
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 270 - 278

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

BPEL-TC: Orchestration of Temporally

Customized Web Services

Preeti Marwaha
1
, Hema Banati

2
 and Punam Bedi

3

1Department of Computer Science

University of Delhi

Delhi, India.

preeti_andc@yahoo.com

2Dyal singh College

University of Delhi

Delhi, India.

banatihema@hotmail.com

3Department of Computer Science

University of Delhi

Delhi, India.

punambedi@ieee.org

Abstract: WS-BPEL is way to orchestrate web services. It

defines business processes that interact with external

entities through web service operations using WSDL. The

existing system defines service flow using Web Services

based on WSDL. We have proposed BPEL-TC, an

extension to existing WS-BPEL which uses temporally

customized Web Services as a model for process

decomposition and assembly. WSDL-TC handles both

backward compatible and incompatible changes and also

maintains various versions of the artifacts that results due

to changes over time and customizations desired by the

users. A formal representation of BPEL-TC is also

presented using Kleene Algebra with Test (KAT).

Keywords: Versioning, Collaborative Customization, Temporal,

Web Services, Orchestration, WSDL-TC, BPEL-TC

I. Introduction

Web services are useful in building distributed systems

that deliver functionality as services and have become one

of the preferred platforms for building online customized

applications. The present infrastructure for building web

services has set the stage for building dynamic, highly scal-

able and interoperable web applications. Changes in web

applications are inevitable because the business require-

ments are very dynamic. Problem of management of these

changes and versioning of web services have been ad-

dressed by several authors. In our earlier work we proposed

extensions to WSDL [7] i.e. WSDL-Temporal (WSDL-

T)[4] and WSDL-Temporal Customization (WSDL-TC)[6].

In WSDL-T, the concepts of linear temporal logic [2][3] as

well as frame and slot versioning [17] are used for manag-

ing changes across multiple versions of a Web service.

WSDL-T maintains different versions of the artifacts under

same URI. WSDL-TC defines different versions of the arti-

facts of the web services customized for different group of

users (Entities). It can correlate different versions of mes-

sages and process instances, recovery behaviour in case

of failures and exceptional conditions. By using WSDL-TC,

it is possible to customize any valid version of an

artifact, available at a particular time for any client. This

enables the service producer to create customized

functionality within a service for each Entity. WSDL-TC

aims at reducing the cost by maintaining the different

collaborative customized versions of the Web service(s) in a

single deployment that can be accessed by various groups of

clients. The approach also manages access control of these

artifacts to their respective groups. These services are

composed into business processes. WS-BPEL [13] allows

us not only to define abstract process definitions, but to

write exact executable specifications of processes which are

supported by the majority of companies. There are software

on which such processes can be developed (BPEL

designers) and executed (BPEL servers). WS-BPEL is

used to describe the message exchanges followed by the

business process of a specific role in the interaction. The

existing mechanisms of Web service orchestration such as

WS-BPEL cannot be used for orchestration of web services

that are based on WSDL-TC. In our previous work we have

extended BPEL to BPEL-Temporal (BPEL-T) [5] to

combine web services based on WSDL-T. BPEL-Temporal

defines a language for specifying business process

behaviour based on temporal Web Services (WSDL- T).

BPEL-temporal allows invocation of new or updated

versions of the artifacts maintained in WSDL-T file along

with the access to old or obsolete versions of the artifacts.

Using BPEL-Temporal it is possible to combine any ver-

sion of the artifacts of temporal Web services. In the pro-

posed work, BPEL-T is extended to BPEL-Temporal Cus-

tomization (BPEL-TC) for invocation of customized web

services based on WSDL-TC. Using BPEL-TC it is possi-

ble to define a service flow of WSDL-TC based web

BPEL-TC : Orchestration of Temporally Customized Web Services 271

services. BPEL-TC process specifies the exact order in

which participating temporally customized web services

should be invoked. We have represented BPEL-TC formal-

ly using Kleene Algebra with Test (KAT) [9]. Algebraic

notations presented by Ginige et al. [10] are extended for

composite WSDL-TC based processes.

The rest of this paper is organized as follows: section 2

discusses the related work with respect to the other BPEL

extensions that are proposed for meeting various scenarios

of the business world. The section also describes other

works involving version management of business

processes. Section 3 discusses our approach of BPEL-

Temporal Customization (BPEL-TC) that tackles issues

related with change management and customization. Sec-

tion 4 describes the BPEL activities with additional

attributes for versioning and customization. The formal

representation of BPEL-TC is explained using Kleene Al-

gebra with Test (KAT) in section 5. The section 6 discusses

the case study of Frontline Demonstration of technologies

for the farmers. Various scenarios and comparison between

BPEL, BPEL-T and BPEL-TC have been discussed in sec-

tion 7, Results and Discussions. Section 8 concludes the

paper with merits of the approach.

II. Related work

In literature, many extensions to standard BPEL process

have been proposed by several authors for different purpos-

es that are required to run business processes smoothly in

real world. Agrawal et al. [1] introduces a BPEL extension

to address human interactions in BPEL. Kloppmann et al.

[15] outlines an extension to WS-BPEL that allows for the

definition of sub-processes that can be reused within the

same or across multiple WS-BPEL processes. Lee et al.

[12] also proposed an extension to BPEL to infuse user

interactions into composite services. Nitzsche et al. [20]

provide extensions to BEPL for semantic Web services.

