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Abstract: Distances of several nearest neighbors of a given 
point in a multidimensional space play an important role in some 
tasks of data mining. Here we analyze these distances as random 
variables defined to be functions of a given point and its k-th 
nearest neighbor. We prove that if there is a constant q such that 
the mean k-th neighbor distance to this constant power is 
proportional to the near neighbor index k then its distance to this 
constant power converges to the Erlang distribution of order k. 
We also show that constant q is the scaling exponent known from 
the theory of multifractals.  
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I. Introduction 
There are distinct problems in dealing with the nearest 

neighbor or several nearest neighbors to a given point in data 
mining methods and procedures. A rather strange behavior of 
the nearest neighbors in high dimensional spaces was studied 
from different points of view. 

One of them is a nonparametric technique of probability 
density estimation in multidimensional data space [1] , [2] . 
Classification into two or more classes and the probability 
density estimate using several nearest neighbors is a typical 
task [1] , [2] , [5] , [6] . Also clustering is a problem where 
interpoint distances are in common use. This class of problems 
looks for the highest quality of the probability density 
estimation, while efficiency and speed are secondary. 

The other issue is the problem of nearest neighbor 
searching. This task is interesting and important in database 
applications [7] , [8] , [9] . A typical task of searching in large 
databases is searching for other nearest neighbor queries. For 
this class of problems, maximal performance, i.e. the speed of 
nearest neighbor searching, is a primary task.  

The use of the k-nearest neighbor approach for other 
applications was studied, also e.g. by [10] , and [11] .  

For the problem of searching the nearest neighbor in large 
databases, the boundary phenomenon was studied in [8] . It 
was shown by the use of Lmax metric why the actual 
performances of the nearest neighbor searching algorithms 
tend to be much better than their theoretical analyses would 

suggest. The cause is just the boundary effect in a high 
dimensional space. In [9]  it was found that as dimensionality 
increases, the distance to the nearest data point approaches the 
distance to the farthest data point of the learning set. 

For probability density estimation by the k-nearest 
-neighbor method, the best value of k must be carefully tuned 
to find optimal results. The value of k is also dependent on the 
total number N of samples of the learning (or training) data set. 
Let a point x (a query point [7] ) be given and let there be a ball 
with its center in x and containing k points of the learning set in 
it. Let the volume of this ball be Vk. Then, for the probability 
density estimate in point x it holds [1]  
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A simple experiment with density estimation at the center of a 
multidimensional cube with uniformly distributed points will 
show that starting from some k the value of pk(x) for larger k is 
not constant, as it should be, but lessens. The boundary effect 
surprisingly influences the k-th nearest neighbor about which 
everybody would say that this neighbor is still very near to 
point x. 

In both cases, a statistics of interpoint distances is of 
primary interest. One often-used tool is the Ripley K-function 
[12]  usually written in the form:  

 
K(r) = �-1E(number of further points within distance r of an arbitrary 
point),  

 
where � is the intensity of the process or the expected number 
of events per unit of area (assumed constant). The K-function 
has been studied from different points of view in vast 
literature.  

In some works, the point process is limited to two 
dimensions and K-function as well [13] , [14] . Marcon and 
Puech [14]  summarize important features of the K-function 
including different corrections of edge (boundary) effects.  
They summarize important features of the K-function 
including different corrections of edge (boundary) effects. An 
edge effect means that points located close to the domain 
borders are problematic because a part of the circle inside 
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which points are supposed to be counted is outside the domain. 
Result of ignoring this effect is underestimating K.  

D. Evans [15]  studies a class of random variables defined 
to be functions of a given point and its nearest neighbors. If the 
sample points are independent and identically distributed, the 
associated random variables will also be identically 
distributed, but not independent. He shows that random 
variables of this type satisfy a strong law of large numbers, in 
the sense that their sample means converge to their expected 
values almost surely as the number of sample points n → ∞. 
Moreover, Evans introduced an interesting lemma that for 
every countable set of points in Rd, any point can be the (first) 
nearest neighbor of at most int(dVdp) other points of the set, 
where Vdp is the volume of the unit ball in Rd with Lp norm. 

