
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 5 (2012) pp. 216-226
© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Adaptation of a deep learning machine to real world
data

Ahmad A. Al Sallab1 and Mohsen A. Rashwan2

1 Department of Electronics and Communications, Faculty of Engineering,

Cairo University
ahmad.elsallab@gmail.com

2 Professor, Department of Electronics and Communications, Faculty of Engineering,

Cairo University
mrashwan@rdi-eg.com

Abstract: Adaptation is a property of intelligent machines to
update its knowledge according to actual situation. Self-learning
machines (SLM) as defined in this paper are those learning by
observation under limited supervision, and continuously adapt
by observing the surrounding environment. The aim is to mimic
the behavior of human brain learning from surroundings with
limited supervision, and adapting its learning according to input
sensory observations. Recently, Deep Belief Networks have made
good use of unsupervised learning as pre-training stage, which is
equivalent to the observation stage in humans. However, they
still need supervised training set to adjust the network
parameters, as well as being non-adaptive to real world
examples. In this paper, SLM is proposed based on deep belief
networks and deep auto encoders to adapt to real world
unsupervised data flowing in to the learning machine
during operation. As a proof of concept, the new system
is tested on two AI tasks; number recognition on
MNIST dataset, and E-mail classification on Enron
dataset.

Keywords: Deep Belief Networks (DBN), Restricted
Boltzmann Machine (RBM), Adaptive learning

I. Introduction

Traditional pattern recognition systems are composed of
two phases; training and testing. These two phases are
sequential. The training of the system with a well-known
dataset is executed first and then the system is ready to be
tested with the test set. Adaptive systems are able to update
their learning according to certain events.

Recognition in human brains develops first by
unsupervised observation of surroundings to learn
differences between separate entities. Once the basic
structure of the environment is captured inside the brain,
supervision role starts so as to give labels to different
categories. This role could be achieved by transfer of
experience, or by asking pertinent questions to clarify
ambiguity and learn the names of different entities. As the
task proceeds, learning is adapted as more examples flow
in and more experience is gained. New examples, never
seen before, of the different categories are learned

automatically to belong to the correct class, and hence the
system is adapted. As we can see, adaptation is a principal
component of the learning process in human beings.

Self learning machines, as defined in this paper, are
those following the process described above to learn to
classify patterns. A clear example of the above process is
human child learning the names of figures. First, he
observes different figures with no supervision to learn the
differences between them. Then he is told their names, or
he asks explicitly for the names of certain examples of each
category and generalizes the name to the whole class. As he
gets older, he faces more and more different examples, with
new shapes never seen before, and yet he can adapt and
develop himself to learn those new examples to belong to
the right category according to his own belief.

Three components are identified to compose this self
learning system. The first one is the unsupervised
pre-training, which is responsible of feeding unsupervised
examples to the machine to adapt itself to different clusters.
The second is the supervised training to learn to classify
examples based on true labels, so as to fine tune the
network parameters based on the supervised data. And
finally adaptive learning continuously adapting the
machine to the new examples coming from real data, which
could have never been seen before in unsupervised
pre-training or supervised training phases. The
unsupervised pre-training has proved to be effective in
Deep Belief Networks [1] [3]. In this paper, the supervised
training and adaptive learning are focused on.

 In many practical learning domains, there is a large
supply of high-dimensional unlabeled data and very limited
labeled data. Applications such as information retrieval
and machine vision are examples where large amounts of
unlabeled data is readily available [3]. The need to
supervised data with semi or minimal supervision in such
applications is high, to compensate the lack of labeled data.

Minimum supervision means using few labeled
examples, and using them to generalize to broader dataset.
If efficient clustering of the unsupervised dataset is
possible, then it is sufficient to know the labels of the
means of clusters, or at least one supervised example of

ISSN 2150-7988 Volume 5 (2013) pp. 216-226

Al Sallab and Rashwan 217

each cluster to apply the same labeling to the whole cluster
automatically.

In [3] non-linear dimensionality reduction is performed
using deep auto-encoders, learned using greedy layer by
layer learning algorithm in [1]. Applying linear mapping,
like Neighborhood Component Analysis (NCA), on the
non-linear generated codes of the deep auto-encoder
creates non-linear mapping and gets the data to a new space
where the examples can be efficiently clustered.

The continuous flow of data during operation is essential
for adaptation of the system to real world examples. A
system needs to be developed to handle learning adaptation
based on incoming data. To be able to perform this task, the
learning algorithm itself should exploit the unsupervised
data in the first place. A typical candidate algorithm for that
is the one presented in [1] and [3] of learning deep
networks, or Deep Belief Networks (DBN) based on
greedy Deep Boltzmann Machine (DBM) learning
algorithm. This greedy layer by layer learning algorithm
can make efficient use of very large sets of unlabeled data,
and so the model can be pre-trained in completely
unsupervised fashion. The limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand using standard gradient based optimization.
Adaptation as presented in our paper proposes that, the
same learning process can be repeated whenever more
supply of unsupervised data is available from normal
operation.

A novel approach is developed in this paper based on
deep networks concepts to achieve two goals; the first one
is utilizing few examples during supervised learning phase
by automatic labeling the unsupervised training data set
using non-linear unsupervised clustering on top of the deep
auto-encoder. The second one is network adaptation with
the real world unsupervised examples, based on the greedy
layer by layer unsupervised learning of DBN, then fine tune
the network again with the already available supervised
examples. With every batch of new input data, the learning
is repeated and the network is updated periodically or on
need basis.

