International Journal of Computer Information Systeand Industrial Management Applications.

ISSN 2150-7988 Volume 5 (2013) pp. 216-226
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Adaptation of a deep learning machine to real worlc
data

Ahmad A. Al Sallab* and Mohsen A. Rashwan?

! Department of Electronics and Communications, FaailEngineering,
Cairo University
ahmad.elsallab@gmail.com

2professor, Department of Electronics and CommunminatiFaculty of Engineering,
Cairo University
mrashwan@rdi-eg.com

Abstract: Adaptation is a property of intelligent machines to
update its knowledge accor ding to actual situation. Self-learning
machines (SLM) as defined in this paper are those learning by
observation under limited supervision, and continuously adapt
by observing the surrounding environment. The aim isto mimic
the behavior of human brain learning from surroundings with
limited supervision, and adapting its lear ning according to input
sensory observations. Recently, Deep Belief Networks have made
good use of unsupervised learning as pre-training stage, which is
equivalent to the observation stage in humans. However, they
still need supervised training set to adjust the network
parameters, as well as being non-adaptive to real world
examples. In this paper, SLM is proposed based on deep belief
networks and deep auto encoders to adapt to real world
unsupervised data flowing in to the learning machine
during operation. Asa proof of concept, the new system
is tested on two Al tasks, number recognition on
MNIST dataset, and E-mail classification on Enron
dataset.

Keywords: Deep Belief Networks (DBN),
Boltzmann Machine (RBM), Adaptive learning

. Introduction

Traditional pattern recognition systems are compaxfe
two phases; training and testing. These two phases
sequential. The training of the system with a walbwn
dataset is executed first and then the systemaidyréo be
tested with the test set. Adaptive systems aretabl@date
their learning according to certain events.

Recognition in human brains develops first bf
lea
differences between separate entities. Once théc ba

unsupervised observation of surroundings to

structure of the environment is captured inside tihain,
supervision role starts so as to give labels tdediint

categories. This role could be achieved by transfer

experience, or by asking pertinent questions taifgla
ambiguity and learn the names of different entitigs the
task proceeds, learning is adapted as more exarfiples

automatically to belong to the correct class, aadde the
system is adapted. As we can see, adaptation i eial
component of the learning process in human beings.

Self learning machines, as defined in this papee, a
those following the process described above tonlgar
classify patterns. A clear example of the abovecpss is
human child learning the names of figures. Firs¢, h
observes different figures with no supervisioneaarh the
differences between them. Then he is told their emnor
he asks explicitly for the names of certain exaraplieeach
category and generalizes the name to the whols.chasshe
gets older, he faces more and more different exampiith
new shapes never seen before, and yet he can addpt
develop himself to learn those new examples to ruglo
the right category according to his own belief.

Three components are identified to compose thi§ sel
learning system. The first one is the unsupervised
pre-training, which is responsible of feeding unswised
examples to the machine to adapt itself to diffednsters.

RestrictedThe second is the supervised training to learnlassify

examples based on true labels, so as to fine thee t
network parameters based on the supervised datd. An
finally adaptive learning continuously adapting the
machine to the new examples coming from real daltéch
could have never been seen before in unsupervised
pre-training or supervised training phases. The
unsupervised pre-training has proved to be effeciiv
Deep Belief Networks [1] [3]. In this paper, thepervised
training and adaptive learning are focused on.

In many practical learning domains, there is agéar
upply of high-dimensional unlabeled data and Vienited

'Jﬁ\beled data. Applications such as information iestl

gnd machine vision are examples where large amaafnts
unlabeled data is readily available [3]. The neted
supervised data with semi or minimal supervisiorsiich
applications is high, to compensate the lack oélad data.

Minimum supervision means using few labeled
examples, and using them to generalize to broad&rset.
If efficient clustering of the unsupervised datasst

in and more experience is gained. New examplesemepossible, then it is sufficient to know the labeit the
seen before, of the different categories are lehirngneans of clusters, or at least one supervised ebeanip

MIR Labs, USA

217 Al Sallab and Rashwan

each cluster to apply the same labeling to the wisbister DBN, where the structure of the world is first cagtd by

automatically. unsupervised pre-training, so the system is capaibl

generating similar examples of those learned withou

using deep auto-encoders, learned using greedy kaye super_\{|5|o_n[2]. TheT role of unsupervised pre-training for
’ classification task is to get the network to a pamspace

layer learning algorithm in [1]. Applying linearapping, o :
like Neighborhood Component Analysis (NCA), on the S to the global minimum so that back propagatian

non-linear generated codes of the deep auto-encoéetfrjlrt without getting stuck in local mininja].

creates non-linear mapping and gets the data éwespace In [1],[3] and [4] it is proved that high-level
where the examples can be efficiently clustered. representations can be built from a large supply of
unlabeled inputs and the very limited labeled daata then

be used to only slightly adjust the model for a
problem-specific task.

In [3] non-linear dimensionality reduction is pemined

The continuous flow of data during operation iseedsl
for adaptation of the system to real world examplés
system needs to be developed to handle learningtaiian
based on incoming data. To be able to performttsk, the In [3] work has been done on learning nonlinear
learning algorithm itself should exploit the unsmggsed mappings that preserve class neighborhood struclinis
data in the first place. Atypical candidate alg¢fom for that is the main idea on which automatic dataset lalgaBrbuilt
is the one presented in [1] and [3] of learninged on. In this work, it was demonstrated how K-nearest
networks, or Deep Belief Networks (DBN) based omeighbor classification can perform well on nonekm
greedy Deep Boltzmann Machine (DBM) learningransformation of the input.
algorithm. This greedy layer by layer learning aitom
can make efficient use of very large sets of unlkedbeata,
and so the model can be pre-trained in complete
unsupervised fashion. The limited labeled datatban be
used to only slightly fine-tune the model for a ifie task
at hand using standard gradient based optimizatio
Adaptation as presented in our paper proposes that, . .
same learning process can be repeated whenever mbke. Deep Restricted Boltzmann Machine
supply of unsupervised data is available from ndrmafraining Review
operation.

