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Abstract: In recent studies it has been shown that graph 

representation of protein structures is capable of capturing the 

3-dimensional fold of the protein very well, thus providing a 

computationally efficient approach for protein structure 

analysis. Centrality measures are generally used to identify the 

relative importance of a node in the network. Here we 

demonstrate a novel application of centrality analysis: to 

identify tandemly repeated structural motifs in 3-d protein 

structures. This is done by analyzing the profile of various 

centrality measures in the repeat region. The comparative 

analysis of five centrality measures based on local connectivity, 

shortest paths, principal eigen spectra and feedback centrality is 

presented on proteins containing contiguous ankyrin structural 

motifs to identify which centrality measure best captures the 

repetitive pattern of ankyrin. We observe that principal eigen 

spectra of the adjacency matrix and Katz status index, both 

exhibit a distinct profile for the ankyrin motif capturing its 

characteristic anti-parallel helix-turn-helix fold. No such 

conserved pattern was observed in the repeat regions of 

equivalent random networks, suggesting that the conserved 

pattern arises from the 3d fold of the structural motif.  

 
Keywords: Ankyrin repeat, graph theory, protein contact network, 

centrality measures.  

I. Introduction 

A protein fold is governed by covalent and non-covalent 

interactions between its residues. These interactions are 

captured in protein contact network (PCN) by computing the 

Euclidean distance between the amino acids and drawing an 

edge between the residues lying within a pre-defined 

threshold distance (~ 7Å). The connection topology of this 

network reflects the 3-dimensional fold of the protein 

molecule and provides an alternative computational approach 

for structural analysis of proteins. Several techniques for such 

structural analysis exist, such as the analysis of the global 

network structure, network motifs, clustering and network 

centralities. Network centralities are used to rank elements 

(residues) and identify key elements in a network. The idea of 

centrality was first introduced by Bavelas (1948) in an attempt 

to understand communication in small groups. Since then, the 

study of centrality has been used to address different problems 

such as political integration, design organizations, 

communication paths, social influence, etc. [1]. Since nodes 

having similar neighborhood are expected to have similar 

centrality values, subgroups of amino acids in a protein with 

similar 3-d fold are expected to exhibit similar pattern in their 

centrality profile. With this aim here we carry out an analysis 

of various centrality measures to identify contiguous 

structural repeats. 

Repetition of a super secondary structure within a protein is a 

common phenomenon observed in about 14% of proteins [2]. 

The copy number of these repeats and their arrangement 

account for large number of structural and functional roles 

such as protein transport, protein-complex assembly, and 

protein regulation. Different repeats such as leucine-rich 

repeat (LRR), ankyrin repeat (ANK), tetratricopeptide repeat 

(TPR), etc. have been defined based on the repetition and 

arrangement of the specific super secondary structure. Here, 

we present our analysis on proteins containing ankyrin repeat, 

which is a helix-turn-helix motif about 30-34 amino acids 

long, and exclusively functions to mediate protein-protein 

interactions such as transcription initiation, cell-cycle 

regulation, cytoskeletal regulation, ion transport and signal 

transduction. It is one of the most frequently observed protein 

motifs in nature and their abundance makes it desirable to 

identify them to understand their biological functions. 

The problem of identification of repeats in protein has been 

addressed by various sequence alignment [3] [4] and profile 

based methods [5]. The sequence-based methods are 

generally reliable when the sequence conservation is high 

within individual repeat copies. However, it has been 

observed that the sequence conservation between individual 

repeating units can be very low (~15%). Thus, with the 

increase in the number of available protein structures, it is 

desirable to design structure based methods to identify repeats 

in proteins. Methods such as OPAAS [6] and DAVROS [7] 

implement self-structural alignment of proteins, while  Swelfe 

[8] and ProSTRIP [9] implement dynamic programming on 

sequence of α angles derived from dihedral angle for the 

identification of repeats at the structure level. IRIS 

implements structural alignment with its database of internal 

repeat units if no confident results are obtained from the 

sequence based methods [10]. The structure-based methods, 

being computationally very intensive, here we investigate 

graph-based approach for the identification of structural 

repeats in proteins. Centrality analysis has been shown to be a 

valuable method for the structural analysis of biological 

networks. Here we discuss and compare the profile of various 

centrality measures in the repeat regions to assess which 

centrality best reflects the repetitive pattern of the structural 
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motif. 