Merging the two components of automatic labeling and
adaptive learning constitutes the Self Learning Machine
(SLM) as defined earlier. Those machines are able to learn
with minimal supervision and adapt to real world data.
SLMs are generic learning systems in terms that they can be
adapted to any pattern recognition task. All what is needed
are few representative examples of each class to be
recognized, and then the system will build the network
from the unsupervised input data flowing in. Recursively
the network adapts its parameters as more and more new
data is fed to the system, and the performance is enhanced
automatically.

The next sections are organized as follows; first related
work is demonstrated. The next section presents the
automatic labeling component. Then adaptive learning
component is described. The next section presents the
experiments results and details. Finally the paper is
concluded with the conclusion and future work.

II. Related work

An approach to imitate the behavior of V1 cortex in
humans is found in recent work of Hinton et al. [1] on

DBN, where the structure of the world is first captured by
unsupervised pre-training, so the system is capable of
generating similar examples of those learned without
supervision [2]. The role of unsupervised pre-training for
classification task is to get the network to a point in space
near to the global minimum so that back propagation can
start without getting stuck in local minima [1].

In [1], [3] and [4] it is proved that high-level
representations can be built from a large supply of
unlabeled inputs and the very limited labeled data can then
be used to only slightly adjust the model for a
problem-specific task.

In [3] work has been done on learning nonlinear
mappings that preserve class neighborhood structure. This
is the main idea on which automatic dataset labeling is built
on. In this work, it was demonstrated how K-nearest
neighbor classification can perform well on non-linear
transformation of the input.

Future work in [3] suggests semi-supervised learning of
deep Boltzmann’s machines to target the applications of
large supply of high-dimensional unlabeled data and very
limited labeled data, like information retrieval and machine
vision.

III. Deep Restricted Boltzmann Machine
Training Review

Artificial Neural Networks (ANN) have been used for
decades for classification tasks. It has grabbed the attention
of researchers due to the similarity between its architecture
and the human brains. The ANN is formed of several

stacked D layers, each of width iN neurons. The weights

relating each consecutive layer i and i+1 is)1)((+iiW

matrix of dimension 1+× iNiN . The width of input layer is

denoted by 0N and the last layer by M.

The main focus of research in ANN is on training the
network, i.e. to find the right weights that can be used to
correctly classify the input examples. The most successful
algorithm in that area is the famous back propagation
algorithm.

The problem with back propagation is the following;
ANN represents a non-linear mapping f(X,W), where X is
the input vector and W is the weight matrix of the whole
network, as the number of layers increases, the function f
gets more complicated, such that it contains multiple local
minima. The back propagation algorithm converges to a
certain minimum based on the initialization of weights W.
Sometimes it gets stuck to a poor performance local
minimum and not the global one. For some AI tasks, those
local minima are fine, but not accepted for other cases.

Also, back propagation training time is not scalable with
the depth of the network. As the number of layers increases,
training time gets much higher. This could not be a big
problem with the increasing power of computer nowadays.

Another disadvantage of back propagation is that it
requires high supply of labeled data, which could not be
available for many AI tasks requiring classification.

 Adaptation of a deep learning machine to real world data 218

For the aforementioned problems, Hinton et al. have
introduced a fast learning algorithm based on Deep Belief
Networks (DBN) and Restricted Boltzmann Machine
(RBM) to train a deep ANN [1].

MND =−1

0N

1N

2−DN

Figure 1 Deep Artificial Neural Network

A. Deep Belief Network model

The algorithm is based on modifying the ANN model
from discriminative to generative model. The
discriminative model is the one which models the
classification performance of the network. The objective
function to be minimized is the error between the required
classification targets and the obtained ones. On the other
hand, the generative model is the one that models the
generation of original data capability of the network. The
objective is to minimize the error between the
model-generated data and the original one.

 The generative model must be able to re-generate the
original data given the hidden units states, this represents
its belief of the real world data. This kind of model is called
Deep Belief Network (DBN). The DBN model enables the
network to generate visible activations based on its hidden
units’ states, this represents the network belief.

The problem now is how to get the hidden units states
corresponding to the visible data. A Restricted Boltzmann
Machine is proposed between each two consecutive layers
of the network. The difference between ANN, DBN and
RBM is shown in Figure 2

Figure 2 (a) ANN (b) DBN (c) RBM

B. Pre-training phase

To optimize a given configuration of visible and hidden
units, the model energy is to be minimized.

gnalLearningSijhjv

ijw

hvE
w

www

ji ijwjhjvhvE

==
∂

∂
−=∆

∆+=

∑−=

),(

,
),(

Our objective for a generative model is to maximize the
probability of visible units’ activations p(v). To get p(v) we
have to marginalize the p(v,h) probability for the whole
configuration.

∑

><

−

∑
−

=∑=∴

==∑
><
−

∑
><
−

−
=

−
=

hv

hvE
e

h

hvE
e

h
hvpvp

PFunctionPartitionF
hv

hvE
e

hv

hvE
e

hvE
e

tionseConfiguraAllPossibl

hvEe
hvp

,

),(

),(

),()(

,

),(

,

),(

),(),(
),(

For mathematical convenience, let’s maximize the log
p(v) instead of p(v). Moreover, to maximize the data
generation with respect to model belief, we adjust the
weights such that model belief is decremented while the
real data is incremented as follows:

)ModelRealdata(

)Model
)(log

Realdata
)(log

(

><−><=

>
∂

∂
<−>

∂

∂
<=∆

jhivjhiv

ijw

vp

ijw

vp
w

α

α

Finally the pre-training algorithm is simply to apply the
data on the input layer of the 2-layer RBM to get the hidden
activations, and then re-generate the model visible
activations, and finally generate the model hidden
activations. In this way the RBM weights can be updated
for the given input data.