Dealing with K-functions, it was already Ripley [12]  who 
pointed out that the K-function shares some of the properties of 
the interpoint distribution function, even though it is not a 
distribution function because K(r) → ∞ as r → ∞. Later on, 
Bonetti and Pagano [16]  introduced empirical cumulative 
distribution function FN(d) of distances d for total N samples. 
This is, in fact, a correlation integral [17]  in one of its many 
forms. Bonetti and Pagano then gave a proof that the scaled 
distribution of FN(d) computed at a finite set of values, d1, d2, 
... converges to a multivariate normal distribution as N → ∞. 
The same result was given by a different way already by 
Silverman [18] .  

 
The goal of this study is to analyze the distances of the 

nearest neighbors from given point x and the distances 
between two of these neighbors, the i-th and (i-1)-st in the 
space of randomly distributed points. We show that the k-th 
nearest neighbor distance from a fixed point (the query point) 
is distributed according to modified Erlang distribution of 
order k. The modification depends on that one uses a variable 
that is equal to the distance to the proper exponent power 
instead of the distance alone as an independent variable. 

 
     In this paper we first point out some features of neighbor 
distances in a multidimensional space. Second, we remind of 
the probability distribution mapping function, and the 
distribution density mapping function. These functions map 
probability distribution of points in Rn to a similar distribution 
in the space of distances, which is one-dimensional, i.e. R1. 
Third, influence of boundary effects on the probability 
distribution mapping function is shown, and the power 
approximation of the probability distribution mapping 
function in the form of (distance)q is introduced. We show that 
exponent q is, in fact, the scaling exponent known from the 
theory of multifractals [19] , [20] , [21] . Non-uniform as well 
as uniform distributions are considered. In conclusion, we can 
say that the nearest neighbor space does not look so strange as 
shown in [7] , [8]  when we look at it from the point of view of 
a nonlinear scale measured by suitable power q of neighbors 
distances. 

II. Near Neighbors Distribution Problem 
The nearest-neighbor-based methods usually use (1) for a 

probability density estimate and are based on the distances of 
neighbors from a given point. Using the neighbor distances or 
interpoint distances for the probability density estimation 
should copy the features of the probability density function 

based on real data. The idea of most near-neighbors-based 
methods as well as kernel methods [2]  assumes a reasonable 
statistical distribution in the neighborhood of the point in 
question. That means that for any point x (the query point [7] ), 
the statistical distribution of the data points xi surrounding it is 
supposed to be independent of the location of the neighbor 
points and their distances xi from point x. This assumption is 
often not met, especially for small data sets and higher 
dimensions.  

To illustrate this, let us consider Euclidean metrics and 
uniformly distributed points in cube (-0.5, + 0.5)n. Let there be 
a ball with its center in the origin and the radius equal to 0.5. 
This ball occupies 3

3
4 5.0.π  = 0.524, i.e. more than 52 % of 

that cube in a three-dimensional space, 0.080746, i.e. 8 % of 
unit cube in 6-dimensional space, 0.0026 in 10-dimensional 
space, and 3.28e-21 in 40-dimensional space. It is then seen that 
starting by some dimension n, say 5 or 6 and some index i, the 
i-th nearest neighbor does not lie in such a ball around point x 
but somewhere “in the corner” of that cube but outside this 
ball. Drawing a larger ball, we can see that some parts of it are 
empty, especially parts near to its surface. In farther places 
from the origin, the space thus seems to be less dense than near 
the origin. It follows that this i-th neighbor lies farther from 
point x as would follow from the supposed uniformity of 

distribution. The function n
irif =)( , where ir is the mean 

distance of the i-th neighbor from point x, should grow linearly 
with index i in the case of uniform distribution without the 
boundary effect mentioned. In the other case, this function 
grows faster than linearly. 

