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Abstract: Adaptation is a property of intelligent machines to 
update its knowledge according to actual situation. Self-learning 
machines (SLM) as defined in this paper are those learning by 
observation under limited supervision, and continuously adapt 
by observing the surrounding environment. The aim is to mimic 
the behavior of human brain learning from surroundings with 
limited supervision, and adapting its learning according to input 
sensory observations. Recently, Deep Belief Networks have made 
good use of unsupervised learning as pre-training stage, which is 
equivalent to the observation stage in humans. However, they 
still need supervised training set to adjust the network 
parameters, as well as being non-adaptive to real world 
examples. In this paper, SLM is proposed based on deep belief 
networks and deep auto encoders to adapt to real world 
unsupervised data flowing in to the learning machine 
during operation. As a proof of concept, the new system 
is tested on two AI tasks; number recognition on 
MNIST dataset, and E-mail classification on Enron 
dataset.  
 

Keywords: Deep Belief Networks (DBN), Restricted 
Boltzmann Machine (RBM), Adaptive learning  

I. Introduction 

Traditional pattern recognition systems are composed of 
two phases; training and testing. These two phases are 
sequential. The training of the system with a well-known 
dataset is executed first and then the system is ready to be 
tested with the test set. Adaptive systems are able to update 
their learning according to certain events. 

Recognition in human brains develops first by 
unsupervised observation of surroundings to learn 
differences between separate entities. Once the basic 
structure of the environment is captured inside the brain, 
supervision role starts so as to give labels to different 
categories. This role could be achieved by transfer of 
experience, or by asking pertinent questions to clarify 
ambiguity and learn the names of different entities. As the 
task proceeds, learning is adapted as more examples flow 
in and more experience is gained. New examples, never 
seen before, of the different categories are learned 

automatically to belong to the correct class, and hence the 
system is adapted. As we can see, adaptation is a principal 
component of the learning process in human beings. 

Self learning machines, as defined in this paper, are 
those following the process described above to learn to 
classify patterns. A clear example of the above process is 
human child learning the names of figures. First, he 
observes different figures with no supervision to learn the 
differences between them. Then he is told their names, or 
he asks explicitly for the names of certain examples of each 
category and generalizes the name to the whole class. As he 
gets older, he faces more and more different examples, with 
new shapes never seen before, and yet he can adapt and 
develop himself to learn those new examples to belong to 
the right category according to his own belief. 

Three components are identified to compose this self 
learning system. The first one is the unsupervised 
pre-training, which is responsible of feeding unsupervised 
examples to the machine to adapt itself to different clusters. 
The second is the supervised training to learn to classify 
examples based on true labels, so as to fine tune the 
network parameters based on the supervised data. And 
finally adaptive learning continuously adapting the 
machine to the new examples coming from real data, which 
could have never been seen before in unsupervised 
pre-training or supervised training phases. The 
unsupervised pre-training has proved to be effective in 
Deep Belief Networks  [1]  [3]. In this paper, the supervised 
training and adaptive learning are focused on.  

 In many practical learning domains, there is a large 
supply of high-dimensional unlabeled data and very limited 
labeled data. Applications such as information retrieval 
and machine vision are examples where large amounts of 
unlabeled data is readily available  [3]. The need to 
supervised data with semi or minimal supervision in such 
applications is high, to compensate the lack of labeled data. 

Minimum supervision means using few labeled 
examples, and using them to generalize to broader dataset. 
If efficient clustering of the unsupervised dataset is 
possible, then it is sufficient to know the labels of the 
means of clusters, or at least one supervised example of 
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each cluster to apply the same labeling to the whole cluster 
automatically. 

In  [3] non-linear dimensionality reduction is performed 
using deep auto-encoders, learned using greedy layer by 
layer learning algorithm in  [1]. Applying linear mapping, 
like Neighborhood Component Analysis (NCA), on the 
non-linear generated codes of the deep auto-encoder 
creates non-linear mapping and gets the data to a new space 
where the examples can be efficiently clustered. 

The continuous flow of data during operation is essential 
for adaptation of the system to real world examples. A 
system needs to be developed to handle learning adaptation 
based on incoming data. To be able to perform this task, the 
learning algorithm itself should exploit the unsupervised 
data in the first place. A typical candidate algorithm for that 
is the one presented in  [1] and  [3] of learning deep 
networks, or Deep Belief Networks (DBN) based on 
greedy Deep Boltzmann Machine (DBM) learning 
algorithm. This greedy layer by layer learning algorithm 
can make efficient use of very large sets of unlabeled data, 
and so the model can be pre-trained in completely 
unsupervised fashion. The limited labeled data can then be 
used to only slightly fine-tune the model for a specific task 
at hand using standard gradient based optimization. 
Adaptation as presented in our paper proposes that, the 
same learning process can be repeated whenever more 
supply of unsupervised data is available from normal 
operation. 

