
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 294 - 304

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Translation of Behavioral Models to Java Code and

Enhance With State Charts

Sunitha E.V
1
, Philip Samuel

2

1 Department of Computer Science,

Cochin University of Science and Technology, India – 682022

sunithaev@gmail.com

2 Information Technology, SOE,

Cochin University of Science and Technology, India – 682022.

philips@cusat.ac.in

Abstract: It is a wonderful idea to directly execute the system

designs. In this paper we are introducing a method to convert the

behavioral models to the implementation code. UML is used for

modeling and Java is used as the target language. This paper

describes how a system design depicted using activity, sequence

and statemachine diagrams can be converted to its

implementation code. Activity diagram helps to make the outline

of the source program, and the sequence and statemachine

diagrams contribute to the expansion of the source code. We are

using an MDA approach where the system design is done in

Platform Independent Model (PIM), then converted to Platform

Specific Model (PSM) and finally to implementation code. One

tool is implemented based on our method and it is evaluated

against some other existing tools.

Keywords: code generation, statemachine, activity diagram,

sequence diagram.

I. Introduction

In the current business scenario, organizations want

software systems that work properly, flawlessly, and user

friendly. They are not at all bothered about which software

development lifecycle is being used, which are the design

models that are being used, which are documents being

generated, or even the programming language being used for

the software development. Organizations are concerned only

about the cost, the time needed for the system delivery and the

ability of the system to incorporate changes. Executable UML

will be the best choice for the software developers to develop

softwares with low cost and minimum time.

The executable UML provides a high level of abstraction

for both specific programming language and the software

structure. Executable UML models can be directly executed

without generating any implementation code. It has three

fundamental projections; data, control, and algorithm.

The first projection is data/object which has to be classified

and structured. Normally UML Class diagrams are used for

this purpose [1]. The second projection control means, the

objects may have different behavior over time. This lifecycle

is modeled using the state machine diagrams. The state

machines have a set of procedures that causes the state changes

of the objects. These procedures are sequence of actions

including simple data manipulation, decision making, loop etc.

These actions are modeled using action languages. Out of

these three projections, we focus on data and control.

 Nowadays executable UML is an attractive research area

which discusses the possibilities to directly execute the UML

models. Research is going on in this area to invent the methods

to verify the UML models, to add more implementation

specific details into the models, generation of implementation

code from UML models, and directly execute the models

without generating code.

In Software development, the coding step is very time

consuming and error prone. In this step, we need to translate

the system designs to programs. It needs less intelligence and

more care to avoid errors. If we automate this step, it can save

time and reduce errors.

The system designs can be done in UML. UML provides

structural and behavioral diagrams to design a system [2,3].

Structure diagrams show the static structure of the system and

its parts on different abstraction and implementation levels and

how they are related to each other. The elements in a structure

diagram represent the meaningful concepts of a system, and

may include abstract, real world and implementation concepts.

Behavior diagrams show the dynamic behavior of the objects

in a system, which can be described as a series of changes to

the system over time.

UML forms a de facto standard for software system design.

It is used for high level system design and additional model

languages like Object Constraint Language (OCL) help us to

introduce more details in the UML design [4]. Different tools

are available for UML modeling.

In this paper, we are discussing a method to generate Java

code from the system design. As the first step of our research

we are concentrating on the behavioral models which include

state machines, sequence diagrams and activity diagrams.

Since we are using an MDA approach [5], the system designs

Translation of Behavioral Models to Java Code and Enhance With State Charts 295

are represented in PIM, then converted to PSM and finally to

(a) Activity Diagram for ATM transaction

(b) Statemachine for PIN verification

(c) Sequence diagram for cash withdrawal

Figure.1 Behavioral Model for ATM machine

implementation code in target language; here it is java code.

During code generation each activity diagram forms the

outline of the coding, that is, classes are generated for each

activity diagram and each method in the class will be expanded

using the sequence diagram. State machine is used to fill up the

remaining methods to show the full functionality of the system.

