 b

y
 .
..

<
<

 .
..
 h

a
s
 a

 v
a
lu

e
 .
..

Timestamp

(datetime)

<
<

 .
..
 i
s
 c

re
a
te

d
 a

t
..
.

Figure. 2: The E-model triplet structure.

Interested readers are referred to [9, 3] for its first formaliza-
tion in object-role modeling and [10] for the complete list of
graphical notations.

In Figure 2, there exist three fact types (e-node type, c-
data type for names and values, and the timestamp type) and
four predicates (Three predicates to connect an e-node to its
entities and the relation predicate for connected between e-
nodes). Entity types are depicted as named ellipses. Refer-
ence modes in parentheses under the name are abbreviations
for the explicit portrayal of reference types. Predicates that
explain the relation between two entity types are shown as
named sequences of one or more role (rectangle) boxes. An
n-ary predicate has n role boxes. For instance, the timestamp
of an e-node has the binary predicate with two role boxes.
The relation predicate, which needs three e-nodes, has three
role boxes. This represents a graph connecting a source e-
node to a target event and its connecting edge is again repre-
sented using an e-node.

A mandatory role for an object type is explicitly shown by
means of a circled dot where the role connects with its ob-
ject type. In the E-model, the three roles of an e-node (name,
value, and timestamp) are mandatory and must exist to de-
fine an e-node. A bar across a role is a uniqueness constraint
that is used to assert the fact that entries in one or more roles
occur there once at most. A bar across n roles of a fact type
(n > 0) indicates that each corresponding n-tuple in the as-
sociated fact table is unique (no duplicates are allowed for
that column combination). Arrow tips at the ends of the bar
are necessary if the roles are noncontiguous (otherwise arrow
tips are optional). As a result, in the E-node, one e-node can
have only one set of a name, value, and timestamp.
Definition 2 The e-node is a three-tuple object in which both
a name and a value are referred from the c-data set.

e = {ds, dv, t}, (4)

where ds represents a name c-data object, dv is a value c-
data object and t is a timestamp with the following proper-
ties:

EN-1 An e-node is a connection identity for a set of a name
and a value. For an instance, if one node in a graph

means ”Age” and its value is ”32”, then the ID of this
node is an e-node.

EN-2 The transaction time log (timestamp) is attached to
record its creation time.

A c-data is devised to be independent to disparate raw data
types. Using c-data objects for both name and value signifi-
cantly changes the way of handling data objects in the infor-
mation system. This unique architecture is devised based on
the observation that in complex data models, names are also
data object to query and search. However, most data models
treat names as metadata and thus, process them separately.
Consequently, the query mechanism of these models depends
on their proprietary storage architecture. However, in infor-
mation retrieval for unstructured data objects like texts, the
name of data objects can be the target of a query. For in-
stance, a user may want to query all data objects registered
today and labeled as “face.” This illustrates that in an un-
structured data model, a name and a value are both objects
to search. Thus, the E-model uses the same data object type
and the identical storage for both name and value objects.

The relations between e-nodes at the bottom of Figure 2
shows the way e-nodes are related with each other. They are
represented as the adjacency list of three nodes in which the
relation object is located in the center. All three objects in
the relation list are referred to e-nodes in which the type of a
center e-node is limited to relation e-nodes. Thus an instance
of the e-node relation is a triple set:

rx = {es, er, et}, (5)

where es is a source e-node, et is a target e-node and er is a
relation e-node. A number of distinctions we made compared
to legacy triple stores, object-oriented model [8, 19] or recent
NoSQL back-ends [21] are:

EM-1 The use of c-data (composite data type) objects for both
the name (or called the key) and the value of data, which
is devised based on the observation that when writing a
query, data names are often objects to find to handle
complex data structures.

EM-2 It is also useful in supporting an imprecise human query
not only on data values but also on data names (or keys)
and in addition this structure keeps the c-data as a uni-
fied data storage type to manage all data values whether
for names or values.

EM-3 By the system design, it allows a significantly fast blind
search on both keys and values using only a part of data
which is often a critical system performance measurer
in the search engine for boosting up the speed of user’s
initial blind (i.e. unstructured) query.

B. E-model Schema

To support various data structures, E-model introduces the
concept of schema as shown in Figure 3. One distinct fea-
ture is that all schema objects are again stored as e-nodes
and their graph where we do not need an additional storage
and mechanism to manage schema objects. E-model schema
objects are composed of fundamental elements required to
model application domain data.