They use Ontologies as data model. Charfi [8] has dis-

cussed limitations of Web Service composition languages

such as BPEL, with respect to modularity and adaptability.

They have introduced the idea of aspect-oriented workflow

languages and presented the design and implementation of

AO4BPEL, an aspect-oriented extension of BPEL that sup-

ports dynamic weaving. Hackmann et al. [11] have pro-

posed and evaluated a series of BPEL extensions that sup-

port the creation of flexible, standards-based pervasive

computing applications, even when the devices involved

are mobile. The aim of Modafferi et al. [18] is to present a

Self-Healing plug-in for a WS-BPEL engine that enhances

the ability of a standard engine to provide process-based

recovery actions. Kopp et al. [16] provide classification of

62 commercially available extensions and scientifically

published extensions. He classifies all the extensions into

three categories: Design time only Extensions, Design Time

and Runtime Extensions and Runtime Only Extensions.

Tripathi and Hinkelmann [23] presented a methodology and

system for changing SOA-based business process imple-

mentation.

Some authors have addressed the versioning in WS-

BPEL. BPEL servers, such as IBM WebSphere Process

Server [19] and Oracle BPEL Process Manager [21] provide

versioning support to some extent. They provide

deployment time versioning and allow deploying different

processes under the same name, but with different version

numbers. Usually two approaches are used. First, only latest

version of the process is accessible which has been dep-

loyed most recently. Previous versions are only available to

finish existing running process instances. The second ap-

proach is to publish different versions of the process under

different endpoint URLs, which basically means that each

process version is published as a separate endpoint.

Juric et al. [14] have addressed the problem of version-

ing BPEL process. They provide versioning at two levels:

scope level versioning and process level versioning. He

introduced new activities as well as extended the existing

activities. He proposed extensions to variables to provide

version information and introduced version handler for se-

lection of particular version. Their approach is different

from ours as we are providing versioning of customized

operations in WSDL-TC. BPEL-TC is using these tempo-

rally customized versions of the artifacts to define service

flow. Ginige et al. [10] proposed the solution for change

management in the BPEL process. Their solution is based

on algebraic expressions. The purpose of these algebraic

expressions is to easily identify the effect of service

changes in the orchestrated process. After identifying these

effects, changes can be carried out efficiently without dis-

turbing the consistency of the overall BPEL document. In

the presented work we have extended the algebraic nota-

tions given by him to represent BPEL-TC. Tahamtan et al.

[22] used temporal logic to overcome the problem of lack

of temporal management capabilities for definition, calcula-

tion and monitoring of temporal values such as activity

duration and dead-lines as well as checking the temporal

conformance of processes. They improve QoS and reduce

costs. In their work they introduced an extension of WS-

BPEL that makes business processes time aware.

III. BPEL-TC: Extending Business Process for

WSDL-TC Based Web Services

In a present scenario if any change occurs in the BPEL

process, the changed BPEL process is considered as com-

pletely new process. Even for a small change whole process

is replicated and deployed again. Business requirements are

ever changing so as the change required in the web service

and their composition fulfilling those requirements. So, it

would become very difficult to manage all the versions

simultaneously. We have already proposed an extension to

BPEL i.e BPEL-T and further we are extending BPEL-T to

BPEL-TC for aggregating the services based on WSDL-

TC. Specific customized version of the artifact within the

web service, defined in WSDL-TC, is invoked through

partner links in BPEL-TC process. As BPEL-TC process is

used to orchestrate temporally customized artifacts of the

web services, BPEL-TC process should be able to detect

and bind to a specific customized version of the artifact of

the web service. Two optional attributes atTime and forEntity

are added to invoke, receive, reply, onEvent, and onMessage

activities present in WS-BPEL. In case, these are not

specified, BPEL-TC process should be able to bind some

default version of the artifact in the web service available

i.e. base function defined in WSDL-TC.

272 Marwaha et al.

BPEL-T was designed for defining the service flow for the

services based on WSDL-Temporal (WSDL-T). WSDL- T

allows the clients to access of a particular version of the

artifacts available within a web service. But, existing speci-

fications of the Business Process Execution Language

(BPEL) is not compatible with the specifications proposed

in WSDL-T thus, a modification of existing WS-BPEL is

proposed i.e. BPEL-T. BPEL-T introduces a new attribute

atTime. The atTime attribute is based on linear temporal

logic and facilitates the selection of the desired version of

artifacts from a bunch of available versions within a single

Web service available at a single point of time. BPEL-

Temporal enables the processes to call a new or old version

of the constituent Web service. The atTime attribute has been

added to invoke, receive, reply, onEvent, and onMessage

activities present in WS-BPEL. The BPEL-T helps in easy

and better management of business process. This paper

extends BPEL-T to BPEL-TC (BPEL-Temporal

Customization) to orchestrate/choreograph the services

based on WSDL-TC.

Following are the features of BPEL-TC:

• Allows invocation of a particular customized ver- sion

of operation describing a business process, such that its

output can be an input to the particular customized version

of another operation of a Web service describing some

other business process.

• Allows access to newer customized version of op-

erations added to a business process along with the older

operations of the same or other business proc- ess to the

existing and new clients.

• Allows access to the modified operations represent- ing a

change in business process while continuing access to the

operation before change in business process.

• Allows access to deleted operation representing a

business process to the dependent operations of some

business processes that are obsolete in new versions.