A novel approach is deve|0ped in this paper based o Artificial Neura! -Net.\NorkS (ANN) have been Use.d for
deep networks Concepts to achieve two goa|s; tisé dine decades for classification taSkS |t has grabb.ECh-ttentlon
is ut|||z|ng few examp|es during Supervised |eag]p‘hase of researchers due tO the Slmllarlty bgtween ichidecture
by automatic labeling the unsupervised trainingads¢t and the human brains. The ANN is formed of several
using non-linear unsupervised clustering on tothefdeep stacked D layers, each of widt neurons. The weights
auto-encoder. The second one is network adaptatitin
the real world unsupervised examples, based ogrihedy
layer by layer unsupervised learning of DBN, thiere ftune
the network again with the already available sused
examples. With every batch of new input data, #&ming denoted byNg and the last layer byl.

is repeated and the network is updated periodiaailpn)) _ o
need basis. The main focus of research in ANN is on training th

))] network, i.e. to find the right weights that can umed to
Merging the two components of automatic labelind ancorectly classify the input examples. The mostcessful

adaptive learning constitutes the Self Learning Mae algorithm in that area is the famous back propagati
(SLM) as defined earlier. Those machines are abledrn 5igorithm.

with minimal supervision and adapt to real worldtala

SLMs are generic learning systems in terms that tae be =~ The problem with back propagation is the following;
adapted to any pattern recognition task. All wisatéeded ANN represents a non-linear mappifi,W) whereX is
are few representative examples of each class to H¥ input vector and W is the weight matrix of tbole
recognized, and then the system will build the mekw network, as the number of layers increases, thetiom f
from the unsupervised input data flowing in. Reowgly ~ gets more complicated, such that it contains migtipcal
the network adapts its parameters as more and mase Minima. The back propagation algorithm convergesito

data is fed to the system, and the performancelismced certain minimum based on the initialization of wetig W.
automatically. Sometimes it gets stuck to a poor performance local

]]) minimum and not the global one. For some Al taskese
The next sections are organized as follows; fiesated |ocal minima are fine, but not accepted for othases.

work is demonstrated. The next section presents the

automatic labeling component. Then adaptive leaynin Also, back propagation training time is not scaéabith
component is described. The next section presdéms the depth of the network. As the number of layacseases,
experiments results and details. Finally the pafser training time gets much higher. This could not béig

Future work in[3] suggests semi-supervised learning of
E;ep Boltzmann’s machines to target the applicatioh

rge supply of high-dimensional unlabeled data aed/
limited labeled data, like information retrievaldamachine
yision.

relating each consecutive layérand i+1 is W(i)(i+1)

matrix of dimensiom; x N; ., . The width of input layer is

concluded with the conclusion and future work. problem with the increasing power of computer nosed
Another disadvantage of back propagation is that it
II. Related work requires high supply of labeled data, which coutd be

available for many Al tasks requiring classificatio
An approach to imitate the behavior of V1 cortex in
humans is found in recent work of Hinton et Hl] on

Adaptation of a deep learning machine to real wdeth 218

For the aforementioned problems, Hinton et al. have

introduced a fast learning algorithm based on DBefef e E(vWN) e E(wh)

Networks (DBN) and Restricted Boltzmann Machine p(v.h) = AllPossibeConfigurdions - e E(v,h)
(RBM) to train a deep ANNL1]. <v,h>
Ye E(v.h) = PartitionFunction= PF
Ny, =M <v,h>
- E(v,h
N > e ()
D-2 h
0p(v)=2 p(v, h):m
N, (o -) _a) &) h 2e '
. St
— <v,h>

For mathematical convenience, let's maximize thg lo
p(v) instead ofp(v). Moreover, to maximize the data
generation with respect to model belief, we adjtiss
weights such that model belief is decremented witfike
real data is incremented as follows:

VAVERVIRVIRY

Figure 1 Deep Artificial Neural Network

A. Deep Belief Network model

The algorithm is based on modifying the ANN model 5, _ ;< dlog p(v) _ . 9log p(v)
iscriminati i - Realdata

from discriminative to generative model. The O e
discriminative model is the one which models the 'J !
classification performance of the network. The chije = a(<Vihj >Reaidata™ <Vi"j >Model
function to be minimized is the error between tbgquired
classification targets and the obtained ones. @natiner Finally the pre-training algorithm is simply to dpphe
hand, the generative model is the one that modeds tdata on the input layer of the 2-layer RBM to det hidden
generation of original data capability of the netlwoThe activations, and then re-generate the model visible
objective is to minimize the error between theactivations, and finally generate the model hidden
model-generated data and the original one. activations. In this way the RBM weights can be aied

. for the given input data.
The generative model must be able to re-genetste t 9 P

original data given the hidden units states, tkigresents Having the current layer trained, its weights axzén,
its belief of the real world data. This kind of nedds called and the hidden layer activations are used as thelager
Deep Belief Network (DBN). The DBN model enables th visible inputs, and the same training algorithnajplied.
network to generate visible activations based smitdden The obtained Deep network weights are used taailide a

>Model)

units’ states, this represents the network belief.

The problem now is how to get the hidden unitsestat

corresponding to the visible data. A RestrictedtBolnn

Machine is proposed between each two consecutixerda

fine tuning phase.

