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Abstract—The disease epilepsy is characterized by a sudden 

and recurrent malfunction of the brain that is termed seizer. 

The electroencephalogram (EEG) signals play an important 

role in the diagnosis of epilepsy. Nonlinear analysis quantifies 

the EEG signal to address randomness and predictability of 

brain activity. In this study, the wavelet subband 

decomposition and Approximate Entropy (ApEn) is used for 

epilepsy detection from EEG signals. In first stage, EEG 

signals are decomposed into five EEG subbands viz. delta, 

theta, alpha beta and gamma, using Discrete wavelet transform 

(DWT). The second stage consists of the feature extraction of 

EEG using ApEn. The methodology is applied to two different 

EEG signals: 1) Normal 2) Epileptic. For each subband ApEn 

is calculated and it is observed that the each EEG subband 

value of ApEn drops during an epileptic seizures. Accuracy is 

calculated by using thresholding. Classification accuracy is 

determined by applying thresholding. The overall accuracy as 

high as 96% is achieved for EEG subbands as compared to the 
without wavelet decomposition accuracy value is 86%. 

Keywords- Electroencephalogram (EEG), discrete wavelet 
transform (DWT), approximate entropy (ApEn), epilepsy 

 

I.  INTRODUCTION  

Electroencephalography is the neurophysiologic 
measurement of the electrical activity of the brain using 
electrodes placed on the scalp. The resulting traces are 
known as electroencephalogram (EEG) and they represent 
electrical signals from a brain. Physiological information in 
the brain is carried by patterns of neural activity that are 
manifested in electrical fields of potential known as action 
potential and in EEG waves [1], [2]. The disease epilepsy is 
characterized by a sudden and recurrent malfunction of brain 
that termed “seizure”. A seizure is the event and epilepsy is 
the disorder. The seizures must be spontaneous and recurrent 
to represent epilepsy. Epileptic seizures reflect the clinical 
signals of an excessive and hyper synchronous activity of 
neurons in the brain [3].  Neurons normally generated 
electrochemical impulses that act on other neurons, glands 

and muscles to produce human thoughts, feelings and 
actions. In epilepsy the normal patterns of neuronal activity 
becomes disturbed [4]. 

 Long term electroencephalogram (EEG) recording is a 
widely used clinical procedure for the diagnosis of epilepsy 
because it is more likely to capture epileptiform 
abnormalities, both ictal and interictal, than short-term 
recording [5]. In majority of the cases, the onset of the 
seizures cannot be predicted in a short period, a continuous 
recording of the EEG is required to detect epilepsy. A 
common form of recording used for this purpose is an 
ambulatory recording that contains EEG data for a very long 
duration of even up to one week. It involves an expert’s 
efforts in analyzing the entire length of the EEG recordings 
to detect traces of epilepsy. As the traditional methods of 
analysis are tedious and time-consuming, many automated 
epileptic EEG detection systems have been developed in 
recent years [6][7]. With the advent of technology, it is 
possible to store and process the EEG data digitally. The 
digital EEG data can be fed to an automated seizure 
detection system in order to detect the seizures present in the 
EEG data. Hence, the neurologist can treat more patients in a 
given time as the time taken to review the EEG data is 
reduced considerably due to automation [8], [9]. 

The electrical waves of brain basically have small 

amplitude (approximately 100μV) and the frequency range 

from 0.4 Hz to 80 Hz. Each EEG is commonly decomposed 

into five subbands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-

12 Hz), beta (13-30 Hz), and gamma (30-60 Hz) [9][10]. In 

order to extract EEG subbands wavelet transform is more 
advantageous instead of traditional Fourier transform. The 

wavelet transform has the advantages of time frequency 

localization, multirate filtering, and scale-space analysis 

[11].  