There is some unknown distribution of points in the 
neighborhood of point x. If this distribution is not uniform, we 
would like to have function f(i) “uniform” in a sense that f(i) is 
proportional to number i. The best choice would be 

n
irif =)(  for uniform distribution and no boundary effects. 

In real cases of higher dimensions, boundary effects occur 
every time. Not to neglect these effects, let us choose a 

function q
irif =)( , where q is a suitable power, q � n. A 

suitable choice of q will be discussed later. 
 

III. Fractal systems 
One of the most important elements of the chaos theory are 

singularity exponents (also called scaling exponents). They are 
used in multifractal chaotic series analysis. We try here to use 
these exponents in a formula for probability distribution of 
near neighbors of a given position x. This task usually has 
nothing to do with time series but as shown already by 
Mandelbrot in 1982 [19]  any data may possess a fractal or 
multifractal nature. 

 
It can be found that the chaos theory provides some useful 

elements and tools that could be utilized for estimating the 
probability mentioned, and consequently to use them, e.g. for 
classification tasks or for tasks of nearest neighbors searching. 
The chaos theory is focused on chaotic processes that are 
described by time series. Therefore, the order of values of 
variables plays significant role. There is a lot of practical tasks 
described by data that do not form a series. In spite of that 
some elements of the chaos theory could be used for 
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processing of data of this kind [27] . Such data are, for 
example, the well-known iris data on three species of iris 
flower given by Fisher [33] . Each individual sample describes 
one particular flower but neither flowers nor data about them 
form series. There is a set of flowers as well as a set of data 
without any ordering. The task is to state to what species a 
flower belongs according to measured data. Also one can 
define a distance or dissimilarity defined on the parameter 
space that describes individual flowers as points. Now one can 
define a distance between two flowers and also for a particular 
flower to find the nearest neighbor, i.e. the most similar one, 
the second nearest, i.e. the second most similar flower and so 
on. 

Fractal systems are known to exhibit a fractional power 
function dependence between a variable a called a scale (of a 
resolution quantity, or of a measure that can be associated with 
a nonuniform distribution with a support defined for the fractal 
set) and frequency s or of probability P of its appearance,  

 
haas ≈)(   or  haaP ≈)( . 

 
Here h is called a fractal dimension of a fractal system. 

A multifractal system is a generalization of a fractal system 
in which a single exponent h (the fractal dimension) is not 
enough to describe its behavior; instead, a continuous 
spectrum of exponents (the so-called singularity spectrum or 
Hausdorff spectrum) is needed. In a multifractal system, a 
local power law describes the behavior around any point x   

 
)()()( xhaxsaxs ≈−+ .                      (2) 

 
The exponent )(xh �

is called the singularity (or holder) 
exponent or singularity strength [20] , as it describes the local 
degree of singularity or regularity around point x� , and a is 
called a scale of a multiresolution quantity or of a measure. 

The ensemble formed by all the points that share the same 
singularity exponent is called the singularity manifold of 
exponent h, and is a fractal set of fractal dimension D(h). The 
curve D(h) vs. h is called the singularity spectrum or 
Hausdorff spectrum and fully describes the (statistical) 
distribution of variable a. The singularity spectrum of a 
monofractal consists of a single point. 

For multifractal objects, one usually observes a global 

power law scaling of the form (2) or simply haaP ≈)( . 
That is a local power law that describes the behavior around 
any point x� at least in some range of scales and for some range 
of h. When such a behavior is observed, one talks of scale 
invariance, self-similarity or multiscaling.   
      In a slightly different perspective, fractal appears as 
(innumerably many) points in a multidimensional space of 
dimension n. In practice, the fractal set is given, “sampled”, by 
finite collection of M samples (patterns, measurements etc.) 
that form isolated points in n-dimensional space. In case of 
independent samples there is no ordering or sequence of 
samples, thus there is no trajectory. Samples can only be more 
similar or dissimilar in some sense. If the n-dimensional space 
is a metric space, the most common dissimilarity measure is a 
distance. For a collection of samples of the fractal set the 
mutual distances between samples (points) are different 
realizations of a random variable called distance a between 

samples. This random variable has support (0, �). The 
distance a between samples has distribution function F(a) and 
corresponding probability density P(a).    
     Thus, we have introduced a fractal set, the support on it and 
multifractal measure P(a). Indeed, having a pair No. i of two 
samples lying in distance ai one from the other, then P(ai) is a 
probability of appearance ai., i.e. of distance ai at place i. 
Apparently, the way of enumerating can be arbitrary.  