II. Protein Contact Network 

A Protein Contact Network (PCN) is a representation of the 

protein structure in the form of a mathematical entity, a graph. 

The idea is to capture the interactions responsible for 

maintaining secondary structures and stabilizing the 

3-dimensional fold of the protein [11]. It is well-known that a 

protein structure is governed to a large extent by non-covalent 

interactions. The non-bonded interactions such as van der 

Waals forces and hydrogen bonds are responsible for the 

unique three-dimensional fold of the proteins. These 

interactions are constraint by the spatial proximity of other 

atoms, and in the graph representation this is realized by 

considering a threshold distance between the amino acid 

residues in the three-dimensional space. The coordinates of 

amino acids in a protein structure are extracted from PDB [12] 

record file to compute the distances between the atoms and 

draw links between them based on their spatial proximity to 

capture the non-bonded interactions. 

In this study, we construct PCN as an undirected graph G =  

(V, E) which consists of a finite set V of vertices (n = |V|) 

where Cα atom of each amino acid is considered as a vertex. 

Two vertices u and v are connected by an edge e  (u, v) E if 

the Euclidean distance between the Cα atoms of the amino 

acids represented by the vertices u and v is within 7Å (Rc). In 

Fig. 1 (a) and (b) are shown the 3-dimensional structure of a 

designed ankyrin repeat protein, 1N0R and the corresponding 

protein contact network respectively. It may be noted that the 

interactions between two anti-parallel helices of the ANK 

motif are very clearly captured in the protein contact network. 

 
Figure 1. (a) The 3-d structure, and (b) protein contact 

network of protein 1N0R. 

The connectivity information in a graph is mathematically 

represented by a n * n adjacency matrix, whose elements, Auv, 

take a value ‘1’ if the nodes u and v are directly connected to 

each other (i.e., if duv  Rc and u  v), ‘0’ otherwise. Here, duv = 

xuxv

yuyv


zuzv


is the Euclidean distance 

between every (u,v) pair and (x,y,z) are the coordinates of the 

Cα atoms extracted from PDB record using a python script. 

III. Dataset 

For the analysis, a non-redundant set of proteins containing 

ankyrin repeats is constructed. The dataset contains both 

designed and natural proteins. The designed ankyrin proteins 

are obtained from the SCOP database [13] and natural 

proteins containing ankyrin repeats are obtained by keyword 

search from Pfam [14] and PROSITE [15] databases. The 

structures of these proteins are obtained from Protein Data 

Bank (PDB). To remove redundancy, only high resolution 

structures (< 3Å) corresponding to a unique UniProt entry are 

considered for the analysis. 

IV. Method 

In PCN each amino acid contributes to the connectivity of the 

network. The property of a node in a network is analyzed by 

quantitative measure called centrality which is a mathematical 

function defined to rank the vertices in the network. Centrality 

can be used to address many problems in complex networks. 

For example, in a social network, the influential individuals 

can be identified as those who are connected to a large number 

of individuals or those connected to individuals with large 

number of connections.  

Large number of graph centrality measures has been defined 

for the analysis of various topological networks, including 

biological networks. Each centrality measure captures a 

specific property of the graph. The structural repeats in a 

protein contain repetition of a super secondary structure 

several times within the protein. It is expected that the 

structural repeats may exhibit similar topological properties 

which can then be exploited for their identification. With this 

aim here we present an analysis of various centrality measures 

to identify which of these best capture the repetitive pattern of 

structural motifs in proteins. 

The graph centrality measures used in this analysis are briefly 

discussed below for a small undirected representative graph in 

Fig. 2. The graph has 10 nodes represented by numbered 

circles and 11 edges between these nodes represented by 

straight lines connecting the nodes. The subgraph formed by 

nodes 1, 2, 3 and 4 has similar topology to the subgraph 

formed by nodes 6, 7, 8 and 9, except that one extra node is 

connected to node 9. 

 
Figure 2. A schematic representation of an undirected graph 

with 10 nodes and 11 edges. 