Kim and Giunchiglia118

SDTypeID

(EventID)+
“_eSDType_Entity”

(EventID)+

Name

(EventID)+

RawDataType

(EventID)+

... has a relationship ... with ...

... has a relationship ... with ...

(a)

SDTypeID

(EventID)+

CategoryID

(EventID)+

“_eCategory_Entity”

(EventID)+

CategoryElement

(EventID)+

... has a relationship ... with ...

°ir

“_eCategory_Entity”

(EventID)+

Name

(EventID)+
... has a relationship ... with ...

FunctionID

(EventID)+

(b)

SDTypeID

(EventID)+

Function

(EventID)+

Output

(EventID)+
 ... has a relationship ... with has a relationship ... with ...

“_eFunction_Input_Entity”

(EventID)+

“_eFunction_Entity”

(EventID)+

Input

(EventID)+
 ... has a relationship ... with ...

SDTypeID

(EventID)+
... has a relationship ... with ...

“_eFunction_Output_Entity”

(EventID)+

(c)

Figure. 3: E-model schema: (a) E-model SD type schema; (b) E-model function schema; and (c) E-model category schema.

1) e-SDTypes

In E-model the e-node is an ordered 3-tuple object composed
of name, value, and timestamp where the timestamp of an
e-node is the transaction time that will be logged when an e-
node is registered. Therefore to define the structure of an e-
node, its name and raw value data type constitute e-node ele-
ments for specification. In this view, the type definition of an
e-node, called e-SD type, esd is a set of two predicates: one
e-node Φδ(esd)stores its name and the other e-node Φτ (esd)
that stores its raw data type.

2) e-Function

To define relationships between e-nodes, E-model uses the
concept of the function in place of the relation to distinguish
directed relations from the source node to the target node
and its connection (called an edge in a graph) is labeled as
a function name. Thus, the E-model function or e-function,
ef , consists of a domain (source) e-sdtype X and a codomain
(target) e-SD type Y with constraints on x

ef−→ f(x), where
x ∈ X and f(x) ∈ Y and both are e-sdtypes.

3) e-Category

Merging both esd and ef creates a collection of data objects,
which is called a category (or class) in other data models.
Directed and labeled e-functions allow the data structure to
be free enough to model legacy data models and recent di-
verse data structures. To be more specific, a category of the

data model is (1) a collection of objects, (2) a collection of
functions between objects, and (3) child category objects to
support inheritance. E-model supports a similar concept with
which earlier mentioned E-model schema objects are associ-
ated. An e-category, ec, is a grouping schema object that
constitutes a set of structured data objects. An E-model cat-
egory consists of three elements: (1) esd as its fundamental
data objects, (2) ef to specify directed relationships between
data objects, and (3) child ec sets for inheritance. An instance
of the ec schema object is called an e-group node. Its child
e-nodes have structured relations with an e-group node.

The network composed of e-group nodes strictly follows
the temporal order of event occurrence which forces the net-
work of e-groups to form a relational directed acyclic graph
(RDAG). RDAG’s theoretical properties, search constraints,
ordering mechanism and characteristics are introduced in de-
tail at [12].

V. Data Translation

Data translation in E-model is the process of importing in-
stances of other data model (For example like Figure 1) into
the E-model database for complex data analysis and explo-
ration over the graph and time. This translation process in
between other data models and E-model is mostly very nat-
ural and can be formally defined as an algorithm for pro-
gramming. This section shows an example of working with
relational data models and will also indicate how to extend
the method for other data models.

Lifelog Data Modeland Management : Study on Research Challenges 119

A. Understanding E-Model and Relationships with Other
Data Models

Translation process in brief for a table structured data is
like matching one cell from a table to one e-node in E-
model where the identity of one row is represented with an
e-group node where the connection between an e-group and
its e-nodes is named “relational row” to specify their origi-
nal structured relation. It should be noted that e-group nodes
should be unique and thus have their own identity value (like
UUID or integer-type UUID which we employed) to distin-
guish its set from others. However e-nodes can be freely
shared between e-group nodes. They naturally build up the
connected network by values. If the name of foreign keys are
the same over two tables, then for E-model natural joins (i.e.
Join tables by the same column name) are not even necessary
since they are using physically the same e-nodes.