A novel approach is developed in this paper based on 
deep networks concepts to achieve two goals; the first one 
is utilizing few examples during supervised learning phase 
by automatic labeling the unsupervised training data set 
using non-linear unsupervised clustering on top of the deep 
auto-encoder. The second one is network adaptation with 
the real world unsupervised examples, based on the greedy 
layer by layer unsupervised learning of DBN, then fine tune 
the network again with the already available supervised 
examples. With every batch of new input data, the learning 
is repeated and the network is updated periodically or on 
need basis. 

Merging the two components of automatic labeling and 
adaptive learning constitutes the Self Learning Machine 
(SLM) as defined earlier. Those machines are able to learn 
with minimal supervision and adapt to real world data. 
SLMs are generic learning systems in terms that they can be 
adapted to any pattern recognition task. All what is needed 
are few representative examples of each class to be 
recognized, and then the system will build the network 
from the unsupervised input data flowing in. Recursively 
the network adapts its parameters as more and more new 
data is fed to the system, and the performance is enhanced 
automatically. 

The next sections are organized as follows; first related 
work is demonstrated. The next section presents the 
automatic labeling component. Then adaptive learning 
component is described.  The next section presents the 
experiments results and details. Finally the paper is 
concluded with the conclusion and future work. 

II. Related work 

An approach to imitate the behavior of V1 cortex in 
humans is found in recent work of Hinton et al.  [1] on 

DBN, where the structure of the world is first captured by 
unsupervised pre-training, so the  system is capable of 
generating similar examples of those learned without 
supervision  [2]. The role of unsupervised pre-training for 
classification task is to get the network to a point in space 
near to the global minimum so that back propagation can 
start without getting stuck in local minima  [1]. 

In  [1], [3] and  [4] it is proved that high-level 
representations can be built from a large supply of 
unlabeled inputs and the very limited labeled data can then 
be used to only slightly adjust the model for a 
problem-specific task. 

In  [3] work has been done on learning nonlinear 
mappings that preserve class neighborhood structure. This 
is the main idea on which automatic dataset labeling is built 
on. In this work, it was demonstrated how K-nearest 
neighbor classification can perform well on non-linear 
transformation of the input. 

Future work in  [3] suggests semi-supervised learning of 
deep Boltzmann’s machines to target the applications of 
large supply of high-dimensional unlabeled data and very 
limited labeled data, like information retrieval and machine 
vision. 

III. Deep Restricted Boltzmann Machine 
Training Review 

Artificial Neural Networks (ANN) have been used for 
decades for classification tasks. It has grabbed the attention 
of researchers due to the similarity between its architecture 
and the human brains. The ANN is formed of several 

stacked D layers, each of width iN  neurons. The weights 

relating each consecutive layer i and i+1 is )1)(( +iiW  

matrix of dimension 1+× iNiN . The width of input layer is 

denoted by 0N  and the last layer by M. 

The main focus of research in ANN is on training the 
network, i.e. to find the right weights that can be used to 
correctly classify the input examples. The most successful 
algorithm in that area is the famous back propagation 
algorithm. 

The problem with back propagation is the following; 
ANN represents a non-linear mapping f(X,W), where X is 
the input vector and W is the weight matrix of the whole 
network, as the number of layers increases, the function f 
gets more complicated, such that it contains multiple local 
minima. The back propagation algorithm converges to a 
certain minimum based on the initialization of weights W. 
Sometimes it gets stuck to a poor performance local 
minimum and not the global one. For some AI tasks, those 
local minima are fine, but not accepted for other cases. 

Also, back propagation training time is not scalable with 
the depth of the network. As the number of layers increases, 
training time gets much higher. This could not be a big 
problem with the increasing power of computer nowadays.  

Another disadvantage of back propagation is that it 
requires high supply of labeled data, which could not be 
available for many AI tasks requiring classification. 
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For the aforementioned problems, Hinton et al. have 
introduced a fast learning algorithm based on Deep Belief 
Networks (DBN) and Restricted Boltzmann Machine 
(RBM) to train a deep ANN  [1]. 
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Figure 1 Deep Artificial Neural Network 

A. Deep Belief Network model 

The algorithm is based on modifying the ANN model 
from discriminative to generative model. The 
discriminative model is the one which models the 
classification performance of the network. The objective 
function to be minimized is the error between the required 
classification targets and the obtained ones. On the other 
hand, the generative model is the one that models the 
generation of original data capability of the network. The 
objective is to minimize the error between the 
model-generated data and the original one. 

 The generative model must be able to re-generate the 
original data given the hidden units states, this represents 
its belief of the real world data. This kind of model is called 
Deep Belief Network (DBN). The DBN model enables the 
network to generate visible activations based on its hidden 
units’ states, this represents the network belief. 