BPEL-TC allows sequencing of process activities in

terms of Web service interactions, where web services are

built using WSDL-TC as shown in Figure 1 and have

different versions of artifacts customized for different

Entities are embedded in it. Proposed atTime attribute in

above mentioned WS-BPEL activities is optional and is

assigned the date-time value which is compared to the

timeStamp value associated with different versions of the

artifacts defined in WSDL-TC. If atTime attribute is

missing in the above mentioned activities then the version

of the operation which is latest (i.e. having validity status set

to LATEST in WSDL-TC) will be selected. forEntity

attribute is also optional and is assigned a value which is a

name of an entity for whom the artifact is customized. The

entity name as- signed to forEntity attribute is compared

with the entity names which are a part of some EntitySet.

Entity can be primary entity or secondary entity for which

atrifacts of the Web Service are customized in WSDL-TC.

If forEntity attribute is not specified in above mentioned

tags then the version of the operation which is not

customized for anyone (i.e. Base Function) is being referred.

Base Function is available to all entities not belonging to

any of the EntitySet in WSDL-TC. Since, both the above

mentioned attributes are optional; it is backward

compatible with the existing BPEL programs that

aggregates WSDL-TC web services.

IV. Activities in BPEL-TC

The receive activity allows the business process to wait

for a matching message to arrive from the operation

mentioned in the operation attribute of the receive activity.

The receive activity completes when the message arrives.

The portType attribute on the receive activity is optional.

The optional message Exchange attribute is used to

associate a reply activity with a receive activity. Note

atTime and forEntity attribute in receive activity in Listing

1. The value of atTime attribute is compared with the value

of the timeStamp attribute of the various versions of the

corresponding operation in WSDL-TC.

Figure 1. BPEL-TC Interaction with multiple versions of

WSDL-TC based web services

The value assigned to forEntity attribute is compared with

the names of the Entities in an EntitySet for whom the

operation is customized. The message is received from the

version of the operation customized for the Entity assigned

to forEntity attribute and whose timeStamp value is highest

among all the timestamps which are less than or equal to the

value assigned to atTime attribute of receive activity. If

atTime and forEntity attributes are missing in the receive

activity then the message is received from the base

function of the operation with validity status set to

LATEST. Both version of the Operation as well the version

of the Entity should have valid validity status at the time

assigned to atTime attribute.

<receive partnerLink="NCName" portType="QName"?

operation="NCName" variable="BPELVariableName"?

createInstance="yes|no"? messageExchange="NCName"?

atTime="xs:datetime" forEntity=”EntityName” stan

dard-attributes>

standard-elements

<correlations>?

<correlation set="NCName" initiate="yes|join|no"? />+

</correlations>

<fromParts>?

<fromPart part="NCName" toVariable= "BPELVariable-

Name" />+

</fromParts>

</receive>

Listing 1. receive activity in BPEL-TC.

BPEL-TC : Orchestration of Temporally Customized Web Services 273

The reply activity allows the business process to send a

message in reply to a message that was received by an in-

bound message activity (IMA), that is, receive, onMessage,

or onEvent. The combination of an IMA and a reply forms a

request-response operation on a WSDL portType for the

process. The portType attribute on the reply activity is op-

tional. If the portType attribute is included for readability,

the value of the portType attribute must match the portType

value implied by the combination of the specified partner-

Link and the role implicitly specified by the activity. The

optional message Exchange attribute is used to associate a

reply activity with an IMA. The atTime and forEntity

attributes helps in deciding to which version of the

operations customized for a particular Entity in WSDL-

TC, a message is sent in reply to a message that was

received by an inbound message activity (IMA). If atTime

and forEntity attributes are missing in the reply activity then

the message is replied to the base function of the operation

and validity status set to LATEST. Listing 2 shows the

syntax of reply activity of BPEL-TC.

<reply partnerLink=”NCName” portType=”QName”?

operation=”NCName” variable=”BPELVariableName”?

faultName=”Qname”? messageExchange=”NCName”?

atTime=”xs:datetime” forEntity=”EntityName”
standard-attributes>

standard-elements

<correlations>?

<correlation set=”NCName” initiate=”yes|join|no”?

/>+

</correlations>

<toParts>?

<toPart part=”NCName” fromVariable=

“BPELVariable- Name” />+
</toParts>

</reply>

Listing 2. reply activity in BPEL-TC.

The invoke activity allows the business process to

invoke a one-way or request-response operation on a port-

Type offered by a partner. In the request-response case, the

invoke activity completes when the response is received.

The portType attribute on the invoke activity is optional. If

the portType attribute is included for readability, the value

of the portType attribute MUST match the portType value

implied by the combination of the specified partnerLink

and the role implicitly specified by the activity. Listing 3

shows the syntax of invoke activity of BPEL-TC.

<invoke partnerLink="NCName" portType="QName"?

operation="NCName" inputVariable= "BPELVariable-

Name"? outputVariable="BPELVariableName"? at-

Time="xs:datetime" forEntity="EntityName" standard-

attributes >

standard-elements

<correlations>?

<correlation set="NCName" initiate="yes|join|no"?

pattern="request|response|request-response"? />+

</correlations>

<catch faultName="QName"? faultVaria-

ble="BPELVariableName"?

faultMessageType="QName"? faultElement="QName"?>*

activity

</catch>

<catchAll>? activity</catchAll>

<compensationHandler>?activity

</compensationHandler>

<toParts>?