Algorithm 1: Relational database table importing algo-
rithm

Data: Database name D and table name T .
Data: Columns C of T and rows R of T .
Data: Category e-node ec, its e-sdtype esd and its e-function ef .
Data: E-node name c-data ID cn and e-node value c-data ID cv .
Data: E-group node eg .
begin

REM Create the e-category based on the table metadata.
ec ⇐ RegisterECatgory(CONCAT(D, “.”, T))1
for Cx ∈ C do

REM Register e-sdtypes for columns.
esd ⇐2
RegisterESDType(Cx.Name,Cx.RawDataType)

REM Add new e-sdtype to e-category.
AddESDTypeToECategory(ec, esd)3

REM Import raw data of each column Cx in T .
ImportRawData(D,T,Cx.Name,Cx.RawDataType)4

REM Register e-nodes.
cn ⇐ GetCDataID(Cx.Name, “varchar”)5
for Rx ∈ R do

cv ⇐6
GetCDataID(Cx.V alue, Cx.RawDataType)
RegisterENode(cn, cv)7

REM Register e-node relations.
err ⇐ GetEFunction(“ eRelation Row”)8
erg ⇐ GetEFunction(“ eGroup Node”)9
for Rx ∈ R do

eg ⇐ CreateInstance(ec)10
for Cx ∈ C do

RegisterRelation(eg , err, e{Cx,Rx})

RegisterRelation(ec, erg , eg)

end

B. Translating Relational Tables into E-model

Instances populated in relational tables match with e-group
nodes that are instances of e-categories. Let us first describe
the algorithm for importing relational data objects into E-
model. Algorithm 1 assumes that the source data is specified
with its associated database and table names. If the source
is specified with a SELECT statement, then E-model first
creates a view of the SELECT statement and reads the table
metadata to register a matching e-category.

Algorithm 1 has several noteworthy features. Line 1 sim-
plifies the hierarchical inheritance from a database object to
an associated table with a concatenated string of database and

table names. It creates a unique e-category that should be
distinct within the system by concatenating the database and
table name that makes it unique in the relational database. If
a distinction between the database and the table is necessary,
then a hierarchical inheritance from the database to the table
can be feasibly modeled by inserting a child table e-category
into the database e-category.

At line 2 in registering e-sdtypes, the set of a name and a
raw data type of e-sdtypes should be unique in the E-model.
If the foreign key in the relation table has the same field name
of both the source and target table, then e-categories after the
E-model import will share the same e-sdtype. Thus, it nat-
urally supports a foreign key relation. However, if column
names linked in the foreign constraint differ, which SQL al-
lows, two approaches can be applied: (1) Add an additional
relation (Ex: eRelation Foreignkey) between source e-
nodes and target e-nodes, or (2) use a semantic tag to assign
both column names the same semantic meaning.

Line 3 registers each column name as an e-sdtype, which is
the child e-node of a table e-category. Line 4 imports all row
data by column. Because all data objects in one column have
the same name and same raw data type, column import is
much faster than row insertion. When the row count exceeds
the column count, this is in general a true statement. Line 5
retrieves c-data objects to register column names. Then it is
used in a combination of registered column values to register
new e-nodes. It should be noted that at this step duplicated
name-value pairs are skipped and only new e-nodes will be
registered to let the storage maintain the first-normal form
(1NF) that has no repetitive values.

Line 7 is where e-nodes are registered. If we are handling
more specific data model like streaming sensor data that in-
cludes a pre-defined timestamp field in a table, then we can
use that information as a timestamp for a new e-node as a
replacement of a transaction time for both e-nodes in Line 7
and their group e-nodes in Line 10. Lines 8 to 10 describe the
mechanism to create e-group nodes that behave like the row
ID of data objects for each record in the table. Finally, all
e-groups are registered as child e-nodes of a table e-category.

VI. Data Query and Graph Operations

In relational databases, the relation between two tables is flat.
Their semantic meanings, if they exist, are recorded as meta-
data as part of the comments in table definition or those rela-
tions must be deduced from their column names, whereas in
a RDAG, a relation is a distinct e-node object. When it be-
comes flat (use of only one relation type), then a RDAG be-
haves like a sequence of first-order relations, which is similar
to the relational models depicted in Figure 4.