The connectivity of a graph is mathematically represented by 

adjacency matrix, A, given below for the graph in Fig. 2: 
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where, Auv is ‘1’ if nodes u and v are connected by an edge, ‘0’ 

otherwise. The graph centrality measures studied here can be 

classified as: local centrality, distance based centrality, eigen 

spectra centrality and feedback centrality. A local centrality is 

computed based on the immediate neighbors of the node and 

gives a local measure of the importance of the node. A 

distance based centrality considers the shortest path distances 

between various nodes in the network to define its 

importance. The eigen spectra centrality is derived from 

various matrices used to represent the graph such as adjacency 

and Laplacian matrices. Feedback centrality of a node is 

defined recursively from the centrality of its adjacent nodes. 

These centralities are defined below for the representative 

network in Fig. 2, and the magnitude of the measures for each 

node is summarized in Table 1. 

A. Local centrality measures 

A local centrality measure is defined by the immediate 

neighbors of a node and depicts the importance of the node in 

immediate environment. 

 

1) Degree 

The most simple centrality measure is the degree centrality, 

Cd (u), defined as the number of nodes to which the node u is 

directly connected. It is defined as: 

 

   ( )  ∑   
   

 (2) 

 

where, Auv is ‘1’ if the residue u is in spatial proximity to the 

residue v in a protein contact network, ‘0’ otherwise. For 

instance, the residues within the hydrophobic core of the 

protein are likely to have a high degree compared to the 

residues present at the surface of the protein or in the loop 

region which have relatively less intra-molecular interactions. 

For the graph in Fig. 2, nodes 1, 6 and 9 have high degree (= 3) 

(Table 1), and their removal will lead to disjoint clusters. 

 

2) Clustering coefficient 

The clustering coefficient of a node u is a measure of 

connectivity of its neighbors and is given by: 
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where, A is the adjacency matrix, v and w are neighbors of u, d 

is the number of nodes connected to the node u and V is the 

vertex set. For the graph in Fig. 2, the clustering coefficient of 

all the nodes is zero since none of the neighbors of a node are 

directly connected to each other. However, if we introduce an 

edge between nodes 4 and 2, then the clustering coefficient of 

node 3 will be 1 as it has two neighbors (node 4 and 2) which 

will be connected to each other, while nodes 2 and 4 each have 

3 neighbors, of which two pairs would be connected, and the 

clustering coefficient for these nodes would be 2/3 = 0.67. 

 

Node Cdegree Cbtw Ccl Alevc Lssevc CK 

1 3 18.5 0.048 0.345 -0.404 2.211 

2 2 3.5 0.037 0.232 -0.48 1.854 

3 2 0.5 0.03 0.198 -0.506 1.792 

4 2 3.5 0.037 0.232 -0.48 1.854 

5 2 20 0.053 0.344 -0.21 1.961 

6 3 21 0.053 0.461 0.006 2.292 

7 2 3 0.04 0.331 0.066 1.889 

8 2 1 0.034 0.314 0.119 1.874 

9 3 11 0.043 0.405 0.161 2.203 

10 1 0 0.032 0.173 0.179 1.47 

Table 1. Centrality measures of the undirected network. 

B. Distance based centrality measures 

The distance based centralities are defined by the shortest path 

distances between the nodes. These measures depict the 

transfer of information in a network.  

 

1) Betweenness 

The idea of betweenness as a centrality is based on the 

observation that an important node will lie on a large number 

of paths between other nodes in the network, i.e. nodes that 

can control the information/communication flow through the 

network [16]. The betweenness centrality of a node u is the 

number of geodesics going through it and is defined as: 

 

     ( )   ∑ ∑    ( )    
          

 (4) 

 

where, σst is the number of shortest paths from residue s to t, 

and σst(u) is the number of shortest paths from s to t that pass 

through u. Betweenness centrality helps in identifying nodes 

that make the most contribution in transmission flow in the 

network. In the analysis of protein contact networks, the 

betweenness centrality is shown to be useful in identifying 

and characterizing residues that are important for folding [17]. 

In an earlier work, we have shown the usefulness of this 

measure in the identification of ARM/HEAT structural 

repeats in proteins [18].  