The code generation process is not that simple [6]. To the

best of our knowledge, no existing CASE tool generates

hundred percent complete source code from UML models,

because using UML we can’t represent all implementation

details. The reason is that the syntax and semantics of UML

are imprecise and informal. For example, in a sequence

diagram we need not mention the object name, but during

implementation the programmer gives suitable name for the

anonymous object. When we automate code generation we

have to find a way to fill these fields to get a complete code [7,

8]. One method is to allow the user to enter their own code in

the generated code, second method allows user to include finer

details using action languages like OCL.

In our method, XML is used as the intermediate language

which helps us to export and import the models between

different CASE tools. OCL is used to enhance the behavioral

models. It helps us to include finer details such as actual

parameters to the methods.

This paper is organized as follows. Section II gives idea about

behavioral modeling with an example. Section III explains the

transformation process. Section IV evaluates the method

presented in this paper. Section V presents the works already

done in this area and Section VI concludes the paper.

Sunitha & Philip

296

II. Behavioral Modeling

Behavior model capture different interactions and states

within a model as it executes over time. It shows the control

flow, data flow and state machine of a system. Behavior

modeling includes diagrams like, activity diagram, state

machine diagram, Interaction diagrams, and action language.

Activity diagram gives the sequence of activities, workflow

and decision paths. It is useful to model processes involved in

the business activities. So, UML activity diagram, especially

UML 2.x activity diagram, is popular for Business Process

modeling. It includes features like, activity, action, control

flow, data flow, conditionals, concurrency (fork & join),

nested behavior calls, partitions, and data stores.

State machines are used for describing the discrete behavior

of an object in an event driven environment. Statemachine

includes the features like, transition effects, state entry, do,

exit, composite states, nested state machines, concurrency,

transition guards, conditionals (choice, junction). The

continuous behavior will not be modeled in a statemachine.

Interaction diagrams give the possible interactions between

the objects in the problem domain. It can be viewed as a graph

in which the nodes represent the objects and the links represent

the communication links between them. There are two types of

interaction diagrams in UML; sequence diagram and

interaction diagram. Sequence diagram focuses on the time of

communication and the interaction diagrams focuses on the

structure of communication links.

Action Languages allow the designer to add code snippets

in the model. They are used to refine the UML diagrams.

Action languages can be used to specify the guard conditions

and constraints in the model. It has syntax similar to the

programming languages.

In our method we are considering behavior models for the

code generation process. It includes state machine, sequence

diagram and activity diagram. Activity diagrams show the

entire business process flow. Each activity in the model is

explained using the sequence diagrams. The state of each

object in the activity diagram is explained using the state

machine.

In activity diagram, we consider the basic features like

activity nodes, decision making node, fork/join, initial node,

and final node, for code generation. Swimlanes are also

included in our method.

Figure.1 shows one sample situation. Figure 1 (a) shows

activity diagram which represents the ATM transaction. It

shows the PIN verification and cash withdrawal. Figure 1 (b)

and (c) gives its corresponding state machine and sequence

diagrams.

In our method, the activity diagram is used as the main tool

for modeling the behavior of a business system. The sequence

diagram and the statecharts are used for the refinement of the

code generated from the activity diagram.

The activities shown in the main activity diagram can be

more detailed in a secondary level of activity diagram or by

using a sequence diagram. So, each activity, which has many

sub activities, will be expanded using another activity

diagram, also called as a child diagram. Instead of the child

activity diagram, a sequence diagram can also be used

depending upon the applicability and suitability.

The state chart diagram is used for the completeness of the

code generated from the activity diagram and sequence

diagram. The classes generated from these diagrams may not

fully depict the system’s behavior or functionality, or there

may be chances of duplications, or absence of some features.

These inconsistencies can be rectified using the statemachine

diagram.

These behavioral models are then converted to XML files.

Each diagram produces one XML document. The files are

connected properly so that the activities, sequence of actions,

and states of the objects can be traced properly.

III. Transformation Process

This section describes the steps in the transformation

process. The code generation process has the following steps.

1. The system design is modeled using UML activity

diagram, sequence diagram, and statechart diagram with

the help of a modeler.

2. The model diagrams will be processed to generate

consistent XML files

3. The XML files will be integrated to generate XMI

document which is portable among CASE tools

4. Verify the consistency of the activity diagram and

sequence diagram by comparing it with the state chart

diagram.