C. Fine-tuning phase
The fine tuning phase is simply the ordinary back

of the network. The difference between ANN, DBN angropagation algorithm. For classification taskdayger of

RBM is shown in Figure 2

(b) Belief Network (c) Restricted Boltzmann
Machine

A A

28 AL m
JWAN (
CEORD Q@U LEVERY

Figure 2 (a) ANN (b) DBN (c) RBM

(a) Neural Network

B. Pre-training phase

To optimize a given configuration of visible anaitien
units, the model energy is to be minimized.

E(v,h) = =2 vih:w:
(vh) = =2.vjh;w;
w=w+Aw

0E(v,h
-):Vihi

= LearningSgnal

Our objective for a generative model is to maximize
probability of visible units’ activationg(v). To getp(v) we
have to marginalize thp(v,h) probability for the whole
configuration.

width equals the number of targets or classesddied on
top of the network. Each neuron of this layer isivated
for each class label while the others are deaaiaThe
back propagation starts from the weights obtained i
pre-training phase. The top layer activations artaimed
for each training set example, or batch of exampiss
obtained in the forward path, and then the errgnai
between the obtained activations and required targe
back propagated in the network for weights adjustime

V. Automatic labeling system

Artificial intelligence tasks requiring classifiégah and
regression are mostly based on statistical learrofg
supervised training set, on the hope that thisiingji set is
sufficient to generalize well to the test set andlrworld
examples. This classical model requires large suppl
labeled training set. One of the major obstaclesnfa
development of such systems is the availabilityso€h
huge labeled training set. In many practical leagni
domains, there is a large supply of high-dimensiona
unlabeled data and very limited labeled data. Aggilons
such as information retrieval and machine visior ar
examples; where large amounts of unlabeled data are
readily available.

219 Al Sallab and Rashwan

LDA, PCA and Linear NCA give poor structure for

A self learning system shall follow the same modei, it differgnt clgsses of digits. The upper right gr&pbvys the
should not require such large amount of supervisd§@PPingwith NCAon top of deep auto-encoder; rioedr
examples, instead it should be able to learn witv f NCA. It is clear how the d_|fferent classe.s are well
supervised examples and generalize the learnedepone ~ Structured such that the operation of a clusteaiggrithm
other examples in the training set. like K-means is enhanced.

The root cause of the problem is that if the inawt data ~ B. Deep auto encoder clustering
or features are well structured, then the systemldco

discover similarities in the examples and geneealize To obtain the non-linearity discussed IN.A using
learned labels to all similar examples. Howevee iiput 9reedy — unsupervised learning algorithm, —deep
data is not necessarily structured by nature. auto-encoders can be used. Deep auto-encoder is a

_multilayer, nonlinear encoder network that transferthe
Suppose for the moment that somehow structuredtinpiwput data vectorx into a low-dimensional feature
could be run successfully to discover related exXasip f(xw) can be trained using the algorithm described in
such that the number of clusters is the numbeiasses at |\, g - atter the initial pre-training, the paramesecan be
hand. In this case only few labeled representatkeemples fine-tuned by performing gradient descent in the

are needed of every cluster, and the system canapply : : P
the same labeling on all the members of the clusted][\lﬂ?]'gt?(?:[rg]md Component Analysis (NCA) - objective

hence the whole dataset can be fully labeled. Hewdahe

assumption of structured input data or featuremas Figure 4 shows the deep auto-encoder network
always valid. It depends on the type of featuresamted architecture. The layers get narrower as we go eieryo
for the data. the network. Number of layers is D. Original dat& i

presented at Layer-0, and then next layers actiaati
continue till Layer-D-1. The activations of LayerDare
the code words representing the original data.

A. Deep versus shallow architectures

To discover similarity between cluster membersisit
traditional to make some transformation on the ioag The upward generation path (right arrow in Fegd)
data to improve the clustering algorithm performanc represents the code word generation. The downward
Among the most common algorithms used for such@sep generation path (left arrow in Figure 4) represethts
are Principal Component Analysis (PCA), Lineamodel belief, where the original data is generdtech the
Discriminant Analysis (LDA) and Neighborhood model according to the corresponding code word.
Component Analysis (NCA), which performs linear
transformation on the data to map it to anothecepeghere
within class similarities are improved. A linear
transformation has a limited number of parameters ia Layer D-1
cannot model higher-order correlations between the
original data dimensions.

Using a nonlinear transformation function
low-dimensional representations that work much dyett
than existing linear methods can be discoveredyidea
that the dataset is large enough to allow the patars to
be estimated3].

Code generation path >

<1ed uorjesauad eyep jeuidlo

Non linear NCA

Linear NCA LDA PCA

Layer O

Figure 4 Deep auto-encoder network architecture

Figure 3 Non-linear NCA performance vs. other linea C. Minimal supervision labeling

methods[3]
. . . . After having obtained the desired structured data,
Figure 3[3] describes the different mapping results of th¢sicient clustering algorithm can be run to diseoithe

MNIST dataset using different methods, linear meo gtrycture of the data. Number of clusters will be humber

Adaptation of a deep learning machine to real wddtha 220

of classes, and the initial means of clusters bélthe most layers are going to be stacked over it. The neuranes
representative examples of each class. For exaffgpléhe binary, with S-shaped sigmoid functions. First the
digit recognition task, the number of classes sballl0, unlabeled data example is presented to the fingtr|aat
and the initial clusters means shall be represemtéihage which activations are obtained. RBM unlabeled firzgnis

of each digit class. If the right labels for suchyerformed asiii] to obtain theawy . . for each layer.
representative means are available, then the wtlokter i+

shall hold the same label, and hence a labeledsdhia After all layers are trained, the whole network ggs are
obtained. adjusted.