Having the current layer trained, its weights are frozen,
and the hidden layer activations are used as the next layer
visible inputs, and the same training algorithm is applied.
The obtained Deep network weights are used to initialize a
fine tuning phase.

C. Fine-tuning phase

The fine tuning phase is simply the ordinary back
propagation algorithm. For classification tasks, a layer of
width equals the number of targets or classes, is added on
top of the network. Each neuron of this layer is activated
for each class label while the others are deactivated. The
back propagation starts from the weights obtained in
pre-training phase. The top layer activations are obtained
for each training set example, or batch of examples, is
obtained in the forward path, and then the error signal
between the obtained activations and required targets is
back propagated in the network for weights adjustment.

IV. Automatic labeling system

Artificial intelligence tasks requiring classification and
regression are mostly based on statistical learning of
supervised training set, on the hope that this training set is
sufficient to generalize well to the test set and real world
examples. This classical model requires large supply of
labeled training set. One of the major obstacles facing
development of such systems is the availability of such
huge labeled training set. In many practical learning
domains, there is a large supply of high-dimensional
unlabeled data and very limited labeled data. Applications
such as information retrieval and machine vision are
examples; where large amounts of unlabeled data are
readily available.

Al Sallab and Rashwan 219

A self learning system shall follow the same model, but it
should not require such large amount of supervised
examples, instead it should be able to learn with few
supervised examples and generalize the learned concept to
other examples in the training set.

The root cause of the problem is that if the input raw data
or features are well structured, then the system could
discover similarities in the examples and generalize the
learned labels to all similar examples. However, the input
data is not necessarily structured by nature.

Suppose for the moment that somehow structured input
data is obtained, such that an efficient clustering algorithm
could be run successfully to discover related examples,
such that the number of clusters is the number of classes at
hand. In this case only few labeled representative examples
are needed of every cluster, and the system can then apply
the same labeling on all the members of the cluster, and
hence the whole dataset can be fully labeled. However, the
assumption of structured input data or features is not
always valid. It depends on the type of features extracted
for the data.

A. Deep versus shallow architectures

To discover similarity between cluster members, it is
traditional to make some transformation on the original
data to improve the clustering algorithm performance.
Among the most common algorithms used for such purpose
are Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA) and Neighborhood
Component Analysis (NCA), which performs linear
transformation on the data to map it to another space where
within class similarities are improved. A linear
transformation has a limited number of parameters and it
cannot model higher-order correlations between the
original data dimensions.

Using a nonlinear transformation function
low-dimensional representations that work much better
than existing linear methods can be discovered, provided
that the dataset is large enough to allow the parameters to
be estimated [3].

Figure 3 Non-linear NCA performance vs. other linear

methods [3]

Figure 3 [3] describes the different mapping results of the
MNIST dataset using different methods, linear methods:

LDA, PCA and Linear NCA give poor structure for
different classes of digits. The upper right graph shows the
mapping with NCA on top of deep auto-encoder; non-linear
NCA. It is clear how the different classes are well
structured such that the operation of a clustering algorithm
like K-means is enhanced.

B. Deep auto encoder clustering

To obtain the non-linearity discussed in IV.A using
greedy unsupervised learning algorithm, deep
auto-encoders can be used. Deep auto-encoder is a
multilayer, nonlinear encoder network that transforms the
input data vector x into a low-dimensional feature
representation. The non-linear mapping function

);(Wxf can be trained using the algorithm described in
 IV.E. After the initial pre-training, the parameters can be
fine-tuned by performing gradient descent in the
Neighborhood Component Analysis (NCA) objective
function [3].

 Figure 4 shows the deep auto-encoder network
architecture. The layers get narrower as we go deeper into
the network. Number of layers is D. Original data is
presented at Layer-0, and then next layers activations
continue till Layer-D-1. The activations of Layer-D-1 are
the code words representing the original data.

 The upward generation path (right arrow in Figure 4)
represents the code word generation. The downward
generation path (left arrow in Figure 4) represents the
model belief, where the original data is generated from the
model according to the corresponding code word.

Figure 4 Deep auto-encoder network architecture

C. Minimal supervision labeling

After having obtained the desired structured data, an
efficient clustering algorithm can be run to discover the
structure of the data. Number of clusters will be the number

Adaptation of a deep learning machine to real world data

of classes, and the initial means of clusters will be the most
representative examples of each class. For example, for the
digit recognition task, the number of classes shall be 10,
and the initial clusters means shall be representative image
of each digit class. If the right labels for such
representative means are available, then the whole cluster
shall hold the same label, and hence a labeled dataset is
obtained.

If generative model like deep auto-encoder is used, the
system could be designed to generate the original raw input
corresponding to the mean of each cluster, and ask the user
explicitly for the label of this data, and then generalize the
label to the whole cluster. This is very close to the behavior
of human learning achieving minimal supervision.

Figure 5 (a) Raw data (b) Structured data after non-linear

transformation in the deep auto-encoder (c) Clustering
algorithm discovers clusters means with their labels obtained
(d) Having the labels of the means the whole cluster is labeled

Figure 5 describes the different mappings and processing
on the input unlabeled data until a labeled dataset is
obtained. First non-linear mapping is done using deep
auto-encoder, such that structured dataset is obtained. Then
a clustering technique (like K-means) is applied to the
obtained codes. The labels of the clusters means or some
representative class examples are provided by the user as
supervised examples, form which the whole cluster can be
labeled, and hence a supervised dataset is obtained.