     To state an empirical distribution F(ai) and density P(ai) 
let us enumerate (sort) all distances ai, i = 1, 2, .. M, 

)1(2
1 −= NNM so that ai < ai+1. The distribution function 

F(ai) is then a staircase function of N steps, and F(ai) = i/M. An 
empirical derivative of F(a) at ai is P(ai) and can be 
approximated as P(a1) = 0, P(ai) = 1/(ai - ai-1).  More 
sophisticated approximations of P(ai) are possible. After that 
one can use formulas for Hausdorff dimension f(q) and 
singularity strength �(q) above and get the singularity 
spectrum. 
 

IV. Analysis 

A. Point process of neighbors 
Let us assume random distribution of points xi, i = 1, 2, …, 

N in bounded region W of n-dimensional space Rn with Lp 
metrics. We consider appearance of neighbors around a given 
location (query point) x as a point process P in Rn [34] , [35] . 

Throughout this part, we say that point x is inside S in the 
following sense: For each neighbor y considered, the ball with 
its center at x and radius equal to ||x-y|| lies inside S. This is the 
case where the boundary effects do not take place. 

 

B. One-dimensional case 
In this particular case, we are interested in homogenous 

Poisson process only. Positions of points on R+ from location u 
≡ 0 are characterized by distances from point 0; the k-th 
neighbor of point 0 appears at distance rk. We use simple 
analogy between time and distance here. In the 
one-dimensional homogenous Poisson process with intensity 
λ the inter-arrival times have an exponential distribution [34] . 
Then the distance � between two neighbor points is a random 
variable with exponential distribution function 

∆−−=∆ λeP 1)(  and probability density function 
∆−=∆ λep )(  [34] , [35] . For this distribution function the 

mean is E{�}= 1/� = d  and it is the mean distance between two 
neighbor points.  

Let us imagine a positive half-line with a query point at 
point 0 and with randomly and uniformly spread points, i.e. the 
distance between two neighbor points is � with mean d. The 
question is: What is the distribution of the distance of each 
point from point 0? The distance of i-th point (i-th neighbor of 
point 0) is simply the sum of individual distances between two 
successive points. These individual distances are independent 
and have the same exponential distribution with � = 1/d. 

Because the distance is the sum of all successive distances, 
it is also the sum of independent exponentially distributed 
random variables. This problem was studied in connection 
with mass service (queuing) systems and represents the issue 
of i independent exponential servers working in series 
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(cascade) [22]. The servers have the same exponential 
distribution of the service time with constant �. Generally, the 
resulting total service time after the i-th server is given by 
gamma distribution with integer first parameter or the Erlang 
distribution Erl(i, �) [22]  [23] , [24]  
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1
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C. Multidimensional case 

Let us have a spatial point process P in Rn. Point process P 
considered, as a set of points can be a fractal set. It is possible 
to define several kinds of distances between points of P [34] .  
1. One can introduce a distance between two points of P, 

Rij=dist(xi; xj ), xi, xj ∈ P. In a bounded region W ⊂ Rn a 
cumulative distribution function of Rij  
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is denoted as correlation integral. h(.) is the Heaviside step 
function. Grassberger and Procaccia [17]  have introduced 
correlation dimension ν as limit  
 

r
rC I

r

)(
lim

0→
=ν                             (4)  

 
2. Let R=dist(x, P) be the shortest distance from the given 

location u to the nearest point of P. This is called the 
contact distance and the cumulative distribution function 
of R=dist(x, P) in a bounded region W ⊂ Rn is called 
contact distribution function or the empty space function 
[35] . We can extend distances from a given location u to 
the second, third,... nearest neighbor point of P and find 
the corresponding distribution function of reaching k-th 
nearest neighbor. This function is called a survivor 
function [36] .  