If generative model like deep auto-encoder is usied, Deep auto-encoder architecture is a generative mode
system could be designed to generate the origavaimput Hence, the error to be minimized or objective fimetto
corresponding to the mean of each cluster, andreskser be optimized is the absolute difference between the
explicitly for the label of this data, and then gealize the originally presented data and the model believed.dehis
label to the whole cluster. This is very closehe behavior error signal is then used to be propagated backhén
of human learning achieving minimal supervision. network to adjust the weights using the traditiobaktk

propagation algorithm. The final adjusted weighfgerl
back_propagation_fine_tuningare the result of the

0, 0, algorithm.
a® o o o Sub_ routine _train _ deep_ auto(unlabeled _ dataset)
oo o @ data(0) := unlabeled _ dataset

for i:=1: N _layers
[AW, «,., » data(i)] := pre _train _rbm(Layer (i))

end _ for
@ W =W + AW

@ code =data(N _layers)
L

Model _ data = generate_original _ data(code)
(d Original _ data = data(0)
err _signal =] Model _ data — Original _ data |

Figure 5 (a) Raw data (b) Structured data afterlimmar [W] = back _ propagation _ fine _tuning (err _ signal, W)

transformation in the deep auto-encoder (c) Clirgier)
algorithm discovers clusters means with their laloétained re urn-(W) - i
(d) Having the labels of the means the whole chisttabeled Figure 6 Deep auto-encoder training algorithm

Figure 5 describes the different mappings and siog ~ E- Auto-labeling algorithm
on the input unlabeled data until a labeled datdset

obtained. First non-linear mapping is done usin@pde oo res vectors with minimal human effort. Labglihall
auto-encoder, such that structured dataset ismédaiThen po pased on clustering the given data into coherlasses

a clustering technique (like K-means) is appliedthe ith similar values. To guarantee that the obtaickegters
obtained codes. The labels of the clusters mearsdme represent the real class labels, the data repratsembf the
representative class examples are provided by $ke @ vectors must be designed to maintain the class
supervised examples, form which the whole cluster lse neighborhood relation of the given vectors, anthmmsame
labeled, and hence a supervised dataset is obtained time provide well-structured data so that efficient
clustering becomes possible.

The proposed algorithm here is to label a dataset o

D. Deep-auto encoder training algorithm
The algorithm pseudo code is presented in FigurA 7.
As described inlV.A and IV.B, deep auto encoder deep auto-encoder is first trained like in the ailgon
performs non-linear dimensionality reduction on thelescribed idV.D. The unlabeled dataset is the input of the
unlabeled data. Being a deep architecture, thetstre in algorithm. For each member of the unlabeled setpde
the mapped data is most likely to be well-clusteféidure word is generated (see the upward path in Figureaddl
6 describes the training algorithm of the deep artooder. stored in a large array of all code words represgnthe

The algorithm is based on the fast greedy Iearninlénl"]‘beleoi data set in the new mapped domain.

algorithm in [1]. Let's denote the number of layer as The obtained code words are fed to the K-means

N_layers The activation of each layer amata(i), with algorithm, with the number of clustelfs classess just the

data(0) is the original data exampleyy . . is the number of classes’ labels of the dataset. The Krasea
17+ algorithm gives the clustered data and their means.

weights matrix linking layeri to layer i+1, of size _) .

. . . . To obtain the labels of the new clusters with miaim
N xNj,q. AW is the weights update signal resulting fromsupervision, only the clusters means’ labels needé
training. When a variable is meant for the wholéwwek, knows, which represer_classesexamples of the whole
sub-scripts are dropped for simplifying the notatidhe dataset. Here user intervention is needed to ldbese
sub-routinggenerate_original_datas used to obtain the means. However, the means are now representedein th
model believed data to be the original data geeet¢ form of code word, so the user does not know whay t
code-word at the highest level (see Figure 4). represent in the original dataset. For example nfamber

For each layer, weights are updated as if no mpgex recognition, the user can only give a label of thuenber

221

image, but he cannot label its code word. So, thgireal
data (number image) is re-generated (the downwatid ip
Figure 4) and presented to the user to label itckvis done
in the sub-routineask _user_for_label Once the means
labels are obtained, the same label is appliedti¢onthole
dataset, and hence a labeled dataset is obtained.

Sub_routine _auto _label (unlabeled _ dataset)
[W]=call Sub_routine _train _deep_auto(unlabeled _ dataset)
foreach data_example in unlabeled _dataset
code = generate_ code_ word (data _example)
codes=[codes code]
end _ foreach
[clusters,meand = call kmeans_ clustering (codes, K _ classeg
means_ data = generate_ code_ word (means
labels = call ask_user_ for _label(means_data)
labeled _ dataset=[unlabeled _ dataset,labels]
return labeled _dataset

Figure 7 Auto-labeling algorithm

V. Adaptivelearning system

Al Sallab and Rashwan

Figure 8 describes the adaptive learning systemuse
real world patterns to update the model a learning
algorithm that makes use of unsupervised exampdes i
needed. Deep Belief Nets (DBN) trained using greedy
layer wise learning algorithifd] are typical candidates for
such purpose.

The learning algorithm can make efficient use ofyve
large sets of unlabeled data, and so the model bean
pre-trained in completely unsupervised fashion. Vhey
limited labeled data can then be used to only #igh
fine-tune the model for a specific task at handngsi
standard gradient based optimizatiof3]. The
unsupervised examples help in getting the initatian of
weights to a point near to the minimum of the olijex
function to be optimized, protecting against geftstuck in
poor local minima.