A. Data Query

For an actual importing example, let us assume that we want
to retrieve all three e-node sets {e1, e4, e5} having the re-
lation R1 in between {e1, e4} and R4 in between {e4, e5}.
Note that the numbers of relational tables in Figure 4 repre-
sent the column names in an abstract way that is not permit-
ted in the SQL standard. In a relational database such a query
becomes two inner joins as shown in Query 1:
Query 1 Relational table join example.

Kim and Giunchiglia120

Table 1: E-model query function format.

Format Return type Explanation
Q(es)

⋃
i=1,...,N{eri , eti} Search all {er, et} pair in any relation

Q(et)
⋃

i=1,...,N {esi , eri} Search all {es, er} pair in any relation
Q(er)

⋃
i=1,...,N {esi , eti} Search all {es, et} pair in er relation

Q(es, er)
⋃

i=1,...,N eti Search all target e-nodes from es in er relation
Q(es, et)

⋃
i=1,...,N eri Search all relations between es and et

Q(er, et)
⋃

i=1,...,N esi Search all source e-nodes from es in er relation
Q(es, er, et) N Return the count of the specified relation set

1

PK IDKEY

FK1 4

FK2 7

2

PK IDKEY

FK1 4

3

PK IDKEY

FK1 7

FK2 8

7

PK IDKEY

5

PK IDKEY

6

PK IDKEY

8

PK IDKEY

4

PK IDKEY

FK1 5

FK2 6

FK3 8

1 2 3

4

8

7

5 6

R1
R1

R3 R6

R4 R5 R5

R2

=

Figure. 4: RDAG-to-relational model mapping example.

SELECT t1.IDKEY
FROM t1
INNER JOIN t4 ON (t4.IDKEY = t1.4)
INNER JOIN t5 ON (t5.IDKEY = t4.5)

Relational joins that appear in Query 1 can be represented
more succinctly in E-model. Let us first define the query
function of E-model.
Definition 3 An E-model query function, Q, is a search
function for e-nodes and it is composed of constraints on
source, relation and target e-nodes: Q(es, er, et).

Possible combinations and returning data structures are
specified in Table 1. When a Q returns e-node sets, then
it can be embedded in other Q forming a sequential query
sequence. Query 1 for relational tables can be represented in
the Q expression like the following:

ed :=> Q(R1, Q(e4, R4, e5)), (6)

where ed is a source e-node set to find and R1 and R4 are flat
when applied to relational tables. Apparently same E-model
query functions can work on other data models by changing
only R for that data model. Actually, we have developed a
bucket of data model importers (RDBMS, JSON and XML)
similar to Algorithm 1.

B. Path Query: M-algorithm

To support RDAG path searching, let us formulate an algo-
rithm for finding such related e-nodes as a way to find a path
between two e-nodes and through a shared e-node. Figure 5
depicts the flow of queries from A to E for finding relations
between two e-nodes. This figure shows a case in which two
e-nodes (A and E) do not share the same group node, but
they are related by another e-node (C). This query is in-
dependent of the associated categories since it looks for the
connected and shared e-node that is independent from its as-
sociated e-category. In other word, this query is an unstruc-

tured query.

Eg1

CBA

Eg2

ED

category_entity

category_entity

category_entitycategory_entity

category_entity

category_entity

Shared e-node

Search path

Node1 Node2

R1 R2

Figure. 5: Related information search over group nodes.

From given input data values and types, we first find the
seed e-nodes, Ep1 and Ep2 to search for a path between the
two. Then we proceed to find other e-nodes under the same
category. If no matches are found in the sibling e-nodes,
the search moves up one level to the parent e-group node.
Through this bottom-up manner, the search keeps moving
upward until it arrives at the super e-node. This algorithm is
designated the M-algorithm. Its set representation is formu-
lated at Eq. 7.

Ep1 = C(fe(A)), Ep2 = C(fe(E)),

Ep1
c = S(Ep1), Ep2

c = S(Ep2), (7)
fe(c) = Ec = Ep1

c ∩ Ep2
c ,

where fe is the function to find e-nodes of a given data value
(A and E in Figure 5). C is a function to retrieve a category
e-node. S is a function to find all entity e-nodes from a given
e-group node, and Ec is a result set of e-nodes that Ep1

c and
Ep2
c commonly share.
Because a RDAG permits multiple relations between e-

nodes, the same e-nodes may be connected in multiple rela-
tions. Such multiple relations can be limited to specific ones
to reduce the computational load. In this query, even with-
out any knowledge of an e-node symbol or value, a user can
query a set of source and target e-nodes using a specific re-
lation. This is a simple and powerful solution when a user is
looking for e-nodes in special relations so as to retrieve all
related e-nodes.

