
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume6(2014) pp.323-332
c© MIR Labs, www.mirlabs.net/ijcisim/index.html

CUDA code support in Multiagent platform JADE
Lukáš Zaorálek1 and Petr Gajdoš2

1VŠB - Technical University of Ostrava, 17.listopadu 15
Ostrava, 708 33, Czech Republic

lukas.zaoralek@vsb.cz

2VŠB - Technical University of Ostrava, 17.listopadu 15
Ostrava, 708 33, Czech Republic

petr.gajdos@vsb.cz

Abstract: This paper describes a new feature of the multi-
agent framework that enables the execution of GPU kernels.
This brings a novel implementation of the JADE CUDA Agent
that accepts PTX/CUDA-C code and runs this code on GPUs.
All such agents can receive PTX code or CUDA source code via
ACL messages. Beyond the integration of CUDA support, this
paper is also focused on the performance measurement of the
proposed solution and the evaluation of final results.

Keywords: CUDA, PTX code, JADE, Multi-Agent System,
ACL messages

I. Introduction

There are several approaches dedicated to parallelism on dif-
ferent levels, such as threads, processes, and distribute paral-
lel computing. One of the most important challenges consists
in migration parallel tasks across heterogeneous platforms,
such that the number of platforms is variable in time. A so-
lution for this problem can be seen in the intersection of the
Multi-agent System and standard GPU programming. The
Multi-agent system JADE was chosen for this purpose and
GPU platform with nVidia CUDA. JADE is a multiplatform
framework written in Java language and its JADE API [1] is
easy to use. The main goal is to implement a JADE CUDA
Agent that accepts PTX/CUDA-C code and runs this code
on GPUs. The concept of such solution can be described as
follows:

1. The JADE CUDA Agent accepts PTX/C code from an-
other agent (a sender)

2. It compiles the PTX/C code into a binary code with re-
spect to a given GPU

3. It executes the binary code on the CUDA platform

The CUDA Agent can send a result of the process back to
the sender after the previously described steps are completed.
The following text describes the idea in more detail. Next
several performance tests were done. The performance of the
running code was measured, and the overall time of sending
the code and receiving results back to the sender agent were
measured as well. The main advantage of the CUDA Agent

lies in a platform-independent GPU computing with empha-
sis on solving computational and time consuming tasks in a
multi-agent environment.

II. Multi Agent Systems (MAS)

Multi Agent Systems will be introduced in this section. Be-
fore presenting a general definition of a MAS, basic units of
such systems will be introduced first.

A. Agents

An agent represents an essential part of all MASs. There are
several definitions of an agent. Two important and commonly
used definitions are as follows:
Definition 1 An agent is a programme process that imple-
ments own autonomy and communication capability. [2]
Agents communicate by the usage of a communication lan-
guage Agent Communication Language (ACL). [3] An agent
has to have at least one owner, i.e. one organization or user,
and has to have a defined identity Agent Identifier (AID) that
is unique. This identity helps the user to exactly identify an
agent in the whole system. [4] [