For the graph in Fig. 2, the nodes 1, 5 and 6 are centrally 

located with maximum number of shortest paths passing 

through these nodes. Thus, these nodes show significantly 

high values for betweenness centrality. Only one shortest path 

passes through node 3, i.e. between nodes 2 and 4, which has 

an alternate shortest path through node 1. Thus, out of two 

possible paths between nodes 2 and 4, one passes through 3 

which is shown by the betweenness value of 0.5. Since, no 

shortest path passes through node 10, its betweenness value is 

0. High degree nodes in general have high betweenness values 

as many shortest paths may pass through them. However, a 

high betweenness node need not always be a high degree 

node, for example node 5, because of its topological location 

in the graph. 
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2) Closeness 

The closeness centrality of a residue u measures how easily all 

other residues in the graph can be reached from it, and is 

defined as: 

 

    ( )  (   ) ∑ (   )

   

 (5) 

 

where n is the size of the network and d(u,v) is the shortest 

path distance between the pair of residues u and v. The 

mathematical formula was derived by Beauchamp [1] in 1965 

defining a node as important if it is close to all other nodes and 

can transfer information quickly. It is observed in a protein 

contact network that the closeness centrality is typically high 

for active site, ligand-binding and evolutionary conserved 

residues [19]. For the representative graph in Fig. 2, nodes 5 

and 6 have highest equal closeness centrality indicating that 

these nodes have minimum cumulative shortest path distance 

from all other nodes and are very well connected to all other 

nodes. The total shortest path distance of both the nodes 5 and 

6 to all other nodes is 19, which makes their magnitude equal. 

C. Eigen spectra centrality 

The centrality of a node may also depend on the centrality of 

the nodes it is connected to. This information is captured by 

the eigen spectra of the connectivity matrix of a graph, such as 

adjacency matrix and Laplacian matrix. 

 

1) Eigen Spectra of Adjacency Matrix 

The eigenvector components corresponding to the principal 

eigenvalue of the adjacency matrix have been shown to 

provide information on the structure and topology of the 

graph [20] [21]. It not only captures the connectivity of a node 

but also that of nodes adjacent to it, and nodes adjacent to its 

neighbors, and so on. Thus, the graph spectral analysis is 

useful in identifying the connectivity pattern of a group of 

nodes, clusters, in the network. 

If for the i
th

 node, the centrality score is proportional to the 

sum of the scores of all nodes which are connected to it, then 
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where M(i) is the set of nodes that are connected to the i
th

 

node, N is the total number of nodes, and  is a constant. In 

vector notation this is written as 

 

 
  

 

 
             (7) 

 

For the representative graph in Fig. 2, the eigenvector 

centrality, Alevc, of nodes 2 and 4 are equal in magnitude as 

these nodes share same neighbors (Table 1). Thus, the 

contribution of the neighbors, and neighbor’s neighbors and 

so on, are same for both these nodes. Similarly, we expect the 

corresponding residues in contiguous structural repeats to 

exhibit similar Alevc values as they have similar 3d topology. 

In a preliminary study, we did observe a conserved profile of 

Alevc in the repeat regions [22]. 

 

2) Eigen Spectra of Laplacian Matrix 

Another extensively studied matrix of a graph is the Laplacian 

matrix, L, which is a modified form of the adjacency: 

     , where D is a diagonal matrix containing the 

degree information of the nodes. For the graph in Fig. 2, the 

Laplacian matrix is 
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It has been shown that the eigenvector components 

corresponding to the second smallest eigenvalue (Lssevc) 

captures the clustering information; i.e. nodes that belong to a 

particular cluster have the same sign and nodes with similar 

neighborhood connectivity pattern have same magnitude of 

Lssevc. For the representative graph in Fig. 2, two distinct 

clusters are obtained. The nodes 1, 2, 3 and 4 have similar 

magnitude of Lssevc as represented in Table 1 which forms one 

cluster, and the other cluster is formed by the nodes 6, 7, 8, 9 

and 10 with another set of similar Lssevc values. Here we expect 

the Lssevc values of the residues in a repeat unit to be similar. 

D. Feedback centrality 

Feedback centrality of a node is based on the assumption that 

a node is more central, if its neighbors have high centrality 

values. 