3. For distances from a given (and fixed) location u to other 
points of P we use notion of a distribution mapping 
function (DMF) introduced in our previous works [25] , 
[26] . 

 

Definition 

The distribution density mapping function d(x, r) of the 
neighborhood of the query point x is function  

 

),(),( rxD
r

rxd
∂
∂= , 

 
where D(x, r) is a probability distribution mapping function of 
the query point x and radius r. 
 

In bounded region W when using a proper normalization 
the DMF is, in fact, a cumulative distribution function of 
distances from a given location u to all other points of P in W. 
We call it also the near neighbors distribution function of point 

u. Here we use some definitions introduced  in our previous 
works [25] , [26] . 

 

Definition 

The probability distribution mapping function D(x, r) of 
the neighborhood of the query point x is function  

 

�=
),(

)(),(
rxB

dzzprxD , 

 
where r is the distance from the query point and B(x, r) is the 
ball with center x and radius r. 

 
Note. It is seen that for fixed x the function D(x, r), r > 0 is 

monotonously growing from zero to one. Functions D(x, r) 
and d(x, r) for fixed x are the (cumulative) probability 
distribution function and the probability density function of 
the near neighbor distance r from point x, respectively. We use 
D(x, r) and d(x, r) mostly in this sense. 
 

  Definition 

     Let a, b be distances of two points from a query point x in 
Rn. Then  

nn
n bad −=)(

. 

 
      We differentiate between the d(n) and distance d = |a - b|; 
we write also d(n)(a, b).  
 
 

D. Scaling 

       Definition 

     Let there be a positive q such that  
 

const
r

rxD
q

→),(  for +→ 0r  . 

 
We call function d(q) = rq a power approximation of the 
probability distribution mapping function. 
 
      This definition naturally follows a previous definition. The 
important thing is that the last definition exactly gives a true 
picture of the scaling property known from the fractal and 
multifractal systems theory, where q is known as multifractal 
dimension, scaling (singularity or Hölder) exponent or 
singularity strength [19] , [20] , [27] , [30] . If P is nonfractal, 
then scaling exponent q has integer value for all points of P. 
Especially if P is a homogenous Poisson process, then q = n 
[36] . If P is a monofractal, scaling exponent q has the same 
value for all points of P, i.e. a local scaling exponent q is equal 
to correlation dimension ν. In the other case, P is a multifractal 
characterized by local scaling exponent q(u) that depends on 
particular position of location (query point) u in question. 
      Moreover, there is a well-known correlation integral in 
form (3). The correlation integral can be rewritten in the form: 
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and also  
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Thus, the correlation integral is a mean of probability 
distribution mapping functions for all points of a set 
considered. 

     The estimated value of the correlation dimension computed 
using well-known log-log plot [17]  depends heavily on the 
number of data points considered. This appears especially in 
high dimensional spaces. It has been discussed to  a large 
extent in [29] , [30] , [31] . Krakovska [31]  gave estimate of 
the error in correlation dimension estimate. Her estimate 
evaluates the influence of the edge (boundary) phenomenon 
for data in a cube. The cube was considered as the worst case 
as data usually form a more rounded “cloud” in the space. At 
the same time, she generated uniformly distributed data in a 
cube so that each coordinate was a random variable with 
uniform distribution on (0, 1). Thus, point process that 
generated points in multidimensional hypercube in this way 
was not a multidimensional Poisson process. Multivariate data 
generated by the multidimensional Poisson process have 
fractal dimension equal to the embedding space 
dimensionality n. Data generated by the method described 
above then apparently have lower fractal dimension and it can 
be easily seen that  this is not caused by lack of data points or 
by edge effects (that can be eliminated by the use of the 
approach described in Chap. IV.A). We show it in greater  
detail in Chap. VI. 