During operation of the system, the more unsupedsis
examples flowing in can be used to adjust the nekwo a
better initial location. This process will be pemnfeed
offline, in parallel with normal classification g on in
the network, and the whole learning process isatgkto
calculate the new weights. New updated weightsutated
offline are then applied to the network periodigadind

Traditional pattern recognition model is composedd PNy if test error is improved with the new weights

training and test phases. After training the modkk
system goes into test phase or normal operatiorilevitne
system is in normal operation, new patterns keapifig in
to be classified. According to the generality of thaining
set, the empirical classification error is detereanSo, if
the new patterns were encountered in the trainhmagse or
similar ones, then they should be correctly clasdif On
the other hand, if the training set was not covgrsiome
part of the feature space, and a new pattern iewartered
in that part during operation, it will be misclafgsd.

Adaptive part
(1) Initial (2) Tuned
ﬁ;iﬁ!:r:;\by weights Training deep weights | Fine tuning back
‘glgorithm e ” network N propagation
A A
o
£
0~
S
b Database of labeled
E H training examples
&2
T
o
B
\
Unlabeled real world Classifier decision
— » Test deep network »
Operation part

Figure 8 Adaptive learning system

A. Unsupervised examples improve learning

In conventional pattern recognition system thenirag
and test phases are sequential. In adaptive systemare
done in parallel.

otherwise the old weights are kept.

The DBN architecture ifil] performs back propagation
for weight adjustment after the unsupervised trajni
phase. In adaptive learning, there are two optitims first
is to apply the new unsupervised examples as sgpara
unsupervised pre-training phase, then run back
propagation, and the other one is to append theadir
existing database of old unsupervised examples thi¢h
new ones, then re-run the whole learning proceem fr
scratch. The choice depends on timing and storssyeek.

B. Over-fitting or user adaptation

The above proposed system may be considered tersuff
from over fitting to certain examples that flow thg
operation. For example if it is applied in handmit
recognition, then the system shall over fit to tser style
that is using the system, because the network ball
continuously adjusted to the examples of his owlesOn
the other hand, this could be viewed as user style
adaptation. Both points of view could be desiratenot
according to the application and the method of
implementation.

C. Adaptation algorithm

The proposed algorithm for adapting the DBN network
using unlabeled examples is presented in FigureT@e
presented subroutine is to adapt an existing DBNafoew
batch of unlabeled dateew_unlabeled_batch_data

A stack of RBM's are first trained using the gdy
layer-wise training algorithm ifil] usingpre_train_rbm
sub-routine This is repeated for th&l_layers of the
network. The activation of each layer is denotedatsi(i),

with data(0)is the original data examplewy x. N is the
| |+

weights matrix linking layeri to layer i+1, of size
Nj x Nj 1. AW is the weights update signal resulting from

training. Having all layers trained, the pre-traigistage is
over.

Adaptation of a deep learning machine to real wddtha

After pre-training, the back propagation fine tugiis

222

Auto-labeling algorithm was tested on characteogedion

performed on the stored labeled dataset to adjst ttask on MNIST dataset, and also on E-mail clasgifin task

weights. Before applying the new weights, the erede is
tested. If improvement in the error rate is achdk\hen the
new weights are applied, otherwise the old weigdnts
kept.
Sub_routine_ adaptation_alg orithm(new_unlabeled batch_ data)
data(0) := new_unlabeled_batch_data
fori =1:N _layers

[AW, . (1), dat(i)] := pre_train _rbm(Layer(i))
end_ for
Oold _wW=w
W =W + AW
[W] =call back_ propagation_ fine_tungoriginal _labeled_ datasetW)
test_err =call calculate_new_err _rate(original _labeled_ datase)
if (test_err <old _test_err)

return(W)
else

return(Old _W)
end_if

return (W)

Figure 9 Adaptation algorithm

D. Implementation

When it comes to practical implementation, there ar

two options to implement adaptive learning modied first
one is the on-board implementation, the other an¢hée
distributed implementation.

1) On board implementation

In this scheme, both the adaptive learning modul@ a

the classifier modules are on the same systematipgron
the same user inputs. In this case user style ataptis
desired, and hence over fitting is not an issues Type is

probable in hand-held devices and embedded sysfEmes.

choice could be constrained by the cost of theesysind
resources available. A separate parallel coprocessall
be used to handle the adaptation separate fromrtgeing
classification task. Updates of the network weigdtisuld
be scheduled periodically.

2) Distributed client-server model

In cases of multi-users system, over fitting totaier

on Enron dataset. In the following sections resutia both
tasks are presented.

A. MNIST Dataset

MNIST dataset of handwritten digits was ug&8]. This
dataset has a training set of 60,000 examplesadgesdt set
of 10,000 examples. It is a subset of a largerasatlable
from NIST. The digits have been size-normalized and
centered in a fixed-size image. The input imagesiszes
of 28x28 pixels. The images with their labels amred in a
certain file format. Data are stored in big endiamm, with
MSB first. Pixels are organized low wise. Pixel ves$
range is 0..255.

B. Enron Dataset

Enron dataset was collected and prepared by theGCAL
Project (A Cognitive Assistant that Learns and Qiges).
It contains data from about 150 users, mostly senio
management of Enron, organized into folders. Ttagad
was originally made public, and posted to the wsbthe
Federal Energy Regulatory Commission (FERC) duiisg
investigation. The email dataset was later puretadIT,
and turned out to have a number of integrity protdeThe
dataset was further processed by SRI (4&¢ and[16]).