5. Generating target code from the XMI document by

transforming the activity & sequence diagrams.

Figure. 2 Code generation Process

Translation of Behavioral Models to Java Code and Enhance With State Charts 297

Figure.3 Activity Diagram meta model

These steps are shown in Figure 2. The processing of the

system designs includes the following steps

a) Convert behavioral models to XML format

b) Parse the XML files to object representation

c) Do modifications in the object representation, if

necessary

d) Convert modified object representations to XML files

During XMI generation, the XML files representing the

system designs in the form of UML activity diagram and

sequence diagram will be combined and converted to the XMI

format. The statemachine diagram will be processed

independent of activity and sequence diagrams. This is an

optional step. This XMI representation gives the

interoperability between CASE tools though the portability of

system designs in the form of XMI documents.

The final step is the code generation step which identifies

the behavioral models from the XMI document and transforms

them to the corresponding Java code [9]. For this code

generation, we specify conversion rules in XSLT (Extensible

Style sheet Language Transformation) [10].

Each activity diagram will be converted to a class. Each

node in the activity diagram makes a function call in the main

() function. These functions’ definitions will be made with the

help of the sequence diagram attached with each activity in the

activity diagram. Each message in the sequence diagram forms

a method definition. All the internal messages will make

further function calls and the sum of all that makes the

definition of the outer message. The description of the code

generated is described in the following example.

The conversion starts from the activity diagram. The

context of each activity diagram is considered as a class. The

code includes one context class and one interface. The activity

diagram meta model is shown in Figure 3. Activity diagrams

are identified from the XML files and two classes (one base

class and an interface class) will be generated from each

activity diagram. Each activity in the activity diagram is

considered as a function call. The method declarations will be

done in the interface class. The flow of activities shows the

sequence of the method calls.

To implement the interfaces, the corresponding sequence

diagrams will be traced out. XML files are tagged properly to

make this tracing possible. The request in sequence diagram

prompts a method invocation of the respective objects. For

example, in Figure (c), the sequence of messages will be

implemented as

A.InsertATMCard();

A.PinEntered();

A.OptionEntered();

Where ‘A’ is the object for which the methods are invoked.

Nested requests are also processed in the same manner. These

implementations are listed under the proper interfaces. The

sequence diagram meta model is shown in Figure 4.

The name of the sequence diagram is used to build the

method declaration in the interface class, which has to be

matched with the methods in the interface class developed

from the activity diagram. Or else, we can have the same

interface class for activity as well as sequence diagrams. The

real use of sequence diagram is to implement the interfaces

declared by the activity diagram.

The state machines are taken to improve the coding done by

activity diagram. It is converted to a hierarchy of classes

starting with the class represents the context. Then it

implements interface class. The interface is inherited by the

state classes. There will be one class for each state. The state

machine meta model is shown in Figure 5.

IV. Implementation

Based on the above mentioned code generation process we

have implemented a prototype called UmlCode. UmlCode is a

tool that supports software development process. The software

system can be modeled using UML. The implementation code

will be obtained by a button click.

It increases the work of system architects, but reduces the

coding effort. The code generator UmlCode is implemented in

Java. The UmlCode architecture is shown in Fig. 3.

Figure.4 Sequence Diagram meta model

Figure.5 State machine meta model

Sunitha & Philip

298

It has mainly four parts.

i. UML Modeler

ii. Model Processor

iii. XMI generator

iv. Code Generator

UML Modeler provides a canvas to model the system

designs using the UML activity diagram and sequence

diagram. Currently it supports basic elements like action node,

initial and final nodes, fork, join and decision node for activity

diagram, and object life line, function calls, return etc for

sequence diagram. The modeler helps us to save the model as a

JPEG image. The modeler creates the XML representation of

the model. Here, we represent the graphical data in text format.

This will be useful when we need to retrieve information from

the model. For the XML representation we define a new

document type definition (DTD) [11], which describes how

UML 2.0 activity diagram should be expressed in XML.

The Model Processor processes, the sequence diagram,

activity diagram and the OCL commands. It checks the

consistency of activity and sequence diagrams. Also checks

the OCL commands for syntax correctness. During system

design each activity can be expanded using sequence diagram.