V. Results 

A. Uniform-like distribution and scaling exponent 
Let a query point x be surrounded by other points uniformly 

distributed to some distance d0 from point x. It means that there 
is a ball B(x, d0) with points uniformly distributed inside it. In 
this case, the number of points in a ball neighborhood with 
center at the query point x grows with the n-th power of 
distance from the query point (up to distance d0). The 
distribution mapping function D(x, r) also grows with the n-th 
power of distance from the query point x, i.e. the number of 
points in ball with center at x and radius r grows linearly with 
rn.  

 
ndrrxD )/(),( 0=  for r ∈ <0, d0>, 

 
and  
 

D(x, r) = 1 for r/d0 > 1. 
 

At the same time, D(x, r), as a function of z = rn, D(x, z), grows 
linearly, too. The distribution density mapping function d(x, 

z), taken as ),(
)(

n
n

rxD
r∂
∂ , is a constant for r ∈ (0, d0) and 

zero otherwise. 
      Let ri be a distance of the i-th neighbor of point x, and 
zi=ri

n.  It follows that the mean d(n) , ( )n
k

n
kn rrEd −= −1)(

 (point 

k-1 = 0 is point x) of successive neighbor points is a constant 
under the condition of uniform distribution.  
     Measuring “distance in n dimensions” by (distance)n, i.e. 
by the use of d(n) we get, in fact, the same picture as in 
one-dimensional case, discussed in Sec. IV.B. Because the 
distribution of d(n)(0, r), r ∈ <0, d0> is uniform, then d(n) of 
successive neighbors, d(n)(rk-1, rk) is a random variable with 
exponential distribution function. It also follows that the d(n) of 
the i-th nearest neighbor from the query point is given by the 
sum of d(n)´s between the successive neighbors. Then, it is a 
random variable with the Erlang distribution Erl(i, �), � = 
1/ )(nd , where )(nd  is mean d(n)  between the successive 

neighbors.  

        Definition 

     Let there be ball B(x,r) with center x and radius r. Let there 
be a positive constant �. We say that points in ball B(x,r) are 
spread uniformly with respect to d(q), if d(q)(rk-1, rk) of two 
successive neighbors is a random variable with exponential 
distribution function with parameter �. 
 
     Note that the wording “... are spread uniformly with respect 
to d(q)” comprises fractal nature of data as well as the edge 
(boundary) phenomenon. In the first case, the q is the local 
scaling exponent; in the other case, the q captures the 
boundary effect. Usually the value of q is given by a mix of 
these two phenomena and is lower than it would be for these 
two phenomena separately. 
 
     Theorem 
     Let, for query point x ∈ Rn , there exist a scaling exponent q 
and a distance r such that in ball B(x,r) with center x and radius 
r the points are spread uniformly with respect to d(q) . Let 
d(q)(xi, xi+1) between two successive near neighbors of point x 
have mean � = E(d(q)) and let � = 1/�. Then, the d(q) of the k-th 
nearest neighbor of point x is the random variable with the 
Erlang distribution Erl(d(q), k, �), i.e. 
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Proof. Let us denote the i-th nearest neighbor of the point x 

by xi, its distance from point x by di, its d(q)(x, xi) by d(q)i. Let us 
introduce a mapping Z: xi � R1+: Z(xi) = d(q)i, i.e. points xi are 
mapped to points on the straight line, the query point x to point 
0. Let total number of points xi in ball B(x,r) be N. Then, the 

distribution mapping function is 
qr

N
constrxd =),(  . It 

follows from the assumption that number of points at distance 
� from point x grows linearly with �q . Then, there is a 
proportionality constant � = N/rq.  It follows that in mapping Z 

 Near Neighbor Distribution in sets of Fractal Nature 163



  

points x1, x2, ... are distributed randomly and uniformly, and 
mean d(q) of the neighbor pairs is λ/1/ =Nr q . We, then, 
have uniform distribution of points on d(q) and then the d(q) 
between the neighbor points has exponential distribution [23]  
with parameter �. From it d(q) of the k-th point xk from point x is 
given by the sum of d(q)s  between successive neighbors. Then, 
it is a random variable equal to the sum of random variables 
with identical exponential distribution [23] , [24]  with 
parameter �, then 