Research on seizure detection began in the 1970s and 

various methods addressing this problem have been 

resented. The authors analyzed the autocorrelation of EEG 

to provide a measure for rhythmicity [12]. In the frequency 

domain, seizure detection relies on the differences in the 
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frequency domain characteristics of the normal and epileptic 

EEG [13]. Since the EEG  is non-stationary in general, it is 

most appropriate to use the time-frequency domain methods 

like the wavelet transforms (WT) [14], [15] which do not 
impose the quasi-stationary assumption on the data like the 

time and frequency domain methods do. WT provides both 

time and frequency views of a signal simultaneously which 

makes it possible to accurately capture and localize transient 

features in the data like the epileptic spikes [16]. 

Artificial neural networks (ANN) have widely been applied 

to classify EKG and EEG signals over the last two decades 

[17], [18], [19]. A variety of different ANN based 

approaches were reported in the literature for epileptic 

seizure detection [16], [20]. Neural network based 

approaches are mainly based on building models of epileptic 

and normal EEG and then using these models to classify 
EEG as either epileptic or normal. The authors presented a 

comprehensive analysis for the performance of post 

classifiers such as Hierarchical Soft Decision Trees, 

Singular value decomposition (SVD), k-means clustering, 

Principal Component Analysis (PCA) and Rule based AI 

techniques in optimization of fuzzy outputs for the 

classification of epilepsy risk levels from EEG signals [27].   

The electrical activity of a brain measured by EEG 

exhibits complex behavior with non linear dynamic 

properties [9]. There are many methods available for 

analysis of EEG. Epileptic seizer detection techniques can 
be divided into five categories: time domain based, 

frequency domain based, time-frequency domain based, 

artificial neural network based and nonlinear methods [8]. 
Nonlinear measures like correlation dimension (CD), 

largest Lyapunov exponent (LLE) and approximate entropy 
(ApEn) quantify the degree of complexity in a time series. 
When used with EEG, these measures help understand EEG 
dynamics and underlying chaos in the brain [21]. The study 
demonstrated that entropy values computed for the epileptic 
EEG were lower compared to the values computed for the 
normal.  

ApEn is a recently formulated statistical parameter that 
describes the regularity of physiological signals in which 
larger values indicate a higher complexity in the phase space. 
Approximate Entropy (ApEn) is scale invariant and model 
independent [22]. It was first proposed by Pincus in 1991 
and has been predominantly used in the analysis of heart rate 
variability and endocrine hormone release pulsatility, 
estimation of regularity in seizure time series data, and in the 
estimation of the depth anesthesia [5]. 

The nonlinear analysis quantifies the EEG to address 

randomness and predictability of the brain activities. The 

value of the ApEn drops abruptly due to the synchronous 

discharge of large groups of neurons during an epileptic 

activity . Hence it is a good feature to make use of in the 

automated detection of epilepsy [23].  
Fig.1 shows the generalized block diagram of automated 

epileptic detection system. The EEG is recorded from 16 

electrodes positioned according to the International 10–20 

System of Electrode Placement. This is stored in digital 

form so one can easily compute any algorithm or process on 

it. At the second stage EEG is decomposed into its five 

subbands. Third stage is the feature extraction. Then 

classification and diagnosis by the doctors. 

 
 

 
Fig 1 Block diagram of the EEG system. 

 

In this paper, we used discrete wavelet transform (DWT) 

for subband decomposition of EEG signal into its five 
subbands namely gamma, beta, alpha, theta and delta. In our  

previous work [23], we used ApEn as a tool for the feature 

extraction of epileptic EEG. 

The average ApEn is calculated for each subband of 

normal EEG and epileptic EEG. Our results show that the 

discrimination between normal EEG and epileptic EEG can 

be achieved with the help of ApEn. Rest of the paper is 

organized as follows Section II describes the data acquisition 

for normal and normal EEG and information related to 

dataset. Section III describes the subband decomposition 

using DWT. Section IV describes the feature extraction 
using ApEn algorithm. Results are discussed in the section 

V. 