The finer details included in the sequence diagram will be

helpful during the code generation of activity diagrams. So,

the synchronization between activities and sequence diagrams

should be done properly. This is accomplished by the Model

Processor.

The XMI generator converts the XML files of activity and

sequence diagrams to a single XMI file. This XML Metadata

Interchange format improves the interoperability between

CASE tools. Each sequence diagram is referenced properly at

each activity. This referencing is done using the diagram id,

which is an attribute in the XMI tag.

Code generator is the main part of UmlCode. It converts the

models represented in XMI to java code. The transformation

rules for converting XMI to java is written in XSLT. Different

XSLT processors are available to process the XSLT rules. We

use built-in processor in java. The class diagram of the code

generator, UmlCode, is shown in the Figure 6.

UmlCode gives seven major features. It helps us to draw the

UML models, save the model as JPEG and XMI, display the

object tree representation of XMI, import XMI file to the

Modeler, generate java code, and edit the model.

The implementation includes twelve main classes.

UmlModeler is the main class which uses different classes,

like MyModel, CustomCell, SAXTreeBuilder, to include the

model drawing features, editing features, tree display features

etc.

A. Code generation

UmlCode provides an editor which generates the XML file

corresponding to each diagram (activity and sequence

diagrams). The XML document will be saved in a standard

directory in the name of the corresponding activity and

sequence diagrams. The parsed XML document can be viewed

as a tree structure. It helps us to check the system generated

XML document and can check for errors. Fig.7 gives the

screen shot of the UmlCode editor. It provides basic edit

options like copy, paste, zooming and grouping options.

UmlCode provides option to expand one action. One action,

or more precisely it can be called as an activity, can be

expanded with a sequeence diagram. This will help us to

include more detailed information in the diagram. In

UmlCode, we generate one class for each activity diagram.

Each action is considered as a member method. In Fig.7, we

create a class named ShipOrder, which has one member

method getOrder(). Sometimes the user will enter the name as

Get Order. The Model Processor will modify this name, so that

it will remove the white space and make the first letter

lowercase, and add simple brackets at the end if it is not there

already. The model processor will do similar modifications to

the class names too.

The XML representation of the activity diagram includes

data to identify child sequence diagrams, i.e, expanded

diagram. We add an attribute called ‘parent’ to the element

ActivityGraph. This attribute will be set to true if it is a child

diagram. Similarly, when an action is expanded, an attribute

named ‘expanded’ will be added to the action node. It will be

set to true if the node is expanded. These data will be useful

when we do code generation of the activity node.

UmlCode provides an option to generate code from the

activity and sequence diagrams drawn on the editor. The code

generator takes the XML document from the standard

directory and it will save the code in the same directory with

the name ‘NameOfActivityGraph.java’. We have developed a

rule set in XSLT to convert the activity diagram represented in

XML to the java code. In the prototype we give skeleton of the

actions. It needs to be elaborated with the help of sequence

diagram. It considers the fork & join and create threads

accordingly.

The code generation rules are implemented in XSLT. It

specifies the transformation rules for the XML document.

Rules are written in XSL and XPath [12]. In the prototype we

are using built-in java XSLT processor. It is using

TransformerFactory and Transformer for the conversion from

XML to text document. This takes an XML document as input

and returns a text document. In our project, we use XSLT

processor to generate java code from the XML file. This java

file will be stored in the standard output directory.

The following code segment shows how to use the built in java

XSLT processor. The TransformerFactory() takes the XML

file as input.

StreamSource xslSource = new StreamSource(xslFile);

TransformerFactory factory =

 TransformerFactory.newInstance();

Transformer transformer =

 factory.newTransformer(xslSource);

transformer.transform(new StreamSource(xmlFile), new

 StreamResult(outFile));

XSLT is a template based language. It specifies when a

node is occurred in the document which template should be

done. We have implemented a XML to Java converter using

XSLT.

It takes each node in the XMI document which has name

‘ActivityGraph’. First letter of its name should be capital

letter.

Translation of Behavioral Models to Java Code and Enhance With State Charts 299

Figure 6. The class diagram of UmlCode

The fork and join in UML is implemented as Thread in java.

We count the number of fork and generate that many threads.