D. Deep-auto encoder training algorithm

As described in IV.A and IV.B, deep auto encoder
performs non-linear dimensionality reduction on the
unlabeled data. Being a deep architecture, the structure in
the mapped data is most likely to be well-clustered. Figure
6 describes the training algorithm of the deep auto-encoder.

The algorithm is based on the fast greedy learning
algorithm in [1]. Let’s denote the number of layer as
N_layers. The activation of each layer as data(i), with

data(0) is the original data example.
1+× iNiNW is the

weights matrix linking layer i to layer i+1 , of size

1+× iNiN . W∆ is the weights update signal resulting from

training. When a variable is meant for the whole network,
sub-scripts are dropped for simplifying the notation. The
sub-routing generate_original_data is used to obtain the
model believed data to be the original data generate the
code-word at the highest level (see Figure 4).

For each layer, weights are updated as if no more upper

layers are going to be stacked over it. The neurons are
binary, with S-shaped sigmoid functions. First the
unlabeled data example is presented to the first layer, at
which activations are obtained. RBM unlabeled training is

performed as in [1] to obtain the
1+×∆

iNiNW for each layer.

After all layers are trained, the whole network weights are
adjusted.

Deep auto-encoder architecture is a generative model.
Hence, the error to be minimized or objective function to
be optimized is the absolute difference between the
originally presented data and the model believed data. This
error signal is then used to be propagated back in the
network to adjust the weights using the traditional back
propagation algorithm. The final adjusted weights after
back_propagation_fine_tuning are the result of the
algorithm.

)(

),_(___][

|__|_

)0(_

)(___

)_(

_

))((__:)](,[

_:1:

_:)0(

)_(____

1

Wreturn

WsignalerrtuningfinenpropagatiobackW

dataOriginaldataModelsignalerr

datadataOriginal

codedataoriginalgeneratedataModel

layersNdatacode

WWW

forend

iLayerrbmtrainpreidataW

layersNifor

datasetunlabeleddata

datasetunlabeledautodeeptrainroutineSub

ii NN

=
−=

=
=

=
∆+=

=∆
=

=

+×

Figure 6 Deep auto-encoder training algorithm

E. Auto-labeling algorithm

The proposed algorithm here is to label a dataset of
features vectors with minimal human effort. Labeling shall
be based on clustering the given data into coherent classes
with similar values. To guarantee that the obtained clusters
represent the real class labels, the data representation of the
vectors must be designed to maintain the class
neighborhood relation of the given vectors, and in the same
time provide well-structured data so that efficient
clustering becomes possible.

The algorithm pseudo code is presented in Figure 7. A
deep auto-encoder is first trained like in the algorithm
described in IV.D. The unlabeled dataset is the input of the
algorithm. For each member of the unlabeled set, a code
word is generated (see the upward path in Figure 4), and
stored in a large array of all code words representing the
unlabeled data set in the new mapped domain.

The obtained code words are fed to the K-means
algorithm, with the number of clusters K_classes is just the
number of classes’ labels of the dataset. The K-means
algorithm gives the clustered data and their means.

To obtain the labels of the new clusters with minimal
supervision, only the clusters means’ labels need to be
knows, which represent K_classes examples of the whole
dataset. Here user intervention is needed to label those
means. However, the means are now represented in the
form of code word, so the user does not know what they
represent in the original dataset. For example, for number
recognition, the user can only give a label of the number

220

Al Sallab and Rashwan 221

image, but he cannot label its code word. So, the original
data (number image) is re-generated (the downward path in
Figure 4) and presented to the user to label it, which is done
in the sub-routine ask_user_for_label. Once the means
labels are obtained, the same label is applied to the whole
dataset, and hence a labeled dataset is obtained.

datasetlabeledreturn

labelsdatasetunlabeleddatasetlabeled

datameanslabelforuseraskcalllabels

meanswordcodegeneratedatameans

classesKcodesclusteringkmeanscallmeansclusters

foreachend

codecodescodes

exampledatawordcodegeneratecode

datasetunlabeledinexampledataforeach

datasetunlabeledautodeeptrainroutineSubcallW

datasetunlabeledlabelautoroutineSub

_

],_[_

)_(___

)(___

)_,(_],[

_

];[

)_(__

_ _

)_(____][

)_(___

=
=

=
=

=
=

=

Figure 7 Auto-labeling algorithm

V. Adaptive learning system

Traditional pattern recognition model is composed of
training and test phases. After training the model, the
system goes into test phase or normal operation. While the
system is in normal operation, new patterns keep flowing in
to be classified. According to the generality of the training
set, the empirical classification error is determined. So, if
the new patterns were encountered in the training phase or
similar ones, then they should be correctly classified. On
the other hand, if the training set was not covering some
part of the feature space, and a new pattern is encountered
in that part during operation, it will be misclassified.

Figure 8 Adaptive learning system

A. Unsupervised examples improve learning

In conventional pattern recognition system the training
and test phases are sequential. In adaptive system, they are
done in parallel.

Figure 8 describes the adaptive learning system. To use
real world patterns to update the model a learning
algorithm that makes use of unsupervised examples is
needed. Deep Belief Nets (DBN) trained using greedy
layer wise learning algorithm [1] are typical candidates for
such purpose.

The learning algorithm can make efficient use of very
large sets of unlabeled data, and so the model can be
pre-trained in completely unsupervised fashion. The very
limited labeled data can then be used to only slightly
fine-tune the model for a specific task at hand using
standard gradient based optimization [3]. The
unsupervised examples help in getting the initialization of
weights to a point near to the minimum of the objective
function to be optimized, protecting against getting stuck in
poor local minima.