<toPart part="NCName" fromVaria-

ble="BPELVariableName" />+

</toParts>

<fromParts>?

<fromPart part="NCName"

toVariable="BPELVariableName" />+

</fromParts>

</invoke>

Listing 3. invoke activity in BPEL-TC.

The version to be invoked depends upon optional atTime

and forEntity attribute of invoke element. The value

assigned to atTime in invoke is compared with timeStamp

values given to different versions of port type/operation.

The value assigned to forEntity attribute is compared with

the names of the Entities in an EntitySet for whom the

operation is customized. The version of the port

type/operation customized for the Entity assigned to

forEntity attribute and whose timeStamp value is highest

among all the timestamps which are less than or equal to the

value assigned to atTime attribute of invoke element is

invoked. If atTime and forEntity attributes are missing in

the invoke activity then the base function of the operation

with validity status assigned as LATEST is invoked.

Similarly, onEvent and onMessage has atTime and

forEntity attributes (as shown in Listing 4 and Listing 5

respectively) and these values when compared with the

timestamps and Entity Name associated with various versions

of operations helps in deciding which version of

customized operation is to be selected for the desired actions.

<onEvent partnerLink="NCName" portType="QName"?

operation="NCName" (messageType="QName" | ele-

ment="QName")? variable="BPELVariableName"? mes-

sageExchange="NCName"? atTime=" xs:datetime" fo-

rEntity="EntityName">*

<correlations>?

<correlation set="NCName" initiate="yes|join|no"? />+

</correlations>

<fromParts>?

<fromPart part="NCName" toVaria-

ble="BPELVariableName" />+

</fromParts>

<scope ...>...</scope>

</onEvent>

Listing 4. onEvent activity in BPEL-TC.

<onMessage partnerLink="NCName" port-

Type="QName"? operation="NCName" varia-

ble="BPELVariableName"?

messageExchange ="NCName"? atTime="xs:datetime"

forEntity="EntityName"> >+

<correlations>?

<correlation set="NCName" initiate="yes|join|no"? />+

</correlations>

<fromParts>?

274 Marwaha et al.

<fromPart part="NCName" toVaria-

ble="BPELVariableName" />+

</fromParts>

activity

</onMessage>

Listing 5. onMessage activity in BPEL-TC.

V. KAT for BPEL-TC

In the following section we are giving algebraic notations

for BPEL-TC using Kleene Algebra with Test (KAT). The

axioms of Kleene Algebra (KA) and Kleene Algebra with

Tests (KAT) are presented below. Kleene Algebra (KA) is an

algebraic structure (K, +, · , * , 0 , 1) that satisfies the

following axioms;

 + and · operators are associative

a + (b + c) =(a + b) + c and a(bc) = (ab)c for all a, b,

c in K

 + is commutative

a + b = b + a for all a, b In K

 + and · are distributive

a(b + c) = (ab) + (ac)

and (b + c)a = (ba) + (ca) for all a, b, c in K

 for + and · there exists an element 0 in K such that

for all a in K: a + 0 = 0 + a = a and a0 = 0a= 0

 for + and · there exists an element 1 in K such that

for all a in K: a1 = 1a = a

 for * there exists an elements 1 and a in K such

1+aa* = a and 1+ a*a = a. In other words *behaves

like the Kleene Star operator in formal language

theory.

Kleene Algebra with Test (KAT) is a two-sorted algebraic

structure (B, K, +, · , * , 0 , 1, ¬), where B is a subset in K

and ¬ is a unary operator, similar to negation, defined only

on B such that (K, +, · , * , 0 ,1) is a Kleene Algebra and (B,

+, · , ¬, 0 , 1) is a Boolean algebra [9].

The elements in B are usually called tests or guard

Elements. Ginige et al.[10] referred φ1, φ2, φ3, ….., φn

elements (φ elements – PHIs) in B and α1, α2, α3, ….., αn

elements (α elements- ALPHAs) in K.

The basic building blocks of WSDL and BPEL are

elements. As WSDL is by nature used for defining services,

it does not directly correspond to the state of a process.

Hence we consider all WSDL elements to be operating

under B (PHIs). Ginige et al.[10] differentiated these

elements into three types.

Type 1: Any process-related element that directly influences

the state of the process is defined to be in K, an ALPHA.

Elements that affect the state of the process (e.g. <receive>,

<reply>, <invoke>, <throw>, <terminate>, <empty>,

<compensate> etc)

Type 2: Other elements that define primitives or provide

conditions for ALPHAs to take place belong to B, hence

they are also known as guard elements. (e.g. <variables>,

<partnerLinks>,<faultHandlers>, <partners>,

<correlationSets>, <eventHandlers>, <assign> etc).

Type 3: The elements that support the control of the flow are

replaced with the KAT expressions in accordance to KAT

axioms. Elements that are used for the orchestration of the

flow of the process (e.g. <sequence>, <switch>,

<while>,<pick>, <flow>, <scope>, <wait> etc).