The problem now is how to get the hidden units states 
corresponding to the visible data. A Restricted Boltzmann 
Machine is proposed between each two consecutive layers 
of the network. The difference between ANN, DBN and 
RBM is shown in Figure 2 

 

Figure 2 (a) ANN (b) DBN (c) RBM 

B. Pre-training phase 

To optimize a given configuration of visible and hidden 
units, the model energy is to be minimized. 
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Our objective for a generative model is to maximize the 
probability of visible units’ activations p(v). To get p(v) we 
have to marginalize the p(v,h) probability for the whole 
configuration. 
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For mathematical convenience, let’s maximize the log 
p(v) instead of p(v). Moreover, to maximize the data 
generation with respect to model belief, we adjust the 
weights such that model belief is decremented while the 
real data is incremented as follows: 

)ModelRealdata(

)Model
)(log

Realdata
)(log

(

><−><=

>
∂

∂
<−>

∂

∂
<=∆

jhivjhiv

ijw

vp

ijw

vp
w

α

α
 

Finally the pre-training algorithm is simply to apply the 
data on the input layer of the 2-layer RBM to get the hidden 
activations, and then re-generate the model visible 
activations, and finally generate the model hidden 
activations. In this way the RBM weights can be updated 
for the given input data. 

Having the current layer trained, its weights are frozen, 
and the hidden layer activations are used as the next layer 
visible inputs, and the same training algorithm is applied. 
The obtained Deep network weights are used to initialize a 
fine tuning phase. 

C. Fine-tuning phase 

The fine tuning phase is simply the ordinary back 
propagation algorithm. For classification tasks, a layer of 
width equals the number of targets or classes, is added on 
top of the network. Each neuron of this layer is activated 
for each class label while the others are deactivated. The 
back propagation starts from the weights obtained in 
pre-training phase. The top layer activations are obtained 
for each training set example, or batch of examples, is 
obtained in the forward path, and then the error signal 
between the obtained activations and required targets is 
back propagated in the network for weights adjustment. 

IV. Automatic labeling system 

Artificial intelligence tasks requiring classification and 
regression are mostly based on statistical learning of 
supervised training set, on the hope that this training set is 
sufficient to generalize well to the test set and real world 
examples. This classical model requires large supply of 
labeled training set. One of the major obstacles facing 
development of such systems is the availability of such 
huge labeled training set. In many practical learning 
domains, there is a large supply of high-dimensional 
unlabeled data and very limited labeled data. Applications 
such as information retrieval and machine vision are 
examples; where large amounts of unlabeled data are 
readily available. 
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A self learning system shall follow the same model, but it 
should not require such large amount of supervised 
examples, instead it should be able to learn with few 
supervised examples and generalize the learned concept to 
other examples in the training set. 

The root cause of the problem is that if the input raw data 
or features are well structured, then the system could 
discover similarities in the examples and generalize the 
learned labels to all similar examples. However, the input 
data is not necessarily structured by nature.  

Suppose for the moment that somehow structured input 
data is obtained, such that an efficient clustering algorithm 
could be run successfully to discover related examples, 
such that the number of clusters is the number of classes at 
hand. In this case only few labeled representative examples 
are needed of every cluster, and the system can then apply 
the same labeling on all the members of the cluster, and 
hence the whole dataset can be fully labeled. However, the 
assumption of structured input data or features is not 
always valid. It depends on the type of features extracted 
for the data. 

A. Deep versus shallow architectures 

To discover similarity between cluster members, it is 
traditional to make some transformation on the original 
data to improve the clustering algorithm performance. 
Among the most common algorithms used for such purpose 
are Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA) and Neighborhood 
Component Analysis (NCA), which performs linear 
transformation on the data to map it to another space where 
within class similarities are improved. A linear 
transformation has a limited number of parameters and it 
cannot model higher-order correlations between the 
original data dimensions.  

Using a nonlinear transformation function 
low-dimensional representations that work much better 
than existing linear methods can be discovered, provided 
that the dataset is large enough to allow the parameters to 
be estimated  [3].  

 
Figure 3 Non-linear NCA performance vs. other linear 

methods [3] 

Figure 3  [3] describes the different mapping results of the 
MNIST dataset using different methods, linear methods: 

LDA, PCA and Linear NCA give poor structure for 
different classes of digits. The upper right graph shows the 
mapping with NCA on top of deep auto-encoder; non-linear 
NCA. It is clear how the different classes are well 
structured such that the operation of a clustering algorithm 
like K-means is enhanced. 

B. Deep auto encoder clustering 

To obtain the non-linearity discussed in  IV.A using 
greedy unsupervised learning algorithm, deep 
auto-encoders can be used. Deep auto-encoder is a 
multilayer, nonlinear encoder network that transforms the 
input data vector x  into a low-dimensional feature 
representation. The non-linear mapping function 

);( Wxf can be trained using the algorithm described in 
 IV.E. After the initial pre-training, the parameters can be 
fine-tuned by performing gradient descent in the 
Neighborhood Component Analysis (NCA) objective 
function  [3]. 