 
),,()( )()( λkdErlxd qkq = . � 

 
Note that this theorem is a generalization of the theorem 

[27] derived with the use of the spatial point process. In [28]  
author speaks about generalized gamma distribution, but, at 
the same time, considers the shape parameter as a positive 
integer that is the special case often called the Erlang 
distribution. Moreover, he considers a volume of a ball in the 
embedding space of dimension m (positive integer; here 
denoted by n) while we use more general distribution mapping 
(scaling) exponent q (real, positive). 

 

B. Empirical distribution and empirical DME 
We have pointed out that the distribution mapping exponent is 
nothing else than the multifractal dimension (also known as 
scaling (singularity or Hölder) exponent or singularity 
strength) [17] , [19] , [20] , [21] , [27] . There is also close 
relation to a well-known correlation integral [17]  and 
correlation dimension. We have shown that correlation 
integral can be understood as a mean of probability 
distribution mapping functions for all points of the data set. 

The multifractal dimension, scaling (singularity or Hölder) 
exponent or singularity strength is often used for 
characterization of one dimensional or two-dimensional data, 
i.e. for signals and pictures. Our results are valid for 
multivariate data that need not form a series because data are 
considered as individual points in a multivariate space with 
proper metrics. 

 

VI. Simulation analysis 
The target of simulation is to demonstrate 
 
1. That the distribution mapping exponent one can use as 

a relatively global feature for characterizing the data 
set given. 

2. That the empirical distribution of variable rq of nearest 
neighbors is really close to the Erlang distribution, as 
stated in Theorem 1. 

 
For all simulations, 32 000 samples in n-dimensional cube 
were used. Data in a cube were generated so that each 
coordinate was a random variable with uniform distribution on 
(0, 1). Thus, the generated points in multidimensional 
hypercube were not points arising from a multidimensional 
Poisson process. Only multivariate data generated by the 
multidimensional Poisson process have fractal dimension 
equal to the embedding space dimensionality n. Data 
generated by method described then apparently have lower 

fractal dimension and it can be easily seen that this is not 
caused by lack of data points or by edge effects, as shown in 
the following. 

After samples were generated, each sample was taken as a 
query point x and for each sample 10 nearest neighbors were 
found and their distances ri, i = 1, 2, ... 10 recorded. After that 
a distribution-mapping exponent q was found as a value for 

which mean values of q
ir grow linearly, i.e. successive 

differences of their means )()( 1
q

i
q

iqi rErEd −−=  are 

approximately constant; 00 =qr . In this experiment, results 

are apparently influenced by procedure of points generation 
because in an opposite case the distribution mapping exponent 
would be equal to data space dimension n. Truly, we organize 
the simulations this way to show points 1 and 2 above. 
 
The values of q found for dimension n from 1 to 40 are shown 
in the second column of Table 1.  

 
n q found by simulation 
1 1 
5 4.8 

10 9 
20 15.6 
40 28 

 
Table 1. Values of the distribution-mapping exponent q for 
some uniform n-dimensional cubes found by simulation and 
approximated. 
 

       In Fig. 1, differences 0),()( 01 =−= −
qq

i
q

iqi rrErEd  

for n = 20 and three different exponents are shown. Here it is 
seen that the value q = 15.6 gives approximately a horizontal 
straight line. It means that differences d(q)i are all nearly the 
same. This fact corresponds to approximately uniform 
distribution of variable rq. Then,    q = 15.6 is a good estimate 
for the distribution-mapping exponent in this case.  

 

Figure 1. Differences 0),()( 01 =−= −
qq

i
q

iqi rrErEd  for 

n = 20, 10 nearest neighbors, and three different exponents.  
 