II. EEG DATA ACQUISITION  

Data used in this work are a subset of the EEG data for 

both normal and epileptic subjects made available online by 

Dr. Ralph Andrzejak of the Epilepsy center at the University 

of Bonn, Germany (http://www.meb.uni-

bonn.de/epileptologie/science/physik/eegdata.html).  The 

whole dataset consists of five sets (denoted as Z, O, N, F 

and S), each containing 100 single-channel EEG segments 

of 23.6 s duration, with a sampling rate of 173.6 Hz. As 

such, each data segment contains N=4097 data points 
collected at intervals of 1/173.61th of 1s. These segments 

were selected and cut out from continuous multi-channel 

EEG recordings after visual inspection for artifacts (e.g., 

due to muscle activity or eye movements). Sets Z and O 

consisted of segments taken from surface EEG recordings 

http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html
http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html
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that were carried out on five healthy volunteers using a 

standardized electrode placement scheme. Volunteers were 

relaxed in an awake state with eyes open (Z) and eyes 
closed (O), respectively. Sets N, F and S originated from an 

EEG archive of presurgical diagnosis. Segments in set F 

were recorded from the epileptogenic zone, and those in set 

N from the hippocampal formation of the opposite 

hemisphere of the brain. While sets N and F contained only  
 

Fig. 2   Sample EEG signals for normal EEG and epileptic EEG. 
 

activity measured during seizure free intervals, set S  

contained seizure activity. All EEG signals were recorded 

with the same 128-channel amplifier system, using an 

average common reference. The data were digitized at 

173.61 samples per second using 12-bit resolution.  Fig. 2 

shows the sample EEG signals for epileptic EEG and 
normal EEG which are taken from above mentioned 

database [24]. 

 

III. EEG SUBBAND DECOMPOSITION USING DWT 

Wavelet transforms are widely used in many engineering 

fields for solving many real life problems. A wavelet is a 

“short wave”, which has its energy concentrated in time to 

give a tool for the analysis of transient, non-stationary, or 

time varying phenomena. In order to extract the individual 

EEG subbands a wavelet filter is employed instead of the 

traditional Fourier transform because the wavelet transform 
has the advantages of time-frequency localization, multirate 

filtering, and scale-space analysis. Wavelet transform uses a 

variable window size over the length of the signal, which 

allows the wavelet to be stretched or compressed depending 

on the frequency of the signal. This results in excellent 

feature extraction from non stationary signals such as EEGs. 

In this research, the discrete wavelet transform (DWT) 

based on dyadic (powers of 2) scales and positions are used 

to make the algorithm computationally very efficient 

without compromising accuracy. 

In WT, long time windows are used to get a finer low 

frequency resolution and short time windows are used to get 

high frequency information. Thus, WT gives precise 

information at high frequencies. This makes the WT suitable  

 
 

frequency information at low frequencies and precise time 

for the analysis of irregular data patterns, such as impulses 

occurring at various time instances [10]. 

A continuous wavelet transform (CWT) is used to divide 

a continuous time function into wavelets. Unlike Fourier 

transform, the continuous wavelet transform possesses the 

ability to construct a time frequency representation of a 

signal that offers very good time frequency localization. In 

mathematics, the continuous wavelet transform of a 

continuous, square integrable function x (t) at a scale a>0 
expressed by a following integral 

 

                𝐶𝑊𝑇 𝑎, 𝑏 =  𝑥(𝑡)
1

  𝑎 

∞

−∞
  

𝑡−𝑏

𝑎
 𝑑𝑡           (1) 

 

Where a and b are so called the scaling (reciprocal of 

frequency) and time localization or shifting parameters, 

respectively. Calculating wavelet coefficients at every 

possible scale is computationally a very expensive task. 

Instead, if the scales and shifts are selected based on powers 
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of two, so-called dyadic scales and positions, then the 

wavelet analysis will be much more efficient. Such analysis 

is obtained from the DWT which is defined as, 

 

                𝐷𝑊𝑇 𝑗, 𝑘 =
1

  2𝑗  
 𝑥(𝑡)

(𝑡−2𝑗𝑘)

2𝑗

∞

−∞
𝑑𝑡              (2) 

Where a and b are replaced by 2j and k2j, respectively. 
Mallat Mallat (1989) developed an efficient way for 

implementing this scheme by passing the signal through a 

series of low-pass (LP) and high-pass (HP) filter pairs 

named as quadrature mirror filters [25]. 