[Enron Email Directorq

1 1
[beck-s J { shapiro-r J

1 | |
[inbox] [computers }

Figure 10 Enron email directory structure

Figure 10 shows the directory structure of the skta
Each user has a folder, containing a folder reprisg
each mail category. Categories could further spitb

user style is not desirable. In such cases; it @em sub-folder representing sub-categories. Some ofethe

convenient to use distributed client-server modétgere
the client is the
classification with the already calculated weighisader
real time constraints, while the server part isf@aning
adaptation using the classification examples. Mdiignts
communicate their examples to the server, whicligpers

adaptation, and then communicate back the updatg
Updates could be scheduldd

weights to the clients.
periodically or on need basis.

light weight device performing«inpbox”, “deleted”...etc...

folders are irrelevant for classification task,diksent”,
Pre-processing is needed to
extract useful categories. Also, preprocessingeisded to
extract useful vocabulary, build features vectorsc..e
Training and test sets are built by randomly siplitthe
(rjocessed dataset into training and testing examflkis
ndom splitting guarantees independence betwes anel
training sets.

To avoid over fitting, the server should perform)
adaptation by balancing the examples coming from a}) USers selection

clients to be used in the learning process, anddalveing
biased to certain user examples.

V1. Experimental results

E-mails of the Enron employees are diverse, so roat
limited number of common categories can be easily
identified among all users. For example, for a@ieruser,
the corpus is divided into: “eol”, “ces”, “entex”,
“industial”...etc. While for another user his mailsea

The proposed adaptive algorithm was tested on numbgategorized into: “duke”, “ecogas”, “bastos”...etchi§
recognition task on MNIST dataset. On the otherdhancreates a difficulty assigning labels to each etinased on

223 Al Sallab and Rashwan

its category, since categories are different betwesers. 4) Features extraction
To overcome this problem, users are ordered distgiyn

in terms of the number of e-mails in their direc¢sr and

then the top users with largest number of e-maitsew
selected as the input datasets, so that, eachdirestory ,
represents a separate dataset. This ensures coheratonsidered, and<(') is anL size vector.
between each category e-mail examples.

The features vector representing thtg email x(')
could be one of two cases; either binary or wordrtoFor
both cases, the vocabulary of the bag-of-wokdsis

For the binary case, the features veckg gets is just a

2) Vocabulary building vector of 1's or 0’s. The “1” indicates the existenof the
E-mail classification is based on categorizing atdees Ccorresponding vocabulary word in the e-mail, wHig

. . . i)
vector x of the ith example into one ofNy et marks its absence. For the word-count case, vaued

. _ . are integers, marking the frequency of word repmtit
categories. The features themselves are just itmlicaf within the given email. In the proposed classifisinary

the existence of certain, most-encountered wordshé features were tested to give the good results, ewhil

dataset, called the vocabulary of the corpus, c& tl1/\/0rd-c0unts give poor results, and hence binaryufes

bag-of-words. The sizelL of x1) is the number of shall be considered.

vocabulary words. Since, each user mails are censita

separate dataset; hence, each user is assignepheatse 5) Training and test sets selection

vocabulary vectov . For each user, the features and labels are extraade
To build this vocabulary vector, the whole corpigach described in the above sections. Now, to splitteeessed

user is parsed, and the words are ordered in aeddsry dataset into training and testing sets, a compiatelom

order in terms of the frequency they are encountérehe approach was followed, such that training and nesti

dataset, and then the mastfrequently encountered words €mails were selected randomly from the final databkis

are selected as the members\bf The parametel is €nsures independence between training and testing

chosen based on experimental results, where Ldsarhto datasets.

give the best accuracy. During vocabulary building,

irrelevant words are ignored (“he”, “she”, “when” tci. 6) Processed Enron Dataset _
Also, e-mail header is excluded, which containsabial ~ Enron dataset pre-processing generates differetasda
class label. for each user. The o_llfferent parameters are:
o Training set size
3) Categories building 0 Testing setsize
Categories of email messages are simply the differe 0 Number of categories/Class labels
class targets of the classification problem at haBach o Number of features
user has own set of categories. Number of categasie
. . . . User Training | Testsetsize | Number of | Number
denoted byN; rgets: Which is the dimension of class labels stsze | (emails categories | of
0 th _ (e-mails) features
y of thei examp|e_ Emold-] 90 10 10 100
3) . . augmann 952 106 5 1000
Selection of categories per each user directorgioise beck-s 891 100 10 2000
: H H H blair-| 1123 15 16 1000
first by counting the number of emails in each gatg. Pt o6 = . 1000
This counting is done recursively, i.e. if the qaigy grifth.] 352 64 8 1000
. . . haedicke-m 60 31 2 1000
contains sub-categories, then messages in thecddéré hayslett.r 255 558 7 5000
are also counted. Then the categories are orderegkaminski-v 1791 55 10 1000
. . . kean-s 1146 231 4 10000
discerningly, and the highest score ones are salexs the TUSCittK 02 79 3 1000
. . shackleton-s 490 168 4 1000
targets labelsl; argets- Each target ol’NtargetS is assigned shapiro-r 790 Ti8 = 10000
. . . . steffes-j 503 95 7 1000
a binary code Othargets bits, with only one bit set to 1 :vard-kd 22;359 g:s flil 11000000
armer-
and the Others set to 0' kitchen-| 1992 864 10 1000
. . . lokay-m 2073 61 6 1000
Each category is assigned an integer number fraim O [sandersr 711 281 6 1000
. . ill -w3 1974 26 5 1000
Ntargets 1 Which is denoted by label. The target label [“campbelr n n 5 1000
(M) th 0 i .
y'~ ofthei™ emailis a binary vector of lenghy 5 gets: Table 1 Users datasets details
label

with only 1 set at2 position. Niargets is chosen based

Table 1 shows the details of each user's datasetr af
on experimental results so as to give the bestracyu pre-processing.