   Figure 4 shows the deep auto-encoder network 
architecture. The layers get narrower as we go deeper into 
the network. Number of layers is D. Original data is 
presented at Layer-0, and then next layers activations 
continue till Layer-D-1. The activations of Layer-D-1 are 
the code words representing the original data.  

   The upward generation path (right arrow in Figure 4) 
represents the code word generation. The downward 
generation path (left arrow in Figure 4) represents the 
model belief, where the original data is generated from the 
model according to the corresponding code word. 

 

 

Figure 4 Deep auto-encoder network architecture 

C. Minimal supervision labeling 

After having obtained the desired structured data, an 
efficient clustering algorithm can be run to discover the 
structure of the data. Number of clusters will be the number 
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of classes, and the initial means of clusters will be the most 
representative examples of each class. For example, for the 
digit recognition task, the number of classes shall be 10, 
and the initial clusters means shall be representative image 
of each digit class. If the right labels for such 
representative means are available, then the whole cluster 
shall hold the same label, and hence a labeled dataset is 
obtained. 

If generative model like deep auto-encoder is used, the 
system could be designed to generate the original raw input 
corresponding to the mean of each cluster, and ask the user 
explicitly for the label of this data, and then generalize the 
label to the whole cluster. This is very close to the behavior 
of human learning achieving minimal supervision. 

 
Figure 5 (a) Raw data (b) Structured data after non-linear 

transformation in the deep auto-encoder (c) Clustering 
algorithm discovers clusters means with their labels obtained 
(d) Having the labels of the means the whole cluster is labeled 

Figure 5 describes the different mappings and processing 
on the input unlabeled data until a labeled dataset is 
obtained. First non-linear mapping is done using deep 
auto-encoder, such that structured dataset is obtained. Then 
a clustering technique (like K-means) is applied to the 
obtained codes. The labels of the clusters means or some 
representative class examples are provided by the user as 
supervised examples, form which the whole cluster can be 
labeled, and hence a supervised dataset is obtained. 

D. Deep-auto encoder training algorithm 

As described in  IV.A and  IV.B, deep auto encoder 
performs non-linear dimensionality reduction on the 
unlabeled data. Being a deep architecture, the structure in 
the mapped data is most likely to be well-clustered. Figure 
6 describes the training algorithm of the deep auto-encoder.  

The algorithm is based on the fast greedy learning 
algorithm in  [1]. Let’s denote the number of layer as 
N_layers. The activation of each layer as data(i), with 

data(0) is the original data example.
1+× iNiNW  is the 

weights matrix linking layer i to layer i+1 , of size 

1+× iNiN . W∆  is the weights update signal resulting from 

training. When a variable is meant for the whole network, 
sub-scripts are dropped for simplifying the notation. The 
sub-routing generate_original_data is used to obtain the 
model believed data to be the original data generate the 
code-word at the highest level (see Figure 4). 

For each layer, weights are updated as if no more upper 

layers are going to be stacked over it. The neurons are 
binary, with S-shaped sigmoid functions. First the 
unlabeled data example is presented to the first layer, at 
which activations are obtained. RBM unlabeled training is 

performed as in  [1] to obtain the 
1+×∆

iNiNW for each layer. 

After all layers are trained, the whole network weights are 
adjusted. 

Deep auto-encoder architecture is a generative model. 
Hence, the error to be minimized or objective function to 
be optimized is the absolute difference between the 
originally presented data and the model believed data. This 
error signal is then used to be propagated back in the 
network to adjust the weights using the traditional back 
propagation algorithm. The final adjusted weights after 
back_propagation_fine_tuning are the result of the 
algorithm. 
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Figure 6 Deep auto-encoder training algorithm 

E. Auto-labeling algorithm 

The proposed algorithm here is to label a dataset of 
features vectors with minimal human effort. Labeling shall 
be based on clustering the given data into coherent classes 
with similar values. To guarantee that the obtained clusters 
represent the real class labels, the data representation of the 
vectors must be designed to maintain the class 
neighborhood relation of the given vectors, and in the same 
time provide well-structured data so that efficient 
clustering becomes possible. 

The algorithm pseudo code is presented in Figure 7. A 
deep auto-encoder is first trained like in the algorithm 
described in  IV.D. The unlabeled dataset is the input of the 
algorithm. For each member of the unlabeled set, a code 
word is generated (see the upward path in Figure 4), and 
stored in a large array of all code words representing the 
unlabeled data set in the new mapped domain. 

The obtained code words are fed to the K-means 
algorithm, with the number of clusters K_classes is just the 
number of classes’ labels of the dataset. The K-means 
algorithm gives the clustered data and their means.  