We are extending φi to φTC
j and αn to αTC

m where

 φi#Vz(t,v,ES) for WSDL-TC

φTC
j =

 φi for BPEL-TC

and

αTC
m = αn(t′,E′)

where φi#V(t,v,ES) denotes the version V of i
th

element/artifact with timeStamp t, validity v and customized

for EntitySet ES. V can be of the format x.y.z. φi denotes the

PHI elements of WSDL-TC and BPEL-TC that don’t have

version number, validity and timeStamp value attached to it

(Same as standard WSDL and WS-BPEL). αn(t′,E′) denotes

the n
th

activity of BPEL-TC process with atTime t′ and

forEntity E′.

Operating under Guard elements: The Activity that affect

the state of the process (ALPHAs (αTC) in K) can be made to

operate iff certain guard elements (PHIs (φTC
) in B) are true.

(φTC
i φTC

j φTC
k)αTC

n …………… (1)`

e.g. if φTC
i =φ1#1.0.1(09/05/2012 15:50:39, L, E1)

 φTC
j =φ2#1.0.0(07/11/2011 11:20:33, P, E2)

 φTC
k =φ3

 αTC
n =α1 (07/06/2012 15:50:39, ES1)

the Equation 1 can be written as

(φ1#1.0.1(09/05/2012 15:50:39, L, ES1) φ2#1.0.0(07/11/2011 11:20:33, P, ES2)

φ3)) α1 (07/06/2012 15:50:39, ES1)

The above expression denotes activity α1 with attribute

atTime=07/06/2012 15:50:39 and forEntity=E1 is executed if

guard elements φ1#1.0.1(07/06/2012 15:50:39,L,ES1) , φ2#1.0.0(07/11/2012

11:20:33,P,ES1) and φ3 are true. φ1#1.0.1(07/06/2012 15:50:39,L,ES1) denotes

the guard element (artifact) φ1 version 1.0.1 with timeStamp

07/06/2012 15:50:39, validity status- LATEST(L) and

customized for entity E1. φ2#1.0.0(07/11/2011 11:20:33, P, ES2) denotes

the guard element (artifact) φ2 version 1.0.0 with timeStamp

07/11/2011 11:20:33, validity status-PAST(P) and

customized for entityset ES2. Here φ1 and φ2 are artifacts of

WSDL-TC where as φ3 a PHI element of BPEL-TC.

Sequence: we use · to map the sequential activities that

affect the state of the process or ALPHAs. For example, if

αTC
i, αTC

j and αTC
k are activities that need to take place in

sequence in a given order. Hence we write;

(φTC
iαTC

i)(φTC
jαTC

j)(φTC
kαTC

k)

The non-commutativity of · allows us to write the above

expression to be sequential, as (φTC
iαTC

i)(φTC
jαTC

j)(φTC
kαTC

k)

≠ (φTC
jαTC

j)(φTC
iαTC

i)(φTC
kαTC

k) ≠ (φTC
kαTC

k)(φTC
jαTC

j)(

φTC
iαTC

i), etc.

Choice: if there are some αTC
i, αTC

j and αTC
k elements that

BPEL-TC : Orchestration of Temporally Customized Web Services 275

need to be presented as a choice under the guard elements

φTC
i, φTC

j and φTC
k, it will be written as follows;

φTC
iαTC

i+φTC
jαTC

j+φTC
kαTC

k.

This allows αTC
i, αTC

j and αTC
k to be carried out in any

order (provided that the guard conditions are satisfied), as

φTC
iαTC

i+φTC
jαTC

j+φTC
kαTC

k=φTC
jαTC

j+φTC
iαTC

i+φTC
kαTC

k=φTC
kαk

+φTC
jαj+φTC

i αi, etc.

Parallelism: In BPEL, the <flow> construct represent the

parallel activities that can take place. Let us consider αTC
i,

αTC
j and αTC

k elements that need to occur in parallel under

guard elements φTC
i φTC

j and φTC
k until a merger condition

φTC
m is satisfied. This is written as follows:

(φTC
m (φTC

iαTC
i+ φTC

jαTC
j + φTC

kαTC
k))*

This is interpreted as: the occurrence of activities φTC
i,

φTC
j and φTC

k can iterate under the * operator, in any order

until φTC
m is satisfied.

Wait: If action αTC
i needs to be performed after a certain

deadline defined in φTC
i. This Waiting is modeled as:

φTC
i (αTC

i)

Switch: If αTC
i is allowed to take place under the guard

condition φTC
i otherwise αTC

j is allowed to happen. This is

written as;

φTC
i (αTC

i)+ ¬φTC
i (αTC

j)

where ¬φTC
i presents the situation where φTC

i condition is not

true.

Empty: In BPEL <empty> actions can be modeled using the

special element 1є K. Let us consider that there is a choice to

either perform the activity αTC
i or have an empty element.

This is modeled as:

(αTC v
i + 1) using KAT based notations.

VI. Case Study

We have implemented WSDL-TC web services for FLD

(Frontline Demonstration) for different crops like Maize,

Rice, Wheat etc. Frontline Demonstration is a participatory

research, emphasizing scientist-farmer interaction, refining

and validating research findings, developing leadership

amongst farmers for multiplier effect to horizontally

disseminate technology. The FLDs provide an effective

learning situation as the farmers observe the technologies,

practice it and interact with the scientists and extension

functionaries [24]. It is very necessary to record the

observation and get the feedback from the farmers and the

extension workers for all the FLD experiments. It also helps

in analyzing the FLD experiment as well as FLD program as

a whole. Since, the Internet connectivity is not readily

available at farmers’ field, so a Web service based approach

is used for collecting the data from the Maize farmers’ field.