In Fig. 2, histograms of d(q)i = q
ir  for q = 15.6, n = 20 and for 

the first 10 neighbors (i = 1, 2, ... 10) are shown. The 
histograms were smoothed using averaging over five values. 
The bin size is 0.01. The histograms show, in fact, probability 
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density functions for the Erlang distribution for indexes 1 
(exponential) to 10. This is just what was expected when the 
probability distribution mapping function with a proper 
distribution-mapping exponent was used. 
 

VII. Discussion 
Here we discuss a problem of empirical value of the 

distribution mapping exponent and its use. 
 

Figure 2. Histograms of variable z = q
ir , q = 15.6, n = 20. 

Lines from top to bottom i = 1, 2, ... 10. 
 

In statistics, it is common to differentiate theoretical and 
empirical distribution. As to scaling exponent, no such a 
notion was introduced in the literature about fractals and 
multifractals.  Discrepancies between theoretical value and 
empirically stated value are explained by lack of data, and 
either more data are demanded or some corrections are made. 
Such discrepancies and errors were widely discussed, see e.g. 
[29] , [30] , [31] . In [31]  correction factors for different 
embedding dimensions are presented, based on the assumption 
of data uniformly distributed in a cube. There is a general 
objection that data do not form a cube and that cube is, then, 
too strict a model for edge phenomenon. Moreover, there is a 
slightly problematic way of how “uniform” data are generated, 
as discussed above. 

Here we do not use such corrections but an estimated 
empirical value. The empirical value is influenced first by true 
local scaling exponent of the data generating process, and 
second by edge effect caused by limited amount of data. 
Corrections discussed above try to eliminate this influence. In 
the case of probability density estimation and classification 
and in other tasks dealing with neighbor’s distances one needs 
to work with the neighbor’s distance distribution as it appears 
in a given empirical environment, and idealized limit case of 
the number of data points going to infinity is found as 
impractical. Instead, a large number of experiments with the 
same finite amount of data are considered;  with the number of 
such experiments eventually going to infinity. 

Now consider a distribution of k-th nearest neighbor. Let us 
use the coefficient of variation CV that is a normalized measure 
of dispersion of a probability distribution. The coefficient of 
variation CV is defined as the ratio of the standard deviation to 
the mean. For the Erlang distribution of k-th order it  (results in 
an?) interesting formula for the coefficient of variation CV  = 
�/� = k/1 . This relation shows that relative spread of 

variable with the Erlang distribution of the k-th order 
diminishes to zero with order k going to infinity. On the other 
hand, for k = 1 (in fact exponential distribution), i.e. for the 
nearest neighbor, the CV1 = 1, while for the second nearest 

neighbor (k = 2) there is CV2 = 2/2  	 0.707. This shows 
why in [25] , [26]  we do not recommend to use the first nearest 
neighbor of each class in contrast to the old finding by Cover 
and Hart [32]  that the first nearest neighbor brings half of 
information about class of the query point.  

 
Because the Erlang distribution converges to Gaussian 

distribution for order k → ∞, the result according to 
Theorem 1 also contains some results of e.g. [15] , [16] , [18] , 
[28]  about convergence of near-neighbor distances. 

VIII. Conclusion 
When using the notion of distance, there is a loss of 

information on the true distribution of points in the 
neighborhood of the query point. It is known [7] , [8]  that for 
larger dimensions something like local approximation of real 
distribution by uniform distribution in practice does not exist. 
We have also shown why. On the other hand, the assumption 
of at least local uniformity in the neighborhood of a query 
point is usually inherent in the methods based on the distances 
of neighbors.  
 

Introducing power approximation of a distribution mapping 
function here solves this problem. It has been shown that the 
exponent of the power approximation is the scaling exponent 
known from the theory of multifractals for the number of 
points going to infinity. For finite set, this exponent includes 
boundary effects. By using the scaling exponent, the real 
empirical distribution is transformed to appear as locally 
uniform. It follows that when using exponentially scaled 
distance of the k-th neighbor the scaled distance has the Erlang 
distribution of order k. 
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