During operation of the system, the more unsupervised
examples flowing in can be used to adjust the network to a
better initial location. This process will be performed
offline, in parallel with normal classification going on in
the network, and the whole learning process is repeated to
calculate the new weights. New updated weights calculated
offline are then applied to the network periodically and
only if test error is improved with the new weights,
otherwise the old weights are kept.

The DBN architecture in [1] performs back propagation
for weight adjustment after the unsupervised training
phase. In adaptive learning, there are two options; the first
is to apply the new unsupervised examples as separate
unsupervised pre-training phase, then run back
propagation, and the other one is to append the already
existing database of old unsupervised examples with the
new ones, then re-run the whole learning process from
scratch. The choice depends on timing and storage issues.

B. Over-fitting or user adaptation

The above proposed system may be considered to suffer
from over fitting to certain examples that flow during
operation. For example if it is applied in handwriting
recognition, then the system shall over fit to the user style
that is using the system, because the network will be
continuously adjusted to the examples of his own style. On
the other hand, this could be viewed as user style
adaptation. Both points of view could be desirable or not
according to the application and the method of
implementation.

C. Adaptation algorithm

The proposed algorithm for adapting the DBN network
using unlabeled examples is presented in Figure 9. The
presented subroutine is to adapt an existing DBN for a new
batch of unlabeled data new_unlabeled_batch_data.

 A stack of RBM’s are first trained using the greedy
layer-wise training algorithm in [1] using pre_train_rbm
sub-routine. This is repeated for the N_layers of the
network. The activation of each layer is denoted as data(i),

with data(0) is the original data example.
1+× iNiNW is the

weights matrix linking layer i to layer i+1 , of size

1+× iNiN . W∆ is the weights update signal resulting from

training. Having all layers trained, the pre-training stage is
over.

 Adaptation of a deep learning machine to real world data

 After pre-training, the back propagation fine tuning is
performed on the stored labeled dataset to adjust the
weights. Before applying the new weights, the error rate is
tested. If improvement in the error rate is achieved, then the
new weights are applied, otherwise the old weights are
kept.

)(

_

)_(

)(

)___(

)__(___ _

),__(___][

_

_

))((__:)](),([

_:1:

___:)0(

)___(lg___

1

Wreturn

ifend

WOldreturn

else

Wreturn

errtestolderrtestif

datasetlabeledoriginalrateerrnewcalculatecallerrtest

WdatasetlabeledoriginaltunefinenpropagatiobackcallW

WWW

WWOld

forend

iLayerrbmtrainpreidataiW

layersNifor

databatchunlabelednewdata

databatchunlabeledneworithmaadaptationroutineSub

ii NN

<
=

=
∆+=
=

=∆
=

=

+×

Figure 9 Adaptation algorithm

D. Implementation

When it comes to practical implementation, there are
two options to implement adaptive learning model; the first
one is the on-board implementation, the other one is the
distributed implementation.

1) On board implementation

In this scheme, both the adaptive learning module and
the classifier modules are on the same system, operating on
the same user inputs. In this case user style adaptation is
desired, and hence over fitting is not an issue. This type is
probable in hand-held devices and embedded systems. The
choice could be constrained by the cost of the system and
resources available. A separate parallel coprocessor shall
be used to handle the adaptation separate from the ongoing
classification task. Updates of the network weights should
be scheduled periodically.

2) Distributed client-server model

In cases of multi-users system, over fitting to certain
user style is not desirable. In such cases; it is more
convenient to use distributed client-server model; where
the client is the light weight device performing
classification with the already calculated weights, under
real time constraints, while the server part is performing
adaptation using the classification examples. Multi-clients
communicate their examples to the server, which performs
adaptation, and then communicate back the updated
weights to the clients. Updates could be scheduled
periodically or on need basis.

To avoid over fitting, the server should perform
adaptation by balancing the examples coming from all
clients to be used in the learning process, and avoid being
biased to certain user examples.

VI. Experimental results

The proposed adaptive algorithm was tested on number
recognition task on MNIST dataset. On the other hand,

Auto-labeling algorithm was tested on character recognition
task on MNIST dataset, and also on E-mail classification task
on Enron dataset. In the following sections results on both
tasks are presented.

A. MNIST Dataset

MNIST dataset of handwritten digits was used [19]. This
dataset has a training set of 60,000 examples, and a test set
of 10,000 examples. It is a subset of a larger set available
from NIST. The digits have been size-normalized and
centered in a fixed-size image. The input images have sizes
of 28x28 pixels. The images with their labels are stored in a
certain file format. Data are stored in big endian form, with
MSB first. Pixels are organized low wise. Pixel values
range is 0..255.

B. Enron Dataset

Enron dataset was collected and prepared by the CALO
Project (A Cognitive Assistant that Learns and Organizes).
It contains data from about 150 users, mostly senior
management of Enron, organized into folders. This data
was originally made public, and posted to the web, by the
Federal Energy Regulatory Commission (FERC) during its
investigation. The email dataset was later purchased MIT,
and turned out to have a number of integrity problems. The
dataset was further processed by SRI (see [15] and [16]).

Figure 10 Enron email directory structure

Figure 10 shows the directory structure of the dataset.
Each user has a folder, containing a folder representing
each mail category. Categories could further split into
sub-folder representing sub-categories. Some of these
folders are irrelevant for classification task, like “sent”,
“inbox”, “deleted”…etc… Pre-processing is needed to
extract useful categories. Also, preprocessing is needed to
extract useful vocabulary, build features vectors…etc.
Training and test sets are built by randomly splitting the
processed dataset into training and testing examples. This
random splitting guarantees independence between test and
training sets.