Also, FLD performas’ tend to change a bit over time

and for different crops, so a new approach based on WSDL-

Temporal Customization Web Service has been used for

Figure 2. BPEL-TC process for FLD System

developing the system. The data and feedback collection

system has been designed using WSDL-TC. Listing 6

shows the snippet of the FLD web service maintaining

different versions of the customized operations. BPEL-TC is

used to define the service flow for these temporally

customized web services. Initially, we designed web service

and their clients for FLD for Maize which we called as Base

function. This function is non- customized function which

is available to all the clients of this web service. Then, we

extended our work for FLD for Rice crop. There we

incorporated some changes according to the Rice crop.

Thus, we modified some operations of the existing service

and its clients resulting in a new customized version of an

artifact within the same service. Over the time some

functionality of FLD for Maize crop changes, which

resulted in a new version of the operation in the service.

Now, two versions of operation FLD for maize exist and

the base function is also customized for FLD for Rice

crop. FLD for wheat is nearly same as FLD for Rice thus

same operation can be accessed for wheat FLD also.

Figure 2 shows BPEL-TC process accessing multiple

versions of an operation from a single instance of WSDL-TC

based FLD web service. The figure also shows the enhanced

BPML modelling notation to represent multiple versions of

an operation. Listing 7 shows the BPEL-TC code snippet for

aggregating WSDL-TC based web Services.

operation name=“FLDMaize#1.0.0” validity=“PAST”

timeStamp=“11-01-2010 14:20:08”>

<! --base functionality initially designed for MaizeFLD -->

<wsdlct:EntitySet name=“FLD1” validity=“LATEST”

timeStamp=“11-01-2010 14:20:08”>

<wsdlct:Entity name=“RiceFLD” value=“RiceFLD”

validity = “LATEST” timeStamp=“11-01-2010 14:20:08”>

 <!-- Customized functionality for Rice FLD goes here -->

</wsdlct:Entity>

<wsdlct:AlsoApplicableTo name=“ATFLD”

validity=“LATEST” timeStamp=“11-06-2010 17:40:10”>

<!-—same Rice FLD Customization for Wheat FLD -->

<wsdlct:Entity name=“WheatFLD” value=“WheatFLD”

validity=“LATEST” timeStamp=“11-06-2010 17:40:10”/>

</wsdlct:AlsoApplicableTo>

</wsdlct:EntitySet>

</operation>

276 Marwaha et al.

<operation name=“FLDMaize#1.0.1” validity=“PAST”

timeStamp=“11-01-2010 14:20:08”>

<!--new version of operation FLD#1.0.0-- >

…

</operation>

Listing 6. WSDL-TC snippet for FLD Service

<?xml version="1.0" encoding="UTF-8"?>

<process name="FLDBpelProcess" ……….>

.

.

<partnerLinks>

<partnerLink name=" PLRequest" ... />

<partnerLink name=" PLValidate" ... />

<partnerLink name=" PLMaize" ... />

<partnerLink name=" PLPrint" ... />

<partnerLink name=" PLRequest" ... />

</partnerLinks>

.

.

<sequence >

.

 <receive name="Receive1" atTime="11-04-2010

14:20:08" forEntity = "RequestFLD"

createInstance="yes" partnerLink=" PLRequest"

operation="FLDRequestOp" ... />

 <invoke name="Invoke1" atTime="11-04-2010

14:20:08" forEntity = "RiceFLD"

partnerLink="PLMaize" operation="FLDMaize" ... />

<invoke name="Invoke2" partnerLink="PLPrint"

operation="Print" .../>

<reply name="Reply1" atTime="11-04-2010 14:20:08"

forEntity = "RequestFLD" partnerLink="PLRequest"

operation=" FLDRequestOp" />

 </sequence>

</process>

Listing 7. BPEL-TC snippet for FLD Services based on

WSDL-TC.

VII. Results and Discussions

Let us say op1#1.0.0 and op1#1.0.1 denotes two versions

of the operation op1 available with the values of validity

and timestamp as shown in Table 1. These versions of the

operations are Non customized (NC) versions which are not

customized for any Entity and is the base function available

to everyone except those for whom customizations are de-

fined. (op1#1.0.1)s1 denotes the version of operation op1

customized for the entity set ES1. Three such versions exist

with associated validity status and the timestamp values.

(op1#1.0.1)s2 denotes the customization of the operation

op1 available to Entity Set ES2.

Table 1. Sample Scenarios showing values of additional

attributes of BPEL-TC for Versions and Customizations

Id

Operation Customized-

For
Validity TimeStamp

v1 op1#1.0.0 NC PAST 07/11/2011

16:53:34
v2 op1#1.0.1 NC LATEST 07/06/2012

11:50:34
v2.1 (op1#1.0.1)s1 ES1->E1,E2 PAST 07/06/2012

15:50:39
v2.2 (op1#1.0.1)s1 ES1->E1,E2 PAST 07/07/2012

15:50:39
v2.3 (op1#1.0.1)s1 ES1->E1,E2 LATEST 07/09/2012

15:50:24
v2.4 (op1#1.0.1)s2 ES2->E3,E4 LATEST 07/09/2012

05:50:24

BPEL-TC invokes an operation op1 forEntity=”E1”