These threads will be invoked subsequently. The activity

diagram may include sequence diagram as child diagram.

Each action node is implemented as a method in the

implementation code. The nodes can be distinguished using

the xmi:type attribute. We choose the nodes with type=

uml:CallBehaviorAction. Initial and final nodes have type

uml:InitialNode and uml:FinalNode respectively. The method

body of each action is got from the child sequence diagram

which is again a sequence of function calls.

The whole control sequence will be depicted in the main()

method. Whenever a fork is encountered, it creates and starts

threads. The number of threads created is equal to the number

of control paths starting from the fork. These paths show

parallel execution paths in the program. The nodes in these

paths will be shown in the run() method of the MyThread

class, which is a child class of Thread class.

When a decision node is encountered each decision path

should be continued till it reaches a merge node. Next decision

path will be considered only after closing the previous path,

i.e, after meeting the merge node in the path.

In the application class the method body is implemented

with the help of data extracted from the sequence diagrams.

The UML:Operation template contains codes for extracting

the name, return type and parameters of the method. The

following code represents the general template for writing a

method.

<xsl:template match="UML:Operation">

 <xsl:call-template name="Visibility"/>

 <xsl:call-template name="Abstract"/>

 <xsl:call-template name="ReturnType"/>

 <xsl:value-of select="@name"/>(<xsl:call-template

name="Parameters"/>){

 <xsl:call-template name="methodBody"/>

 }

</xsl:template>

The body of the method is created with the help of message

sequences in the sequence diagram. Consider message

sequence as shown in Fig. 8.

Here the occurrence of message switchOn() will invoke the

next message getInitialCash() of class OperatorPanel which

will send the initialCash in return. In this case, while creating

the switchOn() method the code generator will search for the

next message in that particular sequence diagram. Then it will

find the message getInitialCash() and will add the code that

invokes the getInitialCash() method with the object of the class

OperatorPanel. Thus the swithOn() method will look like:

swithOn(){ operatorPanel.getInitialCash(); }

and the getInitialCash() will look like:

getInitialCash(){return initialCash;}

The next message can be of any one of the following type:

uninterpreted message, asynchronous message, return ,

send , call, create

All of these types of messages must be handled in different

way. Another possibility for the next message is the presence

of a combined fragment. It can be a loop, alternate or break

fragment. The combined fragment details can also be

translated to java code.

Sunitha & Philip

300

Figure. 7 UmlCode Editor Window

Figure. 8 A message sequence

V. Evaluation

The method described in this paper is implemented and

tested against other similar tools like Rhapsody and OCode.

Our implementation, UmlCode, has four major modules; UML

modeler, Model Processor, XMI generator and code

generator.

UML Modeler provides a canvas to model the system

designs using the UML activity diagram, state machine, and

sequence diagram. Currently it supports basic elements like

action node, initial and final nodes, fork, join and decision

node for activity diagram, and object life line, function calls,

return etc for sequence diagram, and states in state machine.

The modeler helps us to save the model as a JPEG image. The

modeler creates the XML representation of the model. Here,

we represent the graphical data in text format. This will be

useful when we need to retrieve information from the model.

For the XML representation we define a new Document Type

Definition (DTD) [11], which describes how UML 2.0 activity

diagram should be expressed in XML.

The Model Processor processes, the state machine,

sequence diagram, activity diagram and the OCL commands.

It checks the consistency of activity and sequence diagrams.

Also checks the OCL commands for syntax correctness.

During system design each activity can be expanded using

sequence diagram and state machine. The finer details

included in the sequence diagram and state machine will be

helpful during the code generation of activity diagrams. So,

the synchronization between activities, state machine and

sequence diagrams should be done properly. This is

accomplished by the Model Processor.

Figure.9 UmlCode Architecture

The XMI generator converts the XML files of the models to

a single XMI file. This XML Metadata Interchange format

improves the interoperability between CASE tools. Each

sequence diagram is referenced properly at each activity. This

referencing is done using the diagram id, which is an attribute

in the XMI tag.

Code generator is the main part of UmlCode. It converts the

models represented in XMI to java code. The transformation

rules for converting XMI to java is written in XSLT. Different

XSLT processors are available to process the XSLT rules. We

use built-in processor in java.