1) Users selection

E-mails of the Enron employees are diverse, so that not
limited number of common categories can be easily
identified among all users. For example, for a certain user,
the corpus is divided into: “eol”, “ces”, “entex”,
“industial”…etc. While for another user his mails are
categorized into: “duke”, “ecogas”, “bastos”…etc. This
creates a difficulty assigning labels to each e-mail based on

Enron Email Directory

beck-s shapiro-r

inbox computers

222

Al Sallab and Rashwan 223

its category, since categories are different between users.
To overcome this problem, users are ordered discerningly
in terms of the number of e-mails in their directories, and
then the top users with largest number of e-mails were
selected as the input datasets, so that, each user directory
represents a separate dataset. This ensures coherency
between each category e-mail examples.

2) Vocabulary building

E-mail classification is based on categorizing a features

vector
)(i

x of the th
i example into one of etstN arg

categories. The features themselves are just indicators of
the existence of certain, most-encountered words in the
dataset, called the vocabulary of the corpus, or the

bag-of-words. The size L of
)(i

x is the number of
vocabulary words. Since, each user mails are considered a
separate dataset; hence, each user is assigned a separate
vocabulary vectorV .

To build this vocabulary vector, the whole corpus of each
user is parsed, and the words are ordered in a descending
order in terms of the frequency they are encountered in the
dataset, and then the most L frequently encountered words
are selected as the members of V. The parameter L is
chosen based on experimental results, where L is chosen to
give the best accuracy. During vocabulary building,
irrelevant words are ignored (“he”, “she”, “when”…etc).
Also, e-mail header is excluded, which contains the actual
class label.

3) Categories building

Categories of email messages are simply the different
class targets of the classification problem at hand. Each
user has own set of categories. Number of categories is

denoted by etstN arg , which is the dimension of class labels

)(i
y of the th

i example.
Selection of categories per each user directory is done

first by counting the number of emails in each category.
This counting is done recursively, i.e. if the category
contains sub-categories, then messages in the sub-folders
are also counted. Then the categories are ordered
discerningly, and the highest score ones are selected as the

targets labels etstN arg . Each target of etstN arg is assigned

a binary code of etstN arg bits, with only one bit set to 1

and the others set to 0.
Each category is assigned an integer number from 0 to

1arg −etstN which is denoted by label. The target label

)(i
y of the th

i email is a binary vector of length etstN arg ,

with only 1 set at label
2 position. etstN arg is chosen based

on experimental results so as to give the best accuracy.
During the aforementioned process, the irrelevant

categories are dropped, since they have no relevance to the
classification problem, like “inbox”, “sent”,
“deleted”…etc.

4) Features extraction

The features vector representing the th
i email

)(i
x

could be one of two cases; either binary or word-count. For
both cases, the vocabulary of the bag-of-words V is

considered, and
)(i

x is an L size vector.

For the binary case, the features vector etstN arg is just a

vector of 1’s or 0’s. The “1” indicates the existence of the
corresponding vocabulary word in the e-mail, while “0”

marks its absence. For the word-count case, values in
)(i

x
are integers, marking the frequency of word repetition
within the given email. In the proposed classifier, binary
features were tested to give the good results, while
word-counts give poor results, and hence binary features
shall be considered.

5) Training and test sets selection

For each user, the features and labels are extracted as
described in the above sections. Now, to split the processed
dataset into training and testing sets, a complete random
approach was followed, such that training and testing
emails were selected randomly from the final dataset. This
ensures independence between training and testing
datasets.

6) Processed Enron Dataset
Enron dataset pre-processing generates different dataset

for each user. The different parameters are:
o Training set size
o Testing set size
o Number of categories/Class labels
o Number of features

Table 1 Users datasets details

Table 1 shows the details of each user’s dataset after
pre-processing.

C. Auto-labeling results

 The auto labeling algorithm described in IV.E is
applied to MNIST dataset. The training dataset is
composed of 60,000 labeled examples. The label is
removed to test automatic labeling performance, and so
60,000 unlabeled example results. The deep auto-encoder

User Training
set size
(e-mails)

Test set size
(e-mails)

Number of
categories

Number
of
features

arnold-j 90 10 10 100
baugmann 952 106 5 1000
beck-s 891 100 10 2000
blair-l 1123 15 16 1000
cash-m 216 23 6 1000
griffith-j 352 64 8 1000
haedicke-m 60 31 2 1000
hayslett-r 256 658 4 2000
kaminski-v 1791 55 10 1000
kean-s 1146 231 4 10000
ruscitti-k 92 79 3 1000
shackleton-s 490 168 4 1000
shapiro-r 490 118 5 10000
steffes-j 503 95 7 1000
ward-k 283 95 8 1000
farmer-d 2589 665 11 1000
kitchen-l 1992 864 10 1000
lokay-m 2073 61 6 1000
sanders-r 711 281 6 1000
williams-w3 1974 26 5 1000
campbell-l 14 14 6 1000

 Adaptation of a deep learning machine to real world data 224

architecture used has 1000 neurons in the first layer, 500
neurons in the second layer, 250 neurons in the third layer
and 30 neurons in the last layer. Hence the code word
dimension is 30.