and atTime= “07/07/2012 15:50:39” then those versions of

operation customized for the entity E1 and have a

respective timestamp less than or equal to the timestamp

attached to atTime attribute are selected (versions of the

operation with ids v2.1 and v2.2) and finally the version

whose time stamp is greatest among all selected versions

are invoked (version with id v2.2). If BPEL-TC invokes

an operation op1 forEntity=”E1” and atTime=

“07/09/2012 15:50:24” then those versions of operation

customized for the entity E1 and have a respective

timestamp less than or equal to the timestamp attached to

atTime attribute(i.e. 07/09/2012 15:50:24) are selected

(versions of the operation with ids v2.1,v2.2 and v2.3) and

finally the version whose time stamp is greatest among all

selected versions are invoked (version with id v2.3). If

BPEL-TC invokes a partnerlink without forEntity and

atTime attributes then the non- customized version of the

operation with validity status LATEST is invoked (i.e. v2).

Figure 3. Average response time of BPEL-TC, BPEL-T as

compared with WS-BPEL.

BPEL-TC : Orchestration of Temporally Customized Web Services 277

Figure 4. Throughput of BPEL-TC and BPEL-T as

compared with WS- BPEL.

Using Apache Jmeter, we have run and compared the

throughput and average response time (for different number

of concurrent requests) of the standard BPEL process with

BPEL-T and BPEL-TC process that uses temporal and

temporally customized web services and reached to a

conclusion that response time and the throughput of

both BPEL-T and BPEL-TC are comparable to BPEL as

shown in Figure 3 and Figure 4. The graph in Figure 3

shows that as the number of user increases the average

response time increases slowly but after a point the average

response time increases. This is due to the fact that till

the system resources are available, the user requests are

served up to the satisfaction levels. After saturation level is

reached and there are no more resources left as a

consequence more number of users are put to wait state.

So, the average response time rises sharply. Figure 4 shows

that although the average response time increases sharply

after a point, the throughput increases initially and remains

almost constant afterwards.

Thus, the graphs in Figure 3 and Figure 4 show that

BPEL-T or BPEL-TC do not degrade the average response

time or throughput and the overhead required to process the

BPEL-T/BPEL-TC files accessing multiple versions from

WSDL-T/TC is minimal. It means that when WSDL-TC

based web services are deployed and their orchestration is

done to fulfil the requirements of a business processes, the

service producers may deploy multiple versions for their

multiple clients from a single instance. This in turn has a

clear reduction in terms of infrastructure requirements as

number of instances per service is reduced to one. Man

power requirements for managing and taking back-up of

multiple versions are also reduced because there is only

single instance per service is required to be deployed. It

also allows ease in patch management as the security

patches or bug fixing in the non-customized and non-

versioned segment of the web service is required to be done

at a single place rather than in all the versions.

VIII. Conclusion

BPEL-TC specifies business process behaviour based on

temporally customized Web Services (WSDL-TC), in

which different customized versions of the artifacts are dep-

loyed at same URI, instead of maintaining these versions of

artifacts within services at different URIs.

BPEL-TC allows invocation of new or updated custo-

mized versions of the artifacts maintained in WSDL-TC file

along with the access to old or obsolete versions of the arti-

facts within same WSDL-TC file. Using BPEL-TC it is

possible to combine any customized version of the arti-

fact(s) of temporally customized Web service(s). Clients

can continue to use any version without being forced to

upgrade to the latest version.

REFERENCES

[1] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller,

M. Kloppmann, D. König, F. Leymann, R. Müller, G.

Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen, M.

Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller.

"WS-BPEL Extension for People (BPEL4People)".

Version 1.0, White Paper, 2007.

[2] J.F. Allen. “Maintaining Knowledge about Temporal

Intervals”. Communications of the ACM, XXVI, pp.

832-843, 1983.

[3] J.F. Allen. “Actions and Events in Interval Temporal

Logic”. Journal of Logic and Computation, IV, pp.

531-579, 1994.

[4] H. Banati, P. Bedi, P. Marwaha. "WSDL-Temporal:

An Approach for Change Management in Web

Services". In Proceedings of IEEE International

Conference on Uncertainty Reasoning and Knowledge

Engineering (URKE), pp. 44-49, 2012.

[5] H. Banati, P. Bedi, P. Marwaha. “Extending BPEL for

WSDL-Temporal based Web Services”. In

Proceedings of IEEE 12
th

 International Conference on

Hybrid Intelligent Systems (HIS), pp. 484-489, 2012.

[6] H. Banati, P. Bedi, P. Marwaha. “WSDL-TC:

Collaborative Customization of Web Services”. In

Proceedings of IEEE International Conference on

Intelligent System Design and Applications (ISDA), pp.

692-697, 2012.

[7] D. Booth, C.K. Liu. “Web Services Description

Language (WSDL) Version 2.0 Part 0: Primer”. W3C

Recommendation, http://www.w3.org/TR /2007/REC-

wsdl20- primer-20070626, 2007.

[8] A. Charfi, M. Mezini. “Aspect-Oriented Web Service

Composition with AO4BPEL”. In Proceedings of

European Conference on Web Services (ECOWS),

LNCS 3250, pp. 168-182, 2004.

[9] D. Kozen, “Kleene Algebra with Tests”. ACM

Transactions on Programming Languages and Systems

(TOPLAS), XIX(3), pp. 427-443, 1997.