  

Fig. 3 Four Level Wavelet Decomposition of EEG. 

 

 

 

In the first step of the DWT, the signal is simultaneously 

passed through a LP and HP filters. The outputs from low 

and high pass filters are referred to as approximation (A1) 
and detailed (D1) coefficients of the first level. The output 

signals having half the frequency bandwidth of the original 

signal can be downsampled by two according to Nyquist 

rule. The same procedure can be repeated for the first level 

approximation and the detail coefficients to get the second 

level coefficients. At each step of this decomposition 

process, the frequency resolution is doubled through 

filtering and the time resolution is halved through 

downsampling. Fig.3 shows the four level wavelet 

decomposition of EEG signal.  

To achieve better results in feature extraction with ApEn 
algorithm, with wavelet decomposition has been used as a 

preprocessing level for EEG segments to ex-tract five 

physiological EEG bands, delta (0-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-30), and gamma (30-60 Hz).  

For this goal four levels discrete wavelet transform 

(DWT) with sixth-order Daubechies (db6) wavelet function 

have been used. Since our dataset is in range 0-60 Hz, 

coefficients D1, D2, D3, D4 and A4 corresponding to 30-60 

Hz, 15-30 Hz, 8-15 Hz, 4-8 Hz and 0-4 Hz respectively that 

are almost standard physiological sub-bands. 
 

IV. FEATURE EXTRACTION 

 The Approximate Entropy (ApEn) is one of the 
nonlinear dynamic parameters that measure complexity of 
the time series. ApEn assigns a non-negative number to a 
sequence or time series, with larger values corresponding to 
greater randomness or serial irregularity, and smaller values 
corresponding to more instances of recognizable features or 
patterns in the data. ApEn has advantages over other 
parameters as: a) it requires less data points (about from 100 
to 5000), b) it is robust against noise and wild value points, 
c) it is appropriate for both deterministic chaotic and 
stochastic processes [3]. 

The system makes use of single feature called 
approximate entropy for the epileptic detection. The ApEn is 
a time domain feature that is capable of classifying complex 
system [22]. The values of ApEn determined by using 
following steps [23][26] 



Automated Feature Extraction of Epileptic EEG Using Discrete Wavelet Transform  

and Approximate Entropy                                                                                                                                                        241 

 

 

Step 1: The data sequence containing N data points be X = 
[x(1), x(2), x(3), . . ., x(N)] 
Step 2:  x(i) is a subsequence of X such that x(i) = [x(i), 
x(i+1), x(i+2), . . . , x(i+m-1)] for 1≤ i ≤ N-m. 
Step 3:  v represents the noise filter level that is defined as   

 
            𝑣 = 𝑞 ∗ 𝑆𝐷          for q= 0.1,0.2,0.3, . . . ,0.9            (1) 
 
 
Where,  SD is the standard deviation of the data sequence X: 
 

               𝑆𝐷 =  
1

𝑁−1
   𝑥 𝑛 −

1

𝑁
 𝑥(𝑖)𝑁

𝑖=1  𝑁
𝑖=1               (2) 

 
Step 4:  {x(j)} represent a set of subsequences obtained from 
x(j) by varying j from 1 to N. each sequence x(j) in the set of 
{x(j)} is compared with x(i) and, in this process two 
parameters,  namely  Ai(v) and Aim(v) are defined as follows:  
 

                                   𝐴𝑖 𝑣 =
 𝑘𝑗𝑁−𝑚

𝑗=1

𝑁−𝑚
                                (3) 

 
Where, 
 

𝑘 =  
1, 𝑖𝑓  𝑥 𝑖 − 𝑥 𝑗 | 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 − 𝑚 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
  

 
And 
 

                                   𝐴𝑖𝑚 𝑣 =
 𝑘𝑗𝑁−𝑚

𝑗=1

𝑁−𝑚
                             (4) 

 
with conditions 
 

𝑘 =  
1,   𝑖𝑓  𝑥 𝑖 − 𝑥 𝑗  ≤ 𝑣 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 − 𝑚
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

  