In addition, all data objects in a RDAG are e-nodes, and
they are the composition of c-data objects. The keyword
query method is thus equivalent to all RDAG objects with-
out prior knowledge of their relations. This means that a
keyword query for all e-categories is very efficient, and once
found, the navigation through the connection in a RDAG is
straightforward without the need to look for additional meta-
data. In other words, e-group nodes of a RDAG are instances

Lifelog Data Modeland Management : Study on Research Challenges 121

of e-category instances, and the M-algorithm is an unstruc-
tured query method for structured objects.

Algorithm 2: M-algorithm - Homogenous (RDAG)
Data: Two data and/or name values to find the path between them, Ix

and Iy .
Data: Constraints on each value, Lx and Ly .
Result: The path set, Pxy , stores all possible routes from

{epx ∈ Epx} to {epy ∈ Epy}.
begin

REM Find the seed e-nodes from a given input data value.
Epx ←− FindNodes(ed(Ix), Lx)
Epy ←− FindNodes(ed(Iy), Ly)

REM Retrieve the parent e-group nodes.
Epx

c ←− GetParentNodes(Epx)
E

py
c ←− GetParentNodes(Epy)

while |Epx
c | 6= ∅ and |Epy

c | 6= ∅ do
REM Check the connection between two e-nodes, epx , epy .

for epx ∈ Epx do
for epy ∈ Epy do

if epx = epy then
REM Store path.

Pxy ⇐ StorePath(epx , epy)

else
Ecx

c ←− GetChildNodes(epx)
E

cy
c ←− GetChildNodes(epy)

REM Find the common e-node that two e-group
nodes share.
ecx = Ecx

c
⋂

E
cy
c

if IsNotNull(ecx) then
Pxy ⇐ StorePath(epx , ecx , epy)

REM When it reaches the super e-node, then stop.
Epx

c ⇐
GetParentNodesExceptSuperNode(epx)
E

py
c ⇐

GetParentNodesExceptSuperNode(epy)

end

To search for more than connected data objects, temporal
relations and their operators [2] can be naturally applied to
queries. Because all e-nodes have a transaction timestamp,
temporal relations can be used in searching for e-nodes on
the timeline. If a user wants to search for information using
a valid time [15], then the query can be extended to find the
timestamp-type e-nodes under the same e-group node. This
permits a query to be expanded over other e-nodes that have
timestamp-type c-data with the same symbol c-data within
specified temporal ranges. In addition, semantic expansion
using a shared dictionary is feasible because it is limited to
finding e-nodes to search for at the first step.

The above ideas are formulated as the M-algorithm. The
M-algorithm is a method to find the path between two e-
nodes through a shared e-node. We developed the M-
algorithm in two versions. Algorithm 2 is for a case that
follows a RDAG within associated e-categories and its super
e-node. Algorithm 3 allows the search to walk over hetero-
geneous categories in which sibling e-nodes are associated.
Algorithm 3 also permits a search across different super e-
nodes, in other words, a search over the distributed network.

Several functions are defined for the M-algorithm. Find-
Nodes finds e-nodes based on given reference values of a
symbol and/or a data value. Because one e-node is com-
posed of two c-data objects and one transaction timestamp,
search constraints can be specified on these three entities.
FindNodes is based on a Search-by-Value (SBV) algorithm

that according to our E-model system, has superior perfor-
mance compared to popular storage models. GetParentN-
odes retrieves e-group nodes from a given e-node based on
the RDAG network. It returns the first parent e-node and
multiple e-nodes because one e-node may be referenced mul-
tiple times by different e-group nodes. GetChildNodes re-
turns all child e-nodes from a given parent e-group node.

In the case of the heterogeneous M-algorithm, the search
pool has no pre-navigation boundaries. Also, when the
search moves over different super e-nodes, the temporal
constraint in one RDAG does not apply to another RDAG.
Hence, in the algorithm, several constraints are applied to
searching e-nodes. For instance, Tr limits the time range.
When a user wants to find “near” events or previous events
only, then Tr can work as the temporal window to limit the e-
nodes in the search. If a user want to search over special rela-
tions like specific spatio-temporal relations, then such condi-
tions can be modeled as Lr. Both algorithms finish searching
when their trace moves up to an associated super e-node.