To obtain the labels of the new clusters with minimal 
supervision, only the clusters means’ labels need to be 
knows, which represent K_classes examples of the whole 
dataset. Here user intervention is needed to label those 
means. However, the means are now represented in the 
form of code word, so the user does not know what they 
represent in the original dataset. For example, for number 
recognition, the user can only give a label of the number 

220
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image, but he cannot label its code word. So, the original 
data (number image) is re-generated (the downward path in 
Figure 4) and presented to the user to label it, which is done 
in the sub-routine ask_user_for_label.  Once the means 
labels are obtained, the same label is applied to the whole 
dataset, and hence a labeled dataset is obtained. 

datasetlabeledreturn
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Figure 7 Auto-labeling algorithm 

V. Adaptive learning system 

Traditional pattern recognition model is composed of 
training and test phases. After training the model, the 
system goes into test phase or normal operation. While the 
system is in normal operation, new patterns keep flowing in 
to be classified. According to the generality of the training 
set, the empirical classification error is determined. So, if 
the new patterns were encountered in the training phase or 
similar ones, then they should be correctly classified. On 
the other hand, if the training set was not covering some 
part of the feature space, and a new pattern is encountered 
in that part during operation, it will be misclassified. 
 

Figure 8 Adaptive learning system 

A. Unsupervised examples improve learning 

In conventional pattern recognition system the training 
and test phases are sequential. In adaptive system, they are 
done in parallel.  
 

Figure 8 describes the adaptive learning system. To use 
real world patterns to update the model a learning 
algorithm that makes use of unsupervised examples is 
needed. Deep Belief Nets (DBN) trained using greedy 
layer wise learning algorithm  [1] are typical candidates for 
such purpose. 

The learning algorithm can make efficient use of very 
large sets of unlabeled data, and so the model can be 
pre-trained in completely unsupervised fashion. The very 
limited labeled data can then be used to only slightly 
fine-tune the model for a specific task at hand using 
standard gradient based optimization  [3]. The 
unsupervised examples help in getting the initialization of 
weights to a point near to the minimum of the objective 
function to be optimized, protecting against getting stuck in 
poor local minima. 

During operation of the system, the more unsupervised 
examples flowing in can be used to adjust the network to a 
better initial location. This process will be performed 
offline, in parallel with normal classification going on in 
the network, and the whole learning process is repeated to 
calculate the new weights. New updated weights calculated 
offline are then applied to the network periodically and 
only if test error is improved with the new weights, 
otherwise the old weights are kept. 

The DBN architecture in  [1] performs back propagation 
for weight adjustment after the unsupervised training 
phase. In adaptive learning, there are two options; the first 
is to apply the new unsupervised examples as separate 
unsupervised pre-training phase, then run back 
propagation, and the other one is to append the already 
existing database of old unsupervised examples with the 
new ones, then re-run the whole learning process from 
scratch. The choice depends on timing and storage issues. 

B. Over-fitting or user adaptation 

The above proposed system may be considered to suffer 
from over fitting to certain examples that flow during 
operation. For example if it is applied in handwriting 
recognition, then the system shall over fit to the user style 
that is using the system, because the network will be 
continuously adjusted to the examples of his own style. On 
the other hand, this could be viewed as user style 
adaptation. Both points of view could be desirable or not 
according to the application and the method of 
implementation. 

C. Adaptation algorithm 

The proposed algorithm for adapting the DBN network 
using unlabeled examples is presented in Figure 9.  The 
presented subroutine is to adapt an existing DBN for a new 
batch of unlabeled data new_unlabeled_batch_data. 

   A stack of RBM’s are first trained using the greedy 
layer-wise training algorithm in  [1]  using pre_train_rbm 
sub-routine. This is repeated for the N_layers of the 
network. The activation of each layer is denoted as data(i), 

with data(0) is the original data example.  
1+× iNiNW  is the 

weights matrix linking layer i to layer i+1 , of size 

1+× iNiN . W∆  is the weights update signal resulting from 

training. Having all layers trained, the pre-training stage is 
over. 
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 After pre-training, the back propagation fine tuning is 
performed on the stored labeled dataset to adjust the 
weights. Before applying the new weights, the error rate is 
tested. If improvement in the error rate is achieved, then the 
new weights are applied, otherwise the old weights are 
kept. 
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Figure 9 Adaptation algorithm 

D. Implementation 

When it comes to practical implementation, there are 
two options to implement adaptive learning model; the first 
one is the on-board implementation, the other one is the 
distributed implementation. 
 
1) On board implementation 

In this scheme, both the adaptive learning module and 
the classifier modules are on the same system, operating on 
the same user inputs. In this case user style adaptation is 
desired, and hence over fitting is not an issue. This type is 
probable in hand-held devices and embedded systems. The 
choice could be constrained by the cost of the system and 
resources available. A separate parallel coprocessor shall 
be used to handle the adaptation separate from the ongoing 
classification task. Updates of the network weights should 
be scheduled periodically. 
 