[10] J. Ginige, U. Sirinivasan, A. Ginige. “A mechanism for

efficient management of changes in BPEL based

business processes: an algebraic methodology”.

ICEBE, In Proceedings of IEEE International

Conference on e-Business Engineering, pp. 171–178,

2006.

[11] G. Hackmann, C. Gill, G.C. Roman. “Extending BPEL

for Interoperable Pervasive Computing”. In

Proceedings of IEEE International Conference on

Pervasive Computing, pp. 204-213, 2007.

[12] J. Lee, Y.Y. Lin , S.P. Ma, S.J. Lee. “BPEL Extensions

to User-Interactive Service Delivery”. Journal of

Information Science and Engineering, XXV, pp. 1427-

1445, 2009.

[13] D. Jordan, J. Evdemon. “Web Services Business

Process Execution Language Version 2.0”. OASIS

278 Marwaha et al.

Standard, http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.pdf, 2007.

[14] M.B. Juric, A. Sasa, I. Rozman. “WS-BPEL Extensions

for Versioning”. Information and Software Technology,

LI(8), pp. 1261-1274, 2009.

[15] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A.

Rickayzen, C. Riegen, P. Schmidt, I. Trickovic. “WS-

BPEL Extension for Sub-processes - BPEL-SPE”.

White Paper, 2005.

[16] O. Kopp, K. Görlach, D. Karastoyanova, F. Leymann,

M. Reiter, D. Schumm, M. Sonntag, S. Strauch, T.

Unger, M. Wieland, R. Khalaf. “A Classification of

BPEL Extensions”. Journal of Systems Integration,

IV(2), pp. 3-28, 2011.

[17] S. Marwaha, P. Bedi. “Temporal Extension to OWL

Ontologies”. International Journal of Information

Technology, IV(1), pp. 53-60, 2007.

[18] S. Modafferi, E. Mussi, B. Pernici. “SH-BPEL: A self-

healing plug-in for Ws-BPEL engines”. In Proceedings

of 1st Workshop on Middleware for Service Oriented

Computing, MW4SOC, ACM, pp. 48-53, 2006.

[19] J. Neth, M. Smolny, C. Zentner. “Versioning Business

Processes and Human Tasks in WebSphere Process

Server”. IBM developerWorks, http://www.ibm.com

/developerworks/websphere/library/techarticles/0808_s

molny/0808_smolny.html, 2008.

[20] J. Nitzsche, T. Van Lessen, D. Karastoyanova, F.

Leymann. "BPEL for Semantic Web Services

(BPEL4SWS)". In Proceedings of 3rd International

Workshop on Agents and Web Services in Distributed

Environments (AWeSome'07) - On the Move to

Meaningful Internet Systems: OTM 2007 Workshops.

Lecture Notes in Computer Science; 4805/2007,

Springer, 2007.

[21] Oracle, "Oracle BPEL Process Manager Developer’s

Guide" 10 g (10.1.3.1.0), Part Number B28981-

03,http://download.oracle.com/docs/cd/B31017_01/inte

grate.1013/b28981/toc.htm, 2007.

[22] A. Tahamtan, C. Osterle, M. Tjoa, A. Hameurlain,

“Temporal Management of WS-BPEL Processes”.

Business Information Processing, CII, pp. 256-269,

2012.

[23] F. Tripathi, K. Hinkelmann. “Change Management in

Semantic Business Processes Modeling”. ISADS, In

Proceedings of Eighth International Symposium on

Autonomous Decentralized Systems (ISADS’07), pp.

155–162, 2007.

[24] V. K. Yadav, S. Dass, R. Choudhary, K. P. Singh.

“Frontline Demonstration in Adoption of Technology

and Socioeconomic Upliftment”. In Proceedings of

National Conference on Doubling Maize Production,

pp.106-111, 2007.

Author Biographies

Preeti Marwaha is a Ph.D. scholar in the
Department of Computer Science, University of

Delhi. She is an Assistant Professor in the

Department of Computer Science, A.N.D. College,
University of Delhi. Her research interest includes

Web Services and Composite Web Services,

Semantic Web Services etc.

 Dr Hema Banati completed her Ph,D.(2006)
after her Masters in Computer Applications(M.C.A)

both from Department of Computer Science,

University of Delhi, India. At present she is an
Associate Professor in the Department of Computer

Science, Dyal Singh College, University of Delhi.

She has over 18 years of teaching experience to
both undergraduate and postgraduate classes. Over

the past decade she has been pursuing research in

the areas of Web engineering, software engineering,
Human Computer Interaction, Multi-Agent

systems, E-commerce and E-learning. She has

many national and international publications to her
credit

Punam Bedi received her Ph.D. in Computer

Science from the Department of Computer Science,
University of Delhi, India in 1999 and her M.Tech.

in Computer Science from IIT Delhi, India in 1986.

She is an Associate Professor in the Department of
Computer Science, University of Delhi. She has

about 24 years of teaching and research experience

and has published about 100 papers in
National/International Journals/Conferences. Dr.

Bedi is a member of AAAI, ACM, senior member
of IEEE, and life member of Computer Society of

India. Her research interests include Web

Intelligence, Soft Computing, Semantic Web,
Multi-agent Systems, Intelligent Information

Systems, Intelligent Software Engineering,

Intelligent User Interfaces, Requirement
Engineering, Human Computer Interaction (HCI),

Trust, Information Retrieval and Personalization.