 

1) Katz Status Index  

It computes the relative influence of a vertex u within a 

network by measuring not only the number of the immediate 

neighbors but also all other vertices in the network that 

connects to the vertex u through its immediate neighbors and 

is given by 

 

 
  ( )  ∑∑  (  )  
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It incorporates indirect influence of other nodes through an 

attenuation factor,     , that reduces the contributions from 

nodes at increasing lengths on the node under consideration 

[23]. Unlike other centrality measures that consider only the 

shortest path between a pair of nodes, Katz centrality measure 

takes into account the total number of paths between a pair of 

vertices. For the representative graph, node 6 is having the 

highest Ck value as it has a highest degree and its neighbors 

are well connected to other nodes in the network and have 

high Ck values. 

V. Analysis of Centrality Measures 

Here we provide an analysis of different categories of 

centrality measures to see which of the measures based on 
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local connectivity information, shortest-path distances, 

feedback or spectral analysis of the connectivity matrix is able 

to better capture the repetitive 3-dimensional structural 

topology of ankyrin repeats. We first present our analysis of 

the protein contact network (PCN) of designed ankyrin repeat 

protein, 1N0R (Fig. 1), which contains four consecutive 

repeats. Using sequence-based repeat identification tool, 

RADAR [3], the boundaries of the four consecutive repeats is 

identified as shown in Fig. 3. The centrality measures degree, 

clustering coefficient, betweenness, principal eigen spectra of 

adjacency matrix and Katz Status index are plotted in Fig. 4 

(a), (c), (e), (g) and (i) respectively. The profile of these five 

centrality measures for the individual repeat regions are 

superimposed in Fig. 4 (b), (d), (f), (h) and (j) respectively. 

The vertical dotted and solid lines correspond to the start and 

end of the repeat boundaries, predicted by RADAR output. 

 

 
Figure 3. RADAR output of the protein 1N0R. 

From Fig. 4 (a) and 4 (c) it is clear that both the degree and 

clustering coefficient profiles for the individual repeat regions 

is very similar, with the pattern being well-conserved in the 

core repeat region. This is further confirmed by overlapping 

these profiles for the individual repeat copies in Fig. 4 (b) and 

4 (d) respectively. The profile of the degree in the repeat 

regions is better conserved compared to clustering coefficient. 

The profile of the distance based centrality measure, 

betweenness, is shown in Fig. 4 (e)-(f) for protein 1N0R. A 

repetitive pattern in the profile in this centrality measures is 

observed to be well-conserved in the core of the repeat region, 

as is clear in Fig. 4 (f) obtained on overlapping the profiles for 

the individual repeat regions. The first helix of the repeat units 

in ankyrin is present at the core of the protein and the second 

helix is at the surface away from the core. Consequently, most 

of the shortest paths in the network pass through the residues 

of the first helix as compared to the residues of second helix. 

This property is quantitatively reflected by the high values of 

betweenness for the first helix residues from 5 to 12 and low 

values for the second helix residues from 14 to 24 in Fig. 4 (e). 

However, compared to degree which has a time complexity of 

O(|V|), the complexity of computing betweenness centrality is 

O(|V||E|), where |V| and |E| are the total number of vertices and 

edges in the graph, making it computationally expensive [24]. 

The eigen spectra of the matrices associated with a graph, i.e., 

the adjacency and Laplacian matrices are known to capture 

very well the topology of the graph and identify clustering 

patterns [20]. Here we investigate their efficacy in identifying 

tandemly repeated structural motifs. In Fig. 4 (g) is plotted the 

principal eigenvector components of the adjacency matrix, 

Alevc and the plot showing the overlap of Alevc profiles for the 

individual repeat regions in Fig. 4 (h). A very clear pattern 

with two peaks corresponding to the two helices for each 

individual repeats is observed. Since the vector components 

contain contribution from its neighbors, neighbor’s neighbors, 

and so on, the centrally located repeats show very prominent 

pattern tapering on either sides of the core of the repeat region, 

though retaining the overall shape of the profile at both ends. 

The time complexity of computing the eigenvector centrality 

is ~ O(V
2
) for a sparse matrix and  O(V

3
) if the network is 

dense, where V is the number of vertices.  

It is known that the eigenvector components corresponding to 

the second smallest eigenvalue of the Laplacian matrix, Lssevc, 

captures the clustering information. The Lssevc values of the 

residues belonging to each repeat motif were analyzed and 

found to be within one standard deviation from the mean. 