During the aforementioned process, the irrelevant
categories are dropped, since they have no releventhe

classification problem, like “inbox®, “sent’, The auto labeling algorithm described IW.E is

deleted”...etc. applied to MNIST dataset. The training dataset is
composed of 60,000 labeled examples. The label is
removed to test automatic labeling performance, sad
60,000 unlabeled example results. The deep autodsmc

C. Auto-labeling results

Adaptation of a deep learning machine to real wdeth

architecture used has 1000 neurons in the firgtrla§y00
neurons in the second layer, 250 neurons in tire thiyer

and 30 neurons in the last layer. Hence the coded wo

dimension is 30.

Figure 11 and Figure 12 show the resulting 2+id
3-D codes of the unlabeled MNIST training datasdtich

224

[labeled_datase}=call Sub_routie_auto_label(unlabeled datase}
W _Pretrain] =call rbm_pre_tran(labeled_ datase}
[W] =call back_ propagation_ fine_tunglabeled_datase}
err =test_err _rate(labeled_ datasefw)
Figure 13 Automatic labels experiment

The obtained results of error rate of misclasdificaare

represent 60,000 examples. For Figure 11 and Fi@@re optained on the test dataset of MNIST of 10,000mles,
the last layer width is 2 and 3 respectively. Thasses completely independent of the training ones. Theailts are

(digits) are represented by different colors in flggires.

compared to results on the original labeled datasgned

Some classes are well clustered in 2-D and 3-D £0dg;sjng the same fast algorithm in [1]. The erree ia nearly the

however, others are not, which indicates the needigher

same the original labeled dataset. For original BINtraining

dimensional codes. 2-D and 3-D codes were used fggt, the error is 0.98%, while for automaticallydked one it is

visualization purpose as it is not possible to sl&e
higher dimensional codes.

10

410 I I I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 11 2-D codes of MNIST
dataset

Figure 12 3-D codes of MNIST dataset

The experiment starts by running the automatieling
algorithm described in IV.E. The input to the altfon is the
unlabeled 60,000 examples of MNIST dataset, anatitgut
is the automatically labeled set. Then to testatyorithm
performance, the automatically labeled datasetsisduto
pre-train and fine tune a DBN classification netiwas in [1]
and VI.D. The architecture used for classificai®i-layered
1000-500-2000 with 10 targets neurons. The unlabsét is
used first to pre-train an RBM of the given arctiitee. Then
the obtained weights are used to initialize thevoet for back
propagation fine tuning using the automatically eledl
dataset.

1.04% as shown in Figure 14.

1.06

(%)

-
o
~

0.98
0.96
0.94

Error rate

Labeled dataset Auto labeled dataset

Figure 14 Automatic labeled dataset results

Also the auto-label algorithm was tested on Enrataskt

for different users. The results are shown in Feglb. The
average accuracy of using DBN classifier aloneragjaising
auto-label algorithm on top of DBN classifier isosm in
Table 2. The accuracy of auto-label algorithm iarhethe
same as that of DBN classifier alone.

120.00%

100.00% M

80.00% I M .

60.00% D DBN Alone
B AutoCat

40.00% H [- B — IH I TH

Accuracy (%)

20.00% + i BH B H B TH

Figure 15 Auto-label algorithm vs. DBN Classifieithw
manually categorized dataset

M ethod Average
Accuracy
(%)

DBN 85.78%

Auto-label 84.17%

Table 2 Average Auto-label accuracy vs. DBN accyrgith

manually categorized dataset

225

D. Adaptation results

Adaptive learning is tested on MNIST dataset [LSihg
modified version of the MATLAB code in [18]. TheBN
architecture used was 3 layer network; with 500-oesiin the
first layer, 500 neurons in the second layer an@leurons
in the third layer. A layer of 10 units is addedtba top layer
and tuned to give the labels of characters. Thebeunof
iterations for greedy RBM training or back propagatfine
tuning was 50 epochs.

To simulate adaptation, the training set was sutidiinto
balanced mini-batches each containing 100 exampits
total of 600 batches. The experiment goes on kyifigemore
batches and performing back propagation each tiith
every update of the network the classification rerr
performance is tested.

Note that; the target was not to achieve best eatr in
comparison to existing systems, but to prove thediing more
unsupervised examples do improve network performanc
terms of classification error rate.

Al Sallab and Rashwan

VII. Conclusion

In this paper a self-learning machine is proposddrms of
its ability to learn with minimal supervision andagt to real
world examples during operation. The first conttibu of this
paper is the automatic labeling component basetodinear
transformation using deep auto-encoders, followeg
clustering step. The second contribution is theptda
learning component based on unsupervised pre+taiof
Deep Belief Nets. Merging the two components ctutsts a
Self-Learning Machine (SLM). Those machines ares abl
learn with minimal supervision and adapt to reafldiaata.
SLMs are generic learning systems in terms that tam be
adapted to any pattern recognition task. All weatéeded are
few representative examples of each class to begnézed,
and then the system will build the network from the

0unsupervised input data flowing in. Recursively tiework

adapts its parameters as more and more new dei s the
system, and the performance is enhanced autonhaticale
proposed system target is to mimic human learngttpiior
that it needs few supervision and the ability tdldowwn
beliefs based on experience.