A. Business process type Vs percentage of code generated by

UmlCode

We have worked with different examples which include

action nodes alone, action nodes with decision making,

concurrency, decision making & concurrency, action node

expansion, code elaboration etc. Predicting the number of

lines of code in the completed source code will not be

accurate. It depends on the logic we use (that differ from

person to person), the complexity of the task to be done etc.

We tried to map number of action nodes against the percentage

of code generated. One action node can be implemented with

single line of code or many lines of code, which depends on the

How to Format Your Paper for JIAS

301

logic we use and the task we need to do, and also the level of

abstraction. One feasible method to map the percentage of

lines of code generated is to map it against different types of

the business process. We identified six different categories of

programs; simple I/O, simple Decision making, concurrency,

decision making & concurrency, Code elaboration, Node

expansion. The percentage of code completion is plotted in

Fig. 10.

Figure 10 Type of business process Vs percentage of code generated by

UmlCode

Simple I/O type business process has only action nodes, no

control nodes such as, decision node, merge node, fork & join.

UmlCode generates 90% complete source code for this type of

processes. In simple decision making type process, we have

action nodes and decision making nodes. For such processes,

UmlCode generates 90.32% source code. Similarly for

processes which include concurrency have 88.3% code

coverage. General thing that we can deduce from Fig. 10 is

that UmlCode provides more than 85% code coverage for all

type of processes.

B. Complexity Vs Percentage of Generated Code

Two important parameters we need to compare are

cyclometric complexity and code coverage. We have taken

different business processes which have complexities 1, 2, 3,

and 4. These process includes concurrency, decision making

etc. A process which has complexity 1 has 90% code coverage.

A process with complexity 3 has 90.5% code generation. An

interesting factor we can deduce from Fig. 11 is that as the

complexity increases, the code coverage increases. UmlCode

gives more code coverage for more complex business

processes. This implies that, our method can be used for

automatic code generation of complex as well as simple

business processes.

90

90.3

90.5

90.9

89.4

89.6

89.8

90

90.2

90.4

90.6

90.8

91

1 2 3 4

Complexity

%
 o

f
C

o
d

e
 G

e
n

e
ra

te
d

Figure.11 Complexity Vs Percentage of Code Generated by UmlCode

TABLE 1.

EFFICIENCY OF UMLCODE COMPARED WITH RHAPSODY & OCODE

Figure 12 Total time for events without transition

Sunitha & Philip

302

Figure.13 Total time for events having transition

100% complete java implementation code will be generated

with the help of code elaboration. Code elaboration allows the

user to include his/her own code in the UML model which will

be used later during automatic code generation. Code

elaboration is optional. Without code elaboration, UmlCode

generates not less than 80% complete source code.

C. Comparison with Rhapsody and OCode

UmlCode is compared with similar tools like Rhapsody and

OCode. The number of lines generated by each tool, the

number of bytes generated and total number of classes

generated is compared. Table 1 shows the comparison of

UmlCode, Rhapsody and OCode. We considered the events

with and without transitions. Total time taken for each type is

calculated in milliseconds. Total number of requests for events

without transition is 1778 and for events with transition is

2222. The efficiency of our tool (UmlCode) over other tools is

shown in the table 1. Figure 12 and Figure 13 compare the total

time taken for events without and with transition respectively.

VI. Related Works

Q Long[13] illustrate a algorithm to convert sequence

diagram and class diagram to a target language, rCOS (

Relational Calculus of Object Systems). It will first check the

consistency of the class diagram and sequence diagram. it

generates an error report if the diagrams are not consistent,

otherwise the diagrams will be given for code generation.

Harrison [14] depicts a mapping method that converts the

abstract system models to a high-level skeletal implementation

code. UML is used as the design language and Java as the

implementation (target) language. Harrison [14] considers

class diagram for code generation. Classes marked with the

stereotype <<entity>> will be mapped into an interface and a

pair of implementing classes. One class will be abstract class

and the other one will be instantiable. They also present the

problems of generating object oriented language

implementation code from high-level designs. They

summarize the issues for Java implementation, like how to

handle multiple inheritance etc.