The plots for the feedback centrality, Katz status index is 

given in Fig. 4 (i)-(j). The Katz status centrality exhibits 

pattern very similar to the principal eigen spectra of the 

adjacency matrix in Fig. 4 (g). This is not surprising since the 

Katz status index takes into consideration the influence of all 

indirect links through intermediates, similar to eigen vector 

component. It is supposed to be most suitable in the case of 

directed acyclic graphs where eigen spectra analysis fails [25]. 

The time complexity of Katz index is limited by matrix 

inversion step which is O(V
3
) for V vertices, with faster 

versions of the algorithm being of O(V+E), E being the 

number of edges. From the above analysis we observe that the 

three centrality measures, viz., degree, eigenvector centrality 

and Katz status index capture very well the repetitive pattern.  

However, the Alevc profile is more prominent and 

well-conserved than the degree profile in the repeat regions. 

This is not surprising since eigenvector centrality is like a 

recursive version of degree centrality; it is large for a node if 

either it has many neighbors and/or it has important 

neighbors.  That is, it captures not only the connectivity of a 

node, but its neighbor’s connectivity, neighbor’s neighbor’s 

connectivity, and so on. The Katz status index is defined as a 

generalization of degree centrality and can be written as a 

variant of eigenvector centrality and hence its profile in the 

repeat regions is very similar to that of Alevc. Its profile in the 

repeat regions is even better conserved than both the degree 

and Alevc profiles, as it captures not only the direct links to a 

node, but all indirect links to it through an attenuation factor, 

      that reduces the contributions from nodes at 

increasing lengths from it. Also, it takes into account the total 

number of paths between a pair of vertices instead of only 

shortest path between a pair of nodes, unlike other centrality 

measures. 

These observations suggest that one may use degree, principal 

eigen vector components of the adjacency matrix, Alevc or Katz 

status index for the identification of structural repeats. Since 

the variation in the loop region for Alevc is much lower 

compared to the other two, identifying repeat boundaries is 

most reliable with the eigen spectra of adjacency matrix. 

The protein 1N0R being artificially designed based on the 

consensus ANK motif, it is not surprising that majority of the 

centrality measures analyzed are able to capture the repetitive 

topology of the ANK motif. We next investigate the profiles 

of these centrality measures for a natural protein, 3EHQ, 

comprised of repeat regions and non-repeat regions. Fig. 5 (a) 

and (b) show the 3-d structure and corresponding PCN of the 

protein, 3EHQ which has 3 consecutive ANK motifs in the  
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Figure 4. The centrality measures computed for each residue of the protein 1N0R shown: (a) Degree, (c) Clustering coefficient, 

(e) Betweenness, (g) principal eigenvector of adjacency matrix (Alevc) and (i) Katz status index. Start and end of each repeat is 

taken from RADAR output and are indicated by dotted and solid lines respectively. In (b), (d), (f), and (h), the respective 

centrality measures are plotted by overlapping centrality profiles of repeat regions. 
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Figure 5. (a) The 3-d structure, and (b) protein contact 

network of protein 3EHQ. 

 

C-terminal from 72 to 168. The plots of five centrality 

measures along with the overlapping repeat regions for 3EHQ 

are given in Fig. 6.  

The degree centrality and clustering coefficient in Fig. 6 

(a)-(b) and (c)-(d) respectively, shows a conserved pattern in 

the repeat regions but the start boundary is not identifiable. 

The distance based measure betweenness in Fig. 6 (e)-(f) 

show a conserved pattern for two repeat regions similar to the 

designed protein. The C-terminal repeat does not show a clear 

pattern for the distance based centralities. The eigen spectra 

based centralities Alevc is shown in Fig. 6 (g)-(h). The profile 

of Alevc shows a clear pattern with two peaks corresponding 

two helices in each of the three repeat units.  A significant 

difference in the magnitude of Alevc between repeat region and 

non-repeat region is observed in Fig. 6 (g), which is not so in 

case of the feedback centrality Katz status index, although it 

shows a conserved pattern in the repeat regions (Fig. 6 (i)). 

The variation in the loop regions of natural protein, 3EHQ, for 

Alevc is much lower compared to the feedback centralities, as 

observed in the case of designed protein, 1N0R and helps in 

the identification of the repeat boundaries. 