Algorithm 3: M-algorithm - Heterogenous (RDAG)
Data: Two data and/or name values to find the path between them, Ix

and Iy .
Data: Constraints on values, Lx and Ly .
Data: Constraints on relational time ranges, Tr .
Data: Constraints on relations, Lr .
Result: The path set, Pxy , stored all possible routes from

{epx ∈ Epx} to {epy ∈ Epy}.
begin

REM Find the seed e-nodes from a given input data value.
Epx ←− FindNodes(Ix, Lx)
Epy ←− FindNodes(Iy , Ly)

REM Retrieve the parent e-group nodes.
Epx

c ←− GetParentNodes(Epx)
E

py
c ←− GetParentNodes(Epy)

while |Epx
c | 6= ∅ and |Epy

c | 6= ∅ do1
REM Check the connection between two e-nodes, epx , epy .

for epx ∈ Epx do2
for epy ∈ Epy do3

if epx = epy then
REM Store path.

Pxy ⇐ StorePath(epx , epy)

else
Ecx

c ←− GetChildNodes(epx , t ∈ Tr)
E

cy
c ←− GetChildNodes(epy , t ∈ Tr)

REM Find the common e-node that two e-group
nodes share.
ecx = Ecx

c
⋂

E
cy
c

if CheckConstraints(ecx , Lr) then
Pxy ⇐ StorePath(epx , ecx , epy)

REM Expand the search over sibling e-nodes’ parent
e-nodes.

REM When it reaches the super e-node, then stop.
Epx

c ⇐
GetParentNodesExceptSuperNode(Ecx

c)
E

py
c ⇐

GetParentNodesExceptSuperNode(E
cy
c)

end

In addition to above data joining examples, deeper analy-
sis can be done on the E-model graph. For the data translated
into E-model, search-by-value, walk over the graph and tem-
poral association like much-have functions for deep data ex-
ploration and navigation are naturally supported. Details of
this implementation are introduced in [12]. In this work, an
earlier E-model prototype and its APIs are completely ren-

Kim and Giunchiglia122

(a) (b)

Figure. 6: Lifelog statistics: (a) Image collection status by days per month and (b) GPS collection status by days per month.

ovated to work with time series stream data and now they
support server-side APIs to interact with sophisticated user
interfaces.

VII. Case Study: Real Life Logging

For the case study to evaluate E-model for real-world ap-
plication cases, we have selected 109 days of personal life
logs collected over 18 months (See the statistics in Figure 6)
using a number of sensors including ViconRevue, GoPro,
iPhone and Garmin GPS. Most activities are captured during
the day time including working hours, weekends and some
social events. It is not forcefully captured every day but by
time-to-time or when important events happened to record.
In other words, our data logging experiment means to record
human’s normal daily activities not proprietarily settled for
life recording in mind.

Figure. 7: The E-model graph query interface.

A. Demo: E-model Graph Explorer

Figure 7 shows our current UIs for E-model graph explo-
ration using the M-algorithm (See Algorithm 2 and Algo-
rithm 3). In this demo, it first starts with a text query put
on the top-right search box. A user can specify the graph
search depth and the number of nodes to search for the first
iteration. Each node in a graph is clickable to expand the
search over connected nodes. In this procedure, a user is
completely free from the constraint of structured data mod-
els where a user should know its structure before writing any

queries. In addition the time chart shown at the bottom pane
reveals the group of events that happened during the same
period. Hence the search can be expanded over not related
by data values or other hard-wired relations but occurred at
the same moment that a user might be interested to look for
to get more accurate insight and understanding on events.

B. Demo: Spatio-temporal Event Viewer

We have expanded E-model APIs to interactively commu-
nicate with Web UIs and external data services or sources.
One example shown in Figure 8a is to implement the con-
cept over converting heterogeneous data sources into time se-
ries streams to view events and their relations over the time-
line. This demo shows amalgamation of GPS and photo data
streams where GPS points are clustered by the map zoom
level. Each GPS cluster is clickable to show a reverse geo-
coded real street address so that a user can identity the exact
location of an event. Selecting a cluster shows all photos at
the top-right pane that have been captured at the selected lo-
cation through the entire time a user has archived. Also the
bottom-right pane provides a timeline to see exactly when
those photos are taken at the selected place. By using this
new and intuitive spatio-temporal photo viewer interface im-
plemented atop E-model, a user can freely check out photos
of her interests by time and location.