 
And 
 

𝑘 =  
1,    𝑖𝑓 𝑥 𝑖 + 1 − 𝑥 𝑗 + 1  ≤ 𝑣𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 − 𝑚
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                     

  

 
Step 5: Define Ci(v) and Cim(v) as follows: 
 

                           𝐶𝑖 𝑣 =
 𝑙𝑛  (𝐴𝑖 (𝑣))𝑁−𝑚

𝑖=1

𝑁−𝑚
                              (5) 

 
 

                          𝐶𝑖𝑚 𝑣 =
 ln⁡(𝐴𝑖𝑚 (𝑣))𝑁−𝑚

𝑖=1

𝑁−𝑚
                         (6) 

 
Step 6: ApEn(m,v,N) is calculated  using Ci(v) and Cim(v) 
                   𝐴𝑝𝐸𝑛 𝑚, 𝑣, 𝑁 = 𝐶𝑖 𝑣 − 𝐶𝑖𝑚(𝑣)                 (7) 

 
 

 

     𝐴𝑝𝐸𝑛 𝑚, 𝑣, 𝑁 =
 ln⁡(𝐴𝑖 𝑣 )𝑁−𝑚

𝑖=1

𝑁−𝑚
−

 ln⁡(𝐴𝑖𝑚  𝑣 )𝑁−𝑚
𝑖=1

𝑁−𝑚
       (8) 

𝐴𝑝𝐸𝑛 =
1

𝑁−𝑚
  ln 𝐴𝑖 𝑣  −  ln⁡(𝐴𝑖𝑚(𝑣))𝑁−𝑚

𝑖=1
𝑁−𝑚
𝑖=1       (9) 

                  𝐴𝑝𝐸𝑛 =
1

𝑁−𝑚
  𝑙𝑛  

𝐴𝑖(𝑣)

𝐴𝑖𝑚 (𝑣)
 𝑁−𝑚

𝑖=1                     (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Flow chart for ApEn (m, v, N). 

Start 

Initialization 

Data Sequence Containing N Data Points                    
X=[x(1), x(2), x(3),…….,x(N)] 

 

Calculate v                                                                                                    

𝑣 = 𝑞 × 𝑆𝐷     q=0.1,0.2,0.3,0.4,…,0.9 

 

  Subsequence   x(i)   

x(i)=[x(i),x(i+1),x(i+2),…..x(i+m-1)] 

Calculate Sets of Subsequences Obtained from x(j) by 

Varying j from 1 to N. 

Compare {x (j)} with x (i),  it will give Two Parameters 

obtained Ai(v) and Aim(v) 

Entropy Calculation                                            

𝐴𝑝𝐸𝑛 𝑚, 𝑣, 𝑁 = 𝐶𝑖 𝑣 − 𝐶𝑖𝑚(𝑣) 

 

End 

Ci(v) and Cim(v) are the Natural Log of  Ai(v) and 

Aim(v) 
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From above equations it is quite clear that the values of 
ApEn depend on three parameters m, v and N. The flow chart 
for calculation of ApEn(m ,v, N) is shown in Fig 4. 

 
 

 
 

 
 

 
Fig 5. Wavelet decomposition of a sample normal EEG 
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Fig 6. Wavelet decomposition of a sample epileptic EEG

 
 

Fig. 7 ApEn of normal EEG and epileptic EEG. 
 

V. RESULTS 

A Subband Decomposition  

For subband decomposition four levels DWT with sixth 

order Daubechies (db6) wavelet function have been used. 

Since EEG is in range 0-60 Hz, coefficient D1,D2,D3.D4 

and A4 corresponding to 30-60Hz, 15-30Hz, 8-15Hz, 4-

8Hz, and 0-4Hz respectively that are almost standard 

physiological subbands. Fig 5 shows the wavelet 
decomposition of a normal EEG and Fig 6 shows the 

wavelet decomposition of a epileptic EEG. 

B. Approximate Entropy 

ApEn values are computed for selected combination of 
m, v and N. The values of m, v and N that are used as 
follows: 

1. m = 2 
2. N = 256 
3. v = q × SD Here v varies from 0 % to 90% of the 

data sequence in increments of 10%.  
 