A clear 2-peak pattern in the principal eigen spectra is 

observed in the repeat regions of the proteins 1YCS, 1AWC, 

1NFI and 1N11, shown in Fig. 7. The vertical dotted and solid 

lines in this case correspond to the start and end boundaries of 

each repeating unit based on the annotation provided in the 

UniProt database. Pattern of two peaks for the two 

anti-parallel helices is clearly observed for individual ANK 

motifs in each of these proteins, clearly suggesting that the 

eigen spectra analysis is reliable for identifying tandem ANK 

repeats. 

VI. Analysis of Random Network 

The pattern observed in the principle eigen spectra of the 

adjacency matrix for the structural repeat regions is observed 

due to similar connectivity pattern of the residues in these 

regions. Next we randomize the protein contact network to see 

if the repetitive pattern in eigenvector centrality is lost on 

randomizing the connection topology. The randomization of 

the network is done by keeping the number of nodes and 

edges constant as in the original network and also retaining 

the backbone connectivity of the protein chain. Thus every 

non-backbone edge is randomly assigned to two randomly 

chosen nodes. That is, the backbone chain of the protein 

structure is kept constant but the 3-d conformation is altered. 

For the designed protein 1N0R and the natural protein 3EHQ, 

100 randomizations were performed and the principal eigen 

spectra in the repeat region analyzed. The Alevc plot for one 

such random configuration for proteins 1N0R and 3EHQ is 

shown in Fig. 8 (a) and (c) respectively and the plots obtained 

on overlapping the Alevc profiles for the repeat regions are 

given in Fig. 8 (b) and (d) respectively. The pattern conserved 

in the repeat regions for 1N0R (Fig. 4 (h)) is lost in this case as 

seen Fig. 8 (b). Similarly, the conserved pattern observed in 

the repeat regions of 3EHQ in Fig. 6 (h) is not observed in the 

randomized counterpart in Fig. 8 (d). This confirms that the 

Alevc pattern observed in the repeat regions of ANK proteins is 

specific to this repeat type. 

VII. Conclusion 

The representation of protein structures as networks provide 

insight into the complex 3-dimensional topological features of 

proteins. By representing protein as a graph, it is reduced to a 

mathematical entity on which computationally efficient 

algorithms can be used to identify and analyze important 

structural features. In this study we consider an important 

pattern recognition problem, viz., identifying tandemly 

repeated structural motifs using graph centrality measures. 

Different centrality measures capture the importance of a 

node based on a different concept. A comparative analysis of 

five centrality measures has been presented here to analyze 

and identify for the most widely observed structural motif in 

proteins, the Ankyrin motif. The spectral analysis of the 

adjacency matrix and the Katz status index are observed to be 

most reliable of all the measures analyzed here. The 

advantage of the proposed graph based approach is that no 

domain information is used for the identification of tandem 

structural repeats. Compared to traditional approaches, the 

graph based approaches are also computationally very 

efficient since no sequence/structure-based alignment is 

required. The limitation of the proposed method is that it is 

qualitative for defining accurately the boundaries of the 

repeats domain information such as architecture of secondary 

structural elements is desirable. 
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Figure 6. The centrality measures computed for each residue of the protein 3EHQ shown: (a) Degree, (c) Clustering coefficient, 

(e) Betweenness, (g) principal eigenvector of adjacency matrix (Alevc) and (i) Katz status index. The start and end of each repeat 

is taken from UniProt annotation and are indicated by dotted and solid lines respectively. In (b), (d), (f), (h) and (j), the 

respective centrality measures are plotted by overlapping the repeat regions. 
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Figure 7. Principal eigen spectra of adjacency matrix, Alevc for proteins: (a)1YCS, (b)1AWC, (c)1NFI, and (d)1N11 shown. A 

clear two-peak pattern observed in each case in the repeat regions. 

 

 
Figure 8. The plot of principal eigenvector of adjacency matrix (Alevc) for randomized networks of (a) 1N0R, and (c) 3EHQ 

shown. The start and end of the repeat regions are indicated by dotted and solid lines respectively. In (b) and (d), the respective 

centrality measures are plotted by overlapping the repeat regions. 
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