 Figure 11 and Figure 12 show the resulting 2-D and
3-D codes of the unlabeled MNIST training dataset, which
represent 60,000 examples. For Figure 11 and Figure 12
the last layer width is 2 and 3 respectively. The classes
(digits) are represented by different colors in the figures.
Some classes are well clustered in 2-D and 3-D codes;
however, others are not, which indicates the need for higher
dimensional codes. 2-D and 3-D codes were used for
visualization purpose as it is not possible to visualize
higher dimensional codes.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 11 2-D codes of MNIST
dataset

-10
-5

0
5

10

-10

-5

0

5

10
-10

-5

0

5

10

Figure 12 3-D codes of MNIST dataset

 The experiment starts by running the automatic labeling
algorithm described in IV.E. The input to the algorithm is the
unlabeled 60,000 examples of MNIST dataset, and the output
is the automatically labeled set. Then to test the algorithm
performance, the automatically labeled dataset is used to
pre-train and fine tune a DBN classification network as in [1]
and VI.D. The architecture used for classification is 3-layered
1000-500-2000 with 10 targets neurons. The unlabeled set is
used first to pre-train an RBM of the given architecture. Then
the obtained weights are used to initialize the network for back
propagation fine tuning using the automatically labeled
dataset.

),_(__

)_(___][

)_(inbm_pre_tra]Pr_[

)_(__]_[

Wdatasetlabeledrateerrtesterr

datasetlabeledtunefinenpropagatiobackcallW

datasetlabeledrcalletrainW

datasetunlabeledlabelautoeSub_routincalldatasetlabeled

=
=

=
=

Figure 13 Automatic labels experiment

The obtained results of error rate of misclassification are
obtained on the test dataset of MNIST of 10,000 examples,
completely independent of the training ones. The results are
compared to results on the original labeled dataset, trained
using the same fast algorithm in [1]. The error rate is nearly the
same the original labeled dataset. For original MNIST training
set, the error is 0.98%, while for automatically labeled one it is
1.04% as shown in Figure 14.

0.94

0.96

0.98

1

1.02

1.04

1.06

Labeled dataset Auto labeled dataset
E

rr
o

r
ra

te
 (

%
)

Figure 14 Automatic labeled dataset results

Also the auto-label algorithm was tested on Enron dataset
for different users. The results are shown in Figure 15. The
average accuracy of using DBN classifier alone against using
auto-label algorithm on top of DBN classifier is shown in
Table 2. The accuracy of auto-label algorithm is nearly the
same as that of DBN classifier alone.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

ar
no

ld-
j

ba
ugm

an
n

be
ck

-s
bla

ir-
l

ca
mpb

ell
-l

ca
sh

-m

grif
fith

-j

hae
dic

ke
-m

ha
ys

let
t-r

ka
m

insk
i-v

ke
an-

s

ru
sc

itti
-k

sh
ac

kle
ton-

s

sh
apir

o-
r

ste
ffe

s-
j

ward
-k

fa
rm

er-d

kit
ch

en-
l

loka
y-m

sa
nd

er
s-r

willi
am

s-
w3

User

A
cc

u
ra

cy
 (

%
)

DBN Alone
AutoCat

Figure 15 Auto-label algorithm vs. DBN Classifier with
manually categorized dataset

Method Average
Accuracy
(%)

DBN 85.78%
Auto-label 84.17%

Table 2 Average Auto-label accuracy vs. DBN accuracy with
manually categorized dataset

Al Sallab and Rashwan 225

D. Adaptation results

Adaptive learning is tested on MNIST dataset [19] using
modified version of the MATLAB code in [18]. The DBN
architecture used was 3 layer network; with 500 neurons in the
first layer, 500 neurons in the second layer and 1000 neurons
in the third layer. A layer of 10 units is added on the top layer
and tuned to give the labels of characters. The number of
iterations for greedy RBM training or back propagation fine
tuning was 50 epochs.

To simulate adaptation, the training set was subdivided into
balanced mini-batches each containing 100 examples with
total of 600 batches. The experiment goes on by feeding more
batches and performing back propagation each time. With
every update of the network the classification error
performance is tested.

Note that; the target was not to achieve best error rate in
comparison to existing systems, but to prove that feeding more
unsupervised examples do improve network performance in
terms of classification error rate.

The experiment starts by sub-dividing the dataset of
MNIST into number of batches. For each batch the adaptation
algorithm is run and the error rate is tested.

foreachend

Wdatasetlabeledrateerrtestbatcherr

datasetlabeledtunefinenpropagatiobackcall [W]

batchorithmaadaptationroutineSubcall[W]

batchsub batch inforeach

batchesNdatasetunlabeleddatasetdividesubbatchessub

_

),_(__)(

)_(___

)(lg___

_

)_,_(___

=
=
=

=

Figure 16 Adaptation experiment pseudo code

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

1 150 450 600

Number of unsupervised examples (x100)

C
la

ss
ifi

ca
tio

n
 e

rr
o

r
(%

)

Figure 17 Adaptive learning performance curve

Figure 17 shows that the error performance is improved as
more unsupervised examples are fed to the network. As more
examples are used to pre-train the DBM network, a better
initialization point of weights is obtained in weight space, so
that supervised training phase using back propagation can start
from a point nearer to the global minimum, instead of falling in
a poor local minimum. In addition, as the greedy algorithm is
trained on more unsupervised real world examples, its
probabilistic model is improved to make those examples more
probable, and hence improving the regeneration performance
of those examples. This is similar to teaching a human person
some figures, so that he can generate similar figures from his
imagination, which indicates a better learning of those figures.