2) Distributed client-server model 

In cases of multi-users system, over fitting to certain 
user style is not desirable. In such cases; it is more 
convenient to use distributed client-server model; where 
the client is the light weight device performing 
classification with the already calculated weights, under 
real time constraints, while the server part is performing 
adaptation using the classification examples. Multi-clients 
communicate their examples to the server, which performs 
adaptation, and then communicate back the updated 
weights to the clients. Updates could be scheduled 
periodically or on need basis. 

To avoid over fitting, the server should perform 
adaptation by balancing the examples coming from all 
clients to be used in the learning process, and avoid being 
biased to certain user examples. 

VI. Experimental results 

The proposed adaptive algorithm was tested on number 
recognition task on MNIST dataset. On the other hand, 

Auto-labeling algorithm was tested on character recognition 
task on MNIST dataset, and also on E-mail classification task 
on Enron dataset. In the following sections results on both 
tasks are presented. 

A. MNIST Dataset 

MNIST dataset of handwritten digits was used  [19]. This 
dataset has a training set of 60,000 examples, and a test set 
of 10,000 examples. It is a subset of a larger set available 
from NIST. The digits have been size-normalized and 
centered in a fixed-size image. The input images have sizes 
of 28x28 pixels. The images with their labels are stored in a 
certain file format. Data are stored in big endian form, with 
MSB first. Pixels are organized low wise. Pixel values 
range is 0..255. 

B. Enron Dataset 

Enron dataset was collected and prepared by the CALO 
Project (A Cognitive Assistant that Learns and Organizes). 
It contains data from about 150 users, mostly senior 
management of Enron, organized into folders. This data 
was originally made public, and posted to the web, by the 
Federal Energy Regulatory Commission (FERC) during its 
investigation.  The email dataset was later purchased MIT, 
and turned out to have a number of integrity problems. The 
dataset was further processed by SRI (see  [15] and  [16]). 

 
 

Figure 10 Enron email directory structure 
 

Figure 10 shows the directory structure of the dataset. 
Each user has a folder, containing a folder representing 
each mail category. Categories could further split into 
sub-folder representing sub-categories. Some of these 
folders are irrelevant for classification task, like “sent”, 
“inbox”, “deleted”…etc… Pre-processing is needed to 
extract useful categories. Also, preprocessing is needed to 
extract useful vocabulary, build features vectors…etc. 
Training and test sets are built by randomly splitting the 
processed dataset into training and testing examples. This 
random splitting guarantees independence between test and 
training sets. 

 
1) Users selection 

E-mails of the Enron employees are diverse, so that not 
limited number of common categories can be easily 
identified among all users. For example, for a certain user, 
the corpus is divided into: “eol”, “ces”, “entex”, 
“industial”…etc. While for another user his mails are 
categorized into: “duke”, “ecogas”, “bastos”…etc. This 
creates a difficulty assigning labels to each e-mail based on 

Enron Email Directory 

beck-s shapiro-r 

inbox computers 
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its category, since categories are different between users. 
To overcome this problem, users are ordered discerningly 
in terms of the number of e-mails in their directories, and 
then the top users with largest number of e-mails were 
selected as the input datasets, so that, each user directory 
represents a separate dataset. This ensures coherency 
between each category e-mail examples. 
 
2) Vocabulary building 

E-mail classification is based on categorizing a features 

vector 
)(i

x  of the th
i example into one of etstN arg  

categories. The features themselves are just indicators of 
the existence of certain, most-encountered words in the 
dataset, called the vocabulary of the corpus, or the 

bag-of-words. The size L  of 
)(i

x  is the number of 
vocabulary words. Since, each user mails are considered a 
separate dataset; hence, each user is assigned a separate 
vocabulary vectorV . 

To build this vocabulary vector, the whole corpus of each 
user is parsed, and the words are ordered in a descending 
order in terms of the frequency they are encountered in the 
dataset, and then the most L  frequently encountered words 
are selected as the members of V. The parameter L  is 
chosen based on experimental results, where L is chosen to 
give the best accuracy. During vocabulary building, 
irrelevant words are ignored (“he”, “she”, “when”…etc). 
Also, e-mail header is excluded, which contains the actual 
class label. 