Making the example more complex, the next case shown
in Figure 8b is finding commuting events between the user’s
home and work place. From given GPS clusters, a user can
select two clusters (A for the departing point and B for the
arriving point as shown in the figure). Then the E-model sys-
tem automatically calculates all GPS tracks from the history
and clusters all locations on-line. The top-right pane shows
found continuous GPS tracks and when selected, it shows the
photo stream at the bottom-right pane. In this example, a user
selected her home and her office location and when selecting
one from the timeline, the photo pane shows all photos taken
during her commuting hours. An interesting question a sys-
tem may answer using this interface is “Something happened
when I was going to the company but I can’t remember ex-
actly when it was and where it was in between my home and
the company.” This complex query can be answered very
naturally using E-model.

Lifelog Data Modeland Management : Study on Research Challenges 123

(a)

(b)

Figure. 8: e-Log user interfaces: (a) Spatio-temporal photo
viewer and (b) Find GPS tracks (Commuting events in this
case) between two places and review images taken then.

C. Demo: Managing Unstructured/Structured Data

Photos taken by imaging devices can be further analyzed us-
ing modern computer vision technologies. Figure 9a shows
the flow of automatically detected human faces and the
name-tagged data over the time. This screenshot shows an
example that a user queries people she met for one selected
day.

Let us merge this photo stream with the email stream to
develop a new innovative email search system. The legacy
query interface on the email data, which includes unstruc-
tured text data, uses the full-text index on which we perform
keyword search queries. In this case study, we convert them
into the streaming data in which an email transaction time
as its timestamp and put all into the E-model database for
data query. By temporally aligning the email stream with the
face stream, we could develop a new email UI shown in Fig-
ure 9b. This demo shows the screen shot in which we search
a dinner event with a keyword “pizza” and then by the found
and selected email timestamp it shows people on the right
pane on the timeline with which we can identity people we
had a pizza together. These new types of interface are easy
to develop using the E-model system making its application
domain much broader than prior legacy information manage-
ment systems.

(a)

(b)

Figure. 9: e-Log user interfaces: (a) Tagged face flow exam-
ple showing people a user met for one day. and (b) Keyword
event search case: Email search interface over the timeline.

VIII. Conclusion

This paper extended our previous works ([13] and [14]) in
which we addressed the need and our earlier approaches for
collaborated lifelog research environment. This paper de-
scribed the most recent progress a step toward our goal since
then. Also E-model, which was first introduced in [12], is
much more enhanced to handle big lifelog data in a way that
they are first archived into time series streams for archiving
and than translated into the E-model graph for big data anal-
ysis.

Acknowledgment

This work is partially supported by the grant from the Euro-
pean Union 7th research framework programme Marie Curie
Action cofunded with the Provincia Autonoma di Trento in
Italy and the CUbRIK (Human-enhanced time-aware multi-
media search) project funded within the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement n 287704.

References

[1] E. Adar, D. Kargar, and L. A. Stein. Haystack. In
Proceedings of the eighth international conference on
Information and knowledge management - CIKM ’99,
pages 413–422, New York, New York, USA, Nov.
1999. ACM Press.

Kim and Giunchiglia124

[2] J. F. Allen. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM, 26(11):832–
843, 1983.

[3] A. C. Bloesch and T. A. Halpin. ConQuer: A Concep-
tual Query Language. Proceedings of the 15th Inter-
national Conference on Conceptual Modeling, 96:121–
133, 1996.

[4] V. Bush. As we may think. Atlantic Monthly,
176(1):101–108, 1964.

[5] P.-W. Cheng, S. Chennuru, S. Buthpitiya, and Y. Zhang.
A language-based approach to indexing heterogeneous
multimedia lifelog. International Conference on Multi-
modal Interfaces and the Workshop on Machine Learn-
ing for Multimodal Interaction on - ICMI-MLMI ’10,
page 1, 2010.

[6] J. Gemmell and G. Bell. MyLifeBits: fulfilling the
Memex vision. In ACM MM, pages 235–238, 2002.

[7] J. Gemmell, G. Bell, and R. Lueder. MyLifeBits: a
personal database for everything. Communications of
the ACM, 49(1):88–95, 2006.

[8] M. Gyssens, J. Paredaens, J. van den Bussche, and
D. van Gucht. A graph-oriented object database model.
IEEE Transactions on Knowledge and Data Engineer-
ing, 6(4):572–586, 1994.