VII. Conclusion

In this paper a self-learning machine is proposed in terms of
its ability to learn with minimal supervision and adapt to real
world examples during operation. The first contribution of this
paper is the automatic labeling component based on non-linear
transformation using deep auto-encoders, followed by
clustering step. The second contribution is the adaptive
learning component based on unsupervised pre-training of
Deep Belief Nets. Merging the two components constitutes a
Self-Learning Machine (SLM). Those machines are able to
learn with minimal supervision and adapt to real world data.
SLMs are generic learning systems in terms that they can be
adapted to any pattern recognition task. All what is needed are
few representative examples of each class to be recognized,
and then the system will build the network from the
unsupervised input data flowing in. Recursively the network
adapts its parameters as more and more new data is fed to the
system, and the performance is enhanced automatically. The
proposed system target is to mimic human learning behavior
that it needs few supervision and the ability to build own
beliefs based on experience.

Automatic labeling was tested on MNIST and Enron
datasets. Results show that the error rate obtained using
originally labeled dataset is nearly the same as the
automatically labeled one.

Practical results on MNIST dataset prove the adaptive
learning concept, showing improved classification error
performance as more unsupervised examples are used for
pre-training. This is due to better initialization weights for
back fitting supervised stage, thus, improving the generation
performance of the network of real world examples. This is
similar to the ability of human being of drawing familiar
figures that are well learned.

Future work includes testing the proposed auto labeling
algorithm and adaptive learning on different datasets other
than MNIST. Also, different implementation issues described
in adaptive learning are to be addressed. The on board
implementation choice could be studied to evaluate practically
the parallel co-processor hardware needed to perform
adaptation. Also, the communication method needed in case of
distributed implementation needs to be studied. Over fitting
avoidance strategy in case of adaptive distributed
implementation need to be addressed too.

References
[1] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning

algorithm for deep belief nets” Neural Computation, vol. 18,
pp. 1527–1554, 2006.

[2] G. E. Hinton, “To Recognize Shapes, First Learn to Generate
Images” Computational Neuroscience: Theoretical Insights

into Brain Function, Elsevier, UTML TR 2006 – 004,
October 26, 2006

[3] Ruslan Salakhutdinov, “Learning Deep Generative Models”
PhD thesis, Graduate Department of Computer Science,
University of Toronto, 2009

[4] G. Montavon, M. Braun, K. R. Müller, “Layer-wise Analysis
of Deep Networks with Gaussian Kernels” Advances in
Neural Information Processing Systems (NIPS), 2010

[5] Yoshua Bengio, and Yann Lecun, “Scaling Learning
Algorithms towards AI”, Large-Scale Kernel Machines,
MIT Press (2007)

 Adaptation of a deep learning machine to real world data 226

[6] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo
Larochelle. Greedy Layer-Wise Training of Deep Networks.
In Proceedings of NIPS'2006. pp.153~160

[7] Arel, I., Rose, D.C., Karnowski, T.P., “Deep Machine
Learning - A New Frontier in Artificial Intelligence
Research [Research Frontier]”, Computational Intelligence
Magazine, IEEE, volume: 5, issue:4, pp: 13 – 18, Nov 2010

[8] Olshausen BA, Field DJ. “How close are we to
understanding v1?” Neural Comput. 2005
Aug;17(8):1665-99.

[9] Matthew Blaschko, Andrea Vedaldi, Andrew Zisserman,
“Simultaneous Object Detection and Ranking with Weak
Supervision”, Advances in Neural Information Processing
Systems (NIPS), 2010

[10] George E. Dahl, Marc'Aurelio Ranzato, Abdel-rahman
Mohamed, and Geoffrey E. Hinton, “Phone Recognition
with the Mean-Covariance Restricted Boltzmann Machine”,
Advances in Neural Information Processing Systems
(NIPS), 2010

[11] Li Deng, Mike Seltzer, Dong Yu, Alex Acero, Abdel-rahman
Mohamed, and Geoff Hinton , “Binary Coding of Speech
Spectrograms Using a Deep Auto-encoder”, Interspeech
2010

[12] Yuanqing Lin, Tong Zhang, Shenghuo Zhu, Kai Yu, “Deep
Coding Network”, Advances in Neural Information
Processing Systems (NIPS), 2010

[13] Ruslan Salakhutdinov, Geoffrey E. Hinton “An Efficient
Learning Procedure for Deep Boltzmann Machine”,
Computational Cognitive Science, MIT Press (2010)

[14] Marc' A. Ranzato, Christopher Poultney, Sumit Chopra,
Yann Lecun , “Efficient Learning of Sparse Representations
with an Energy-Based Model”, Advances in Neural
Information Processing Systems (NIPS), 2006

[15] Bryan Klimt and Yiming Yang, “The Enron Corpus: A New
Dataset for Email Classication Research”, Language
Technologies Institute, Carnegie Mellon University, CEAS
conference, 2004.

[16] Ron Bekkerman, Andrew Mccallum, G. Huang, “Automatic
Categorization of Email into Folders: Benchmark
Experiments on Enron and SRI Corpora”, Citeseer, vol 418,
p 1-23 , 2004

[17] http://www.cs.cmu.edu/~enron/, 1/11/2012
[18] http://www.cs.toronto.edu/~hinton/MatlabForSciencePa

per.html, 5/24/2011 2:31 PM
[19] http://yann.lecun.com/exdb/mnist/, 5/24/2011 2:31 PM

Author Biographies
Ahmad A. Sallab has acquired his B. Sc. and M.Sc. in Communications and
Electronics from the Faculty on Engineering, Cairo University in 2005 and
2009. Currently he is a Ph.D. candidate at Cairo University. He works as a
Software Leader at Valeo, Egypt.

Mohsen A. Rashwan has acquired his Ph.D. from Queen’s University,
Canada. He is a Professor of Electronics and Communications, Faculty of
Engineering, Cairo University. He is currently the CEO of RDI Corporation.