 
3) Categories building 

Categories of email messages are simply the different 
class targets of the classification problem at hand. Each 
user has own set of categories. Number of categories is 

denoted by etstN arg , which is the dimension of class labels 

)(i
y  of the th

i  example. 
Selection of categories per each user directory is done 

first by counting the number of emails in each category. 
This counting is done recursively, i.e. if the category 
contains sub-categories, then messages in the sub-folders 
are also counted. Then the categories are ordered 
discerningly, and the highest score ones are selected as the 

targets labels etstN arg . Each target of etstN arg  is assigned 

a binary code of etstN arg  bits, with only one bit set to 1 

and the others set to 0.  
Each category is assigned an integer number from 0 to 

1arg −etstN  which is denoted by label. The target label 

)(i
y  of the th

i   email is a binary vector of length etstN arg , 

with only 1 set at label
2 position. etstN arg  is chosen based 

on experimental results so as to give the best accuracy. 
During the aforementioned process, the irrelevant 

categories are dropped, since they have no relevance to the 
classification problem, like “inbox”, “sent”, 
“deleted”…etc. 
 

4) Features extraction 

The features vector representing the th
i   email 

)(i
x  

could be one of two cases; either binary or word-count. For 
both cases, the vocabulary of the bag-of-words V  is 

considered, and 
)(i

x  is an L  size vector.  

For the binary case, the features vector etstN arg  is just a 

vector of 1’s or 0’s. The “1” indicates the existence of the 
corresponding vocabulary word in the e-mail, while “0” 

marks its absence. For the word-count case, values in 
)(i

x  
are integers, marking the frequency of word repetition 
within the given email. In the proposed classifier, binary 
features were tested to give the good results, while 
word-counts give poor results, and hence binary features 
shall be considered. 

 
5) Training and test sets selection 

For each user, the features and labels are extracted as 
described in the above sections. Now, to split the processed 
dataset into training and testing sets, a complete random 
approach was followed, such that training and testing 
emails were selected randomly from the final dataset. This 
ensures independence between training and testing 
datasets. 
 

6) Processed Enron Dataset 
Enron dataset pre-processing generates different dataset 

for each user. The different parameters are: 
o Training set size 
o Testing set size 
o Number of categories/Class labels 
o Number of features 

 
Table 1 Users datasets details 

 
Table 1 shows the details of each user’s dataset after 
pre-processing. 

C. Auto-labeling results 

   The auto labeling algorithm described in  IV.E is 
applied to MNIST dataset. The training dataset is 
composed of 60,000 labeled examples. The label is 
removed to test automatic labeling performance, and so 
60,000 unlabeled example results. The deep auto-encoder 

User Training 
set size 
(e-mails) 

Test set size 
(e-mails) 

Number of 
categories 

Number 
of 
features 

arnold-j 90 10 10 100 
baugmann 952 106 5 1000 
beck-s 891 100 10 2000 
blair-l 1123 15 16 1000 
cash-m 216 23 6 1000 
griffith-j 352 64 8 1000 
haedicke-m 60 31 2 1000 
hayslett-r 256 658 4 2000 
kaminski-v 1791 55 10 1000 
kean-s 1146 231 4 10000 
ruscitti-k 92 79 3 1000 
shackleton-s 490 168 4 1000 
shapiro-r 490 118 5 10000 
steffes-j 503 95 7 1000 
ward-k 283 95 8 1000 
farmer-d 2589 665 11 1000 
kitchen-l 1992 864 10 1000 
lokay-m 2073 61 6 1000 
sanders-r 711 281 6 1000 
williams-w3 1974 26 5 1000 
campbell-l 14 14 6 1000 
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architecture used has 1000 neurons in the first layer, 500 
neurons in the second layer, 250 neurons in the third layer 
and 30 neurons in the last layer. Hence the code word 
dimension is 30. 

    Figure 11 and Figure 12 show the resulting 2-D and 
3-D codes of the unlabeled MNIST training dataset, which 
represent 60,000 examples. For Figure 11 and Figure 12 
the last layer width is 2 and 3 respectively. The classes 
(digits) are represented by different colors in the figures. 
Some classes are well clustered in 2-D and 3-D codes; 
however, others are not, which indicates the need for higher 
dimensional codes. 2-D and 3-D codes were used for 
visualization purpose as it is not possible to visualize 
higher dimensional codes. 
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Figure 11 2-D codes of MNIST 
dataset
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Figure 12 3-D codes of MNIST dataset 

   The experiment starts by running the automatic labeling 
algorithm described in  IV.E. The input to the algorithm is the 
unlabeled 60,000 examples of MNIST dataset, and the output 
is the automatically labeled set. Then to test the algorithm 
performance, the automatically labeled dataset is used to 
pre-train and fine tune a DBN classification network as in  [1] 
and  VI.D. The architecture used for classification is 3-layered 
1000-500-2000 with 10 targets neurons. The unlabeled set is 
used first to pre-train an RBM of the given architecture. Then 
the obtained weights are used to initialize the network for back 
propagation fine tuning using the automatically labeled 
dataset.  