The experiment starts by sub-dividing the dataset o Automatic labeling was tested on MNIST and Enron

MNIST into number of batches. For each batch thaptation
algorithm is run and the error rate is tested.

sub_batches= sub_divide_ datasefunlabeled datasetN _batche}|
foreach batch in sub_batch
[W] =call Sub_routine_adaptation_alg orithm(batch
[W] =call back_ propagation_ fine_tunglabeled_datase}
err(batch =test_err _rate(labeled_ datasefW)
end_ foreach

Figure 16 Adaptation experiment pseudo code

2.50% 1

2.00% -

“

1.50% +

N

1.00% +

Classification error (%)

0.50% -

0.00%

150 450
Number of unsupervised examples (x100)

600

Figure 17 Adaptive learning performance curve

Figure 17 shows that the error performance is ingulcas
more unsupervised examples are fed to the netwiarknore
examples are used to pre-train the DBM network etieb
initialization point of weights is obtained in waigspace, so
that supervised training phase using back propaiyatn start
from a point nearer to the global minimum, inste&hlling in
a poor local minimum. In addition, as the greedyoathm is
trained on more unsupervised real world examplés, i
probabilistic model is improved to make those exiasmore
probable, and hence improving the regeneratioropmence
of those examples. This is similar to teaching mdu person
some figures, so that he can generate similardigyfnom his
imagination, which indicates a better learninghaise figures.

datasets. Results show that the error rate obtairsiug
originally labeled dataset is nearly the same as th
automatically labeled one.

Practical results on MNIST dataset prove the adapti
learning concept, showing improved -classificatiorroe
performance as more unsupervised examples are fased
pre-training. This is due to better initializatioveights for
back fitting supervised stage, thus, improving ge@eration
performance of the network of real world examplBEsis is
similar to the ability of human being of drawingnféiar
figures that are well learned.

Future work includes testing the proposed auto liladpe
algorithm and adaptive learning on different dataseher
than MNIST. Also, different implementation issuesdribed
in adaptive learning are to be addressed. The aardb
implementation choice could be studied to evalpagetically
the parallel co-processor hardware needed to perfor
adaptation. Also, the communication method neededse of
distributed implementation needs to be studied.rGiténg
avoidance strategy in case of adaptive distributed
implementation need to be addressed too.

References

[1] G. E. Hinton, S. Osindero, and Y. Teh, “A fast leiag
algorithm for deep belief net®eural Computationvol. 18,
pp. 1527-1554, 2006

G. E. Hinton, “To Recognize Shapes, First LearGé&merate
Images”Computational Neuroscience: Theoretical Insights

into Brain Function, Elsevigr UTML TR 2006 — 004,
October 26, 2006

Ruslan Salakhutdinov, “Learning Deep Generative blsd
PhD thesisGraduate Department of Computer Science,
University of Torontp2009

G. Montavon, M. Braun, K. R. Muller, “Layer-wise Alysis
of Deep Networks with Gaussian Kernelsdvances in
Neural Information Processing Systems (NIPX)10
Yoshua Bengio, and Yann Lecun, “Scaling Learning
Algorithms towards Al”,Large-Scale Kernel Machines,
MIT Press(2007)

(2]

(3]

[4]

(5]

Adaptation of a deep learning machine to real wddth 226

[6]

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo [14] Marc' A. Ranzato, Christopher Poultney, Sumit Clagpr

Larochelle. Greedy Layer-Wise Training of Deep Netks. Yann Lecun , “Efficient Learning of Sparse Reprdations
In Proceedings of NIPS'2006p.153~160 with an Energy-Based Model”, Advances in Neural
[7] Arel, 1., Rose, D.C., Karnowski, T.P., “Deep théne Information Processing Systems (NIPS), 2006
Learning - A New Frontier in Artificial Intelligere [15] Bryan Klimt and Yiming Yang, “The Enron Corpus: felv
Research [Research FrontierCpmputational Intelligence Dataset for Email Classication Research”, Language
Magazine, IEEEvolume: 5, issue:4, pp: 13 — 18, Nov 2010 Technologies Institute, Carnegie Mellon UniversiEAS
[8] Olshausen BA, Field DJ. “How close are we to conference, 2004.
understanding v1?” Neural Comput. 2005 [16] Ron Bekkerman, Andrew Mccallum, G. Huang, “Autorgati
Aug;17(8):1665-99. Categorization of Email into Folders: Benchmark
[9] Matthew Blaschko, Andrea Vedaldi, Andrew Zisserman, Experiments on Enron and SRI Corpora”, Citeseelr4i@d,
“Simultaneous Object Detection and Ranking with Wea p 1-23, 2004
Supervision”, Advances in Neural Information Processing [17] http://www.cs.cmu.edu/~enron/, 1/11/2012
Systems (NIP$R010 [18] http://Mww.cs.toronto.edu/~hinton/MatlabForScienaeP
[10] George E. Dahl, Marc'Aurelio Ranzato, Abdel-rahman per.htm| 5/24/2011 2:31 PM

Mohamed, and Geoffrey E. Hinton, “Phone Recognition [19] http://yann.lecun.com/exdb/mnis®/24/2011 2:31 PM
with the Mean-Covariance Restricted Boltzmann Maehj

Advances in Neural Information Processing Systems . .
(NIPS), 2010 Author Biographies

[11]Li Deng, Mike Seltzer, Dong Yu, Alex Acero, Abdedhman aApmad A. Sallab has acquired his B. Sc. and M.Sc. in Communicatiord

Mohamed, and Geoff Hinton , “Binary Coding of Spleec Electronics from the Faculty on Engineering, Cailmiversity in 2005 and
Spectrograms Using a Deep Auto-encoder”, Interspeec 2009. Currently he is a Ph.D. candidate at Cainivétsity. He works as a

2010 Software Leader at Valeo, Egypt.

[12] Yuanging Lin, Tong Zhang, Shenghuo Zhu, Kai Yu, &pe
Coding Network”, Advances in Neural Information Mohsen A. Rashwan has acquired his Ph.D. from Queen’s University,
Processing Systéms (NIPS), 2010 Canada. He is a Professor of Electronics and Coruations, Faculty of

[13] Ruslan Salakhutdinov, Geoffrey E. Hinton “An Eféat

Engineering, Cairo University. He is currently thEO of RDI Corporation.

Learning Procedure for Deep Boltzmann Machine”,
Computational Cognitive Science, MIT Press (2010)