A method to convert the class diagram represented in XMI

format to Java code is presented in Bjoraa [15]. They have

developed a prototype to output one Java file per class

specified in the class diagram. The class diagram drawn in

UML will be converted to XMI format. The XMI file will be

parsed using XML parser and extracts the details, like class

name, attributes and methods. Using this information the

skeleton of the class definition will be produced in Java.

An approach to the model driven generation of programs in

the Business Process Execution Language for Web Services

(BPEL4WS) which transforms a platform independent model

to platform specific model is described in Kochler [16].

Business process modeling is done using the activity diagrams.

They define rules for integrating business process. This rule

helps them to reduce complex activity diagrams to

comparatively simple diagrams which do not contain loops.

According to their approach the control flow models will be

analyzed first. Sub processes in the model will be identified.

These are the regions in the model which have a single entry

node to the region and single exit node from the region. Check

whether this region can be reduced to a single node. To find

the reducibility they are providing some rules. They are

providing a declarative method to convert these reduced

models to BPEL4WS.

Schattkowsky [17] demonstrates how a fully featured UML

2.0 state machine can be represented using a small subset of

the UML state machine features that enables efficient

execution. They are trying to directly execute the state

machines without converting it to implementation code. It is an

alternative to native code generation approaches since it

significantly increases portability. The paper describes the

necessary model transformations in terms of graph

transformations and discusses the underlying semantics and

implications for execution.

Rudahl [18] presents a multi language code generator

named as YAMDAT (Yet Another MDA Tool). As the name

indicates, it’s an MDA tool. It generates C++ and Java code

from UML designs of the system. UML models will be

represented in XML and this XML representation is the code

model in the tool. They generate skeleton code for all methods

and attributes in the UML class diagram. Moreover, unit test

framework will be generated for the class. YAMDAT

generates finite state machine class from each state diagram of

the class.

Bajwa [19] presents a rule based production systems for

automatic code generation in java. They take the requirement

scenario in English language and will automatically generate

UML diagrams for these scenarios. It has mainly five steps. In

step 1 they accept the text input, i.e., the scenario description

in English. In step 2 they do the text understanding using

natural language processing. The knowledge extraction will be

done in step 3. In this step, classes and objects, and their

attributes will be identified. In step 4, UML class diagrams

will be drawn based on the knowledge extracted in step 3.

Finally the skeleton code generation is done in step 5.

Ruben Campos have proposed a method for xUML engine

which will internalize the details behind translating UML

models into a text-based program [20]. Their proposed xUML

engine is comprised of the UML class, sequence, and activity

diagrams in conjunction with the Java language. The sequence

diagram is selected as the focal point of execution in that

xUML Engine. It uses the class diagram as the entry point in

implementing the class methods and the Activity diagrams are

How to Format Your Paper for JIAS

303

used to implement the details of a class method. The xUML

Engine is implemented in Java and the models are executed on

top of the Java Virtual Machine [20].

VII. Conclusion

In this paper we have presented a new method for

generating implementation code from the system design. Here

we have use state machine, activity and sequence diagrams.

Since activity diagram is suitable for business process

modeling our method helps us to automate the business

processes. Sequence diagram shows the logic of message

passing between different objects in a scenario. Hence, the use

of sequence diagram helps us to implement the sequence of

actions in the business process. State machines help to

synchronize the actions of each object.

We presented a meta model for activity, sequence, and

statemachine based on our method. The implementation and

testing of our method shows that it is much better than other

rival tools.

Our method gives an efficient way to export and import

system designs between the CASE tools with the help of XMI

representation of the system designs. Moreover, the activity

diagram and sequence diagrams are linked effectively to

generate maximum implementation code. We are generating

the implementation code in Java, which is a widely accepted

and user friendly programming language.

The evaluation of our prototype shows that this method can

produce 80% complete source code from the system design.

The rest of the code can be incorporated in the final source

code if we include some more design diagrams, like class

diagram, use case diagram etc. in our system design.

References

[1] I. Jacobson, . Rumbaugh, and G. Booch. The Unified

Modelling Language Reference Manual. Addison-Wesley,

1999.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified

Modelling Language User Guide. Addison-Wesley, 1999.

[3] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified

SoftwareDevelopment Process. Addison-Wesley, 1999.