),_(__

)_(___   ][

)_(inbm_pre_tra   ]Pr_[

)_(__   ]_[

Wdatasetlabeledrateerrtesterr

datasetlabeledtunefinenpropagatiobackcallW

datasetlabeledrcalletrainW

datasetunlabeledlabelautoeSub_routincalldatasetlabeled

=
=

=
=

Figure 13 Automatic labels experiment 

The obtained results of error rate of misclassification are 
obtained on the test dataset of MNIST of 10,000 examples, 
completely independent of the training ones. The results are 
compared to results on the original labeled dataset, trained 
using the same fast algorithm in  [1]. The error rate is nearly the 
same the original labeled dataset. For original MNIST training 
set, the error is 0.98%, while for automatically labeled one it is 
1.04% as shown in Figure 14. 
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Figure 14 Automatic labeled dataset results 

Also the auto-label algorithm was tested on Enron dataset 
for different users. The results are shown in Figure 15. The 
average accuracy of using DBN classifier alone against using 
auto-label algorithm on top of DBN classifier is shown in 
Table 2. The accuracy of auto-label algorithm is nearly the 
same as that of DBN classifier alone. 
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Figure 15 Auto-label algorithm vs. DBN Classifier with 
manually categorized dataset 

Method Average 
Accuracy 
(%) 

DBN 85.78% 
Auto-label 84.17% 

Table 2 Average Auto-label accuracy vs. DBN accuracy with 
manually categorized dataset 
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D. Adaptation results 

Adaptive learning is tested on MNIST dataset  [19] using 
modified version of the MATLAB code in  [18]. The DBN 
architecture used was 3 layer network; with 500 neurons in the 
first layer, 500 neurons in the second layer and 1000 neurons 
in the third layer. A layer of 10 units is added on the top layer 
and tuned to give the labels of characters. The number of 
iterations for greedy RBM training or back propagation fine 
tuning was 50 epochs. 

 

To simulate adaptation, the training set was subdivided into 
balanced mini-batches each containing 100 examples with 
total of 600 batches. The experiment goes on by feeding more 
batches and performing back propagation each time. With 
every update of the network the classification error 
performance is tested. 

Note that; the target was not to achieve best error rate in 
comparison to existing systems, but to prove that feeding more 
unsupervised examples do improve network performance in 
terms of classification error rate. 

The experiment starts by sub-dividing the dataset of 
MNIST into number of batches. For each batch the adaptation 
algorithm is run and the error rate is tested. 
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Figure 16 Adaptation experiment pseudo code 
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Figure 17 Adaptive learning performance curve 

Figure 17 shows that the error performance is improved as 
more unsupervised examples are fed to the network. As more 
examples are used to pre-train the DBM network, a better 
initialization point of weights is obtained in weight space, so 
that supervised training phase using back propagation can start 
from a point nearer to the global minimum, instead of falling in 
a poor local minimum. In addition, as the greedy algorithm is 
trained on more unsupervised real world examples, its 
probabilistic model is improved to make those examples more 
probable, and hence improving the regeneration performance 
of those examples. This is similar to teaching a human person 
some figures, so that he can generate similar figures from his 
imagination, which indicates a better learning of those figures. 

VII. Conclusion 

In this paper a self-learning machine is proposed in terms of 
its ability to learn with minimal supervision and adapt to real 
world examples during operation. The first contribution of this 
paper is the automatic labeling component based on non-linear 
transformation using deep auto-encoders, followed by 
clustering step. The second contribution is the adaptive 
learning component based on unsupervised pre-training of 
Deep Belief Nets. Merging the two components constitutes a 
Self-Learning Machine (SLM). Those machines are able to 
learn with minimal supervision and adapt to real world data. 
SLMs are generic learning systems in terms that they can be 
adapted to any pattern recognition task. All what is needed are 
few representative examples of each class to be recognized, 
and then the system will build the network from the 
unsupervised input data flowing in. Recursively the network 
adapts its parameters as more and more new data is fed to the 
system, and the performance is enhanced automatically. The 
proposed system target is to mimic human learning behavior 
that it needs few supervision and the ability to build own 
beliefs based on experience. 

Automatic labeling was tested on MNIST and Enron 
datasets. Results show that the error rate obtained using 
originally labeled dataset is nearly the same as the 
automatically labeled one. 

Practical results on MNIST dataset prove the adaptive 
learning concept, showing improved classification error 
performance as more unsupervised examples are used for 
pre-training. This is due to better initialization weights for 
back fitting supervised stage, thus, improving the generation 
performance of the network of real world examples. This is 
similar to the ability of human being of drawing familiar 
figures that are well learned. 

Future work includes testing the proposed auto labeling 
algorithm and adaptive learning on different datasets other 
than MNIST. Also, different implementation issues described 
in adaptive learning are to be addressed.  The on board 
implementation choice could be studied to evaluate practically 
the parallel co-processor hardware needed to perform 
adaptation. Also, the communication method needed in case of 
distributed implementation needs to be studied. Over fitting 
avoidance strategy in case of adaptive distributed 
implementation need to be addressed too. 
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