ApEn values are computed for both normal and epileptic 
EEG signals. The two signals namely, normal and epileptic 
EEG signals depends on the values of m, v and N. Fig 7 
shows the plots of the ApEn that have cleared 
discriminations between the normal EEG and epileptic EEG 
signals.  
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Fig. 8 shows plot of the average ApEn values when 

percentage of SD varies from 10% to 90%. From above 

Table I, it is observed that maximum value of average ApEn 

is at 10% of SD and minimum at 90% of standard deviation. 
 

 
 

Fig. 8 Average ApEn values 10% to 90% SD variation. 

 

 
Fig 9 Average ApEn values for EEG signal and 

subbands. 

 
Generally, v is set from 10 % to 25% of the SD. During this 
range it gives better results and it shows high sensitivity 
towards   complexity of the signal.  In this work we have 
considered 15% of standard deviation value for the purpose 
of computing. The value of average ApEn at 15% of 
standard deviation. 

Fig. 9 shows the graph of average ApEn values for 
normal EEG and epileptic EEG and their subbands. From 
this graph it is observed that average ApEn values for 
epileptic EEG drops within subbands also. 
 
 
 

 
Fig 10. Thresholding for ApEn Values of Normal and Epileptic EEG.  
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Fig 11. Thresholding for ApEn Values of D1 coefficient for Normal and Epileptic EEG 
 

 
 

TABLE I 
Classification accuracy results for different sub-bands of 

DWT for S-Z datasets 

 

 ACCURACY 

EEG 86% 
D1 (30-60 Hz) 96% 
D2 (15-30 Hz) 88% 
D3 (8-15 Hz) 79% 
D4 (4-8 Hz) 68% 
A4 (0-4 Hz) 55% 
 

 

C. Thresholding 

ApEn values of the approximation and detail coefficients 

at five sub-bands were computed for the entire data sets 

described earlier. Epileptic EEG detection was based on 

applying a threshold to the ApEn values. EEG signals with 

ApEn less than the threshold were classified as epileptic and  
EEGs with ApEn greater than or equal to the threshold were 

classified as normal EEG.  

From the observation TABLE I it is cleared that the 

accuracy is greater at D1 coefficient (96%) which is greater 

than the EEG signal (86%).  Fig 10 shows the thresholding  

 

 
 

Fig 12. Box plot for the ApEn Values of S set (Epileptic). 

 

 

 
 

Fig 13. Box Plot for the ApEn Values of Z set (Normal). 

 

 
coefficient. By observing these two plots we can conclude 

that the accuracy is increased during decomposition of the 

signal. From these two figures it is observed that the average 
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values of ApEn drop during the epileptic seizures. And the 

discrimination between these two values that is for normal 

and epileptic is more during the D1 coefficients that is 

during gamma (30 – 60 Hz) subband. Fig 12 shows the box 
plot of ApEn values with subbands for the S- set (Epileptic). 

Fig 13 shows the box plot for the ApEn Values with 

subbands for Z set (Normal).   

VI. CONCLUSION 

The discrete wavelet transform and ApEn based 

methodology is presented. Although it is observed that the 

ApEn of the EEG signals can discriminate the normal and 

epileptic EEGs, but it cannot be concluded with certainty. 

However, when the statistical analysis is performed on EEG 

subbands, it is observed that the ApEn is used within certain 

physiological subbands gives better results. In this paper, 

the discrete wavelet transform and ApEn are used for 
analysis of EEG and its subbands viz. delta (0-4 Hz), theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-30), and gamma (30-60 

Hz) to detect seizures and epilepsy. The classification 

accuracy is computed for original EEG and EEG subbands 

for set S (epileptic) and set Z (normal) datasets. From 

results it is observed that the overall accuracy as high as 

96% is obtained for gamma EEG subband (30 to 60 Hz). 

ApEn combined with wavelet decomposition analysis gives 

the features of epileptic activities in EEG signal. Hence it is 

best feature for the detection of epileptic seizures. 
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