[9] T. Halpin. Object-Role Modeling (ORM/NIAM).
Handbook on Architectures of Information Systems,
pages 81–101, 1998.

[10] T. Halpin. ORM 2. Proceedings of the 2005 OTM Con-
federated international conference on On the Move to
Meaningful Internet Systems, 3762:676–687, 2005.

[11] P. Kim, M. Podlaseck, and G. Pingali. Personal chroni-
cling tools for enhancing information archival and col-
laboration in enterprises. In 1st ACM Workshop on
Continuous Archival and Retrieval of Pe rsonal Experi-
ences, pages 55–65. ACM, 2004.

[12] P. H. Kim. E-model: event-based graph data model the-
ory and implementation. PhD thesis, Georgia Institute
of Technology, Atlanta, Georgia, USA, 2009.

[13] P. H. Kim. Web-based Research Collaboration Service:
Crowd Lifelog Research Case Study. In Proceedings
of the 7th international conference on Next Generation
Web Service Practices, pages 188–193. IEEE, 2011.

[14] P. H. Kim and F. Giunchiglia. Lifelog Event Manage-
ment: Crowd Research Case Study. In Proceedings of
the Joint ACM Workshop on Modeling and Represent-
ing Events, pages 43–48. ACM, 2011.

[15] M. Koubarakis, , and T. Sellis. Spatio-Temporal
Databases: The CHOROCHRONOS Approach.
Springer, 2003.

[16] G. M. Nijssen and T. A. Halpin. Conceptual Schema
and Relational Database Design: A Fact Oriented Ap-
proach. {Prentice Hall}, Aug. 1989.

[17] M. Ono, K. Nishimura, T. Tanikawa, and M. Hirose.
Structuring of lifelog captured with multiple sensors by
using neural network. In Proceedings of the 9th ACM
SIGGRAPH Conference on Virtual-Reality Continuum
and its Applications in Industry, pages 111–118. ACM,
2010.

[18] G. Pingali, R. Jain, I. Center, and N. Y. Hawthorne.
Electronic chronicles: Empowering individuals,
groups, and organizations. In IEEE International
Conference on Multimedia and Expo, 2005. ICME
2005, pages 1540–1544, 2005.

[19] A. Sarkar, S. Choudhury, N. Chaki, and S. Bhat-
tacharya. Implementation of Graph Semantic Based
Multidimensional Data Model: An Object Relational
Approach. International Journal of Computer Informa-
tion System and Industrial Management Applications
(IJCISIM), 3:127–136, 2011.

[20] A. J. Sellen and S. Whittaker. Beyond total capture: a
constructive critique of lifelogging. Communications of
the ACM, 53(5):70–77, 2010.

[21] M. Stonebraker. SQL databases v. NoSQL databases.
Communications of the ACM, 53(4):10–11, 2010.

Author Biographies

Pil Ho Kim received the MS in ECE from POSTECH,
South Korea in 1986 and his PhD in ECE from Georgia In-
stitute of Technology, USA in 2009. Dr. Kim joined Univer-
sity of Trento, Italy in 2010 as the Marie Curie research fel-
low. He first started working on personal lifelogging while
he was in IBM Research, USA in 2004 and since then he
has been actively conducting research on lifelog management
and analysis. He is the founder of the eLifeLog.org com-
munity – the research organization for open lifelog research
collaboration.

Fausto Giunchiglia received his MS and PhD in Com-
puter Engineering from University of Genoa, Italy in 1983
and 1987. Dr. Giunchiglia joined University of Genoa, Italy
in 1986 as an Adjunct Professor and also has worked for
ITC-IRS in Italy, University of Edinburgh in UK and Stan-
ford University in USA. He moved to University of Trento,
Italy in 1992 and became a Professor of Faculty of Science in
1999. He is member of the ERC panel for the ERC Advanced
Grants (2008-2013). He has been the program or conference
chair of IJCAI 2005, Context 2003, AOSE 2002, Coopis
2001, KR&R 2000 and IJCAI (05-07). He has developed
very influential works on context, lightweight ontologies, on-
tology (semantic) matching and also peer-to-peer knowledge
management. He has participated in many projects, (Open
Knowledge, Knowledge Web, ASTRO, Stamps, etc.) and
also has coordinated EUMI and EASTWEB.

Lifelog Data Modeland Management : Study on Research Challenges 125