[4] “Object Constraint Language” , OMG Available

Specification, Version 2.0, May 2006

[5] “Model Driven Architecture”, OMG specification

[6] Cyprian F. Ngolah and Yingxu Wang, “Exploring Java

Code Generation Based on Formal Specifications in

RTPA”, Canadian Conference on Electrical and

Computer Engineering 2004 - Volume IV, pp. 1533-36.

2004.

[7] Asma Charfi, et.al. “Does Code Generation Promot or

Prevent Optimizations?”, 13th IEEE International

Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing (ISORC), pp. 75 – 79.

2010.

[8] Tomas G Moreira, et. al. “Automatic code generation for

embedded systems: from UML specifications to VHDL

Code”, 8th IEEE International Conference on Industrial

Informatics (INDIN), pp. 1085 – 1090, 2010.

[9] Madhusudhan Govindaraju, “XML Schemas Based

Flexible Distributed Code generation Framework”, IEEE

International Conference on Web Services (ICWS), pp.

1212 – 1213, 2007.

[10] Mathupayas Thongmak, Pornsiri Muenchaisri. “Design

of Rules for Transforming UML Sequence Diagrams into

Java code”, Ninth Asia-Pacific Software Engineering

Conference (APSEC’02), IEEE, pp 485-494, 2002.

[11] Philip Samuel, Sunitha E V, “Automatic Code

Generation using Model Driven Architecture”,

Proceedings of 2009 IEEE International Advance

Computing Conference (IACC 2009) Patiala, India, pp.

2339 – 2344, March 2009.

[12] Cristian Georgescu, “Code Generation Templates Using

XML and XSL”, C/C++ Users Journal - Mixed-language

programming, ACM, Volume 20 Issue 1, pp. 6-19, January

2002.

[13] Q.Long, Z.Liu et.al., “Consistent Code Generation from

UML Models”, Proceedings of Australian Software

Engineering Conference, 2005.

[14] William Harrison, Charles Barton, Mukund

Raghavachari, “Mapping UML designs to Java”,

Proceedings of the 15th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and

applications, pp. 178 - 187 , 2000.

[15] Eivind Bjoraa, Torgeir Myhre, Espen Westlye Straapa,

“Generating Java Skeleton From XMI”, Open Distributed

Systems, Agder University College, 2000.

[16] J Kochler, R Hauser, S Sendall, M Wahler, “Declarative

techniques for model-driven business process integration”,

IBM Systems Journal, Volume 44, No 1, pp. 47-65, 2005.

[17] Tim Schattkowsky, Wolfgang Muller, “Transformation

of UML State Machines for Direct Execution”, VLHCC,

Proceedings of the 2005 IEEE Symposium on Visual

Languages and Human-Centric Computing, pp. 117 -

124 , 2005.

[18] Kurt T Rudhal, Sally E Goldin, “Adaptive

multi-language code generation using YAMDAT”,

Proceedings of ECTI-CON 2008, Proceedings of the 5
th

International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications

and Information Technology, , 2008.Volume 1, pp. 181 –

184. May 2008.

[19] Imran Sarwar Bajwa, M. Imran Siddique, M. Abbas

Choudhary,” Rule based Production Systems for

Automatic Code Generation in Java”, Proceedings of the

International Conference on Digital Information

Management, pp. 300 – 305. 2006

[20] Ruben Campos, “Model Based Programming:

Executable UML with Sequence Diagrams”, CS Thesis,

2007.

Author Biographies

Sunitha E V

She is Assistant Professor of IT department at Toc H Institute of science and

Technology, Kerala, India. Her research intrest are in software engineering

and object oriented modelling. She received a B-Tech in IT and an M-Tech in

Software engineering from Cochin University of Science and Technology

(CUSAT), Kerala, India. She is currently persuing PhD in Software

Engineering at CUSAT.

Philip Samuel

Sunitha & Philip

304

He is Head and Associate Professor of IT Division, SOE at CUSAT, Kerala,

India. His research interests are Software Engineering, Object Oriented

Modeling and Design, Mobile Communication, and Ad hoc Networks. He

received M Tech in computer science from CUSAT, and Ph D from IIT

Kharagpur, India. He had published several research papers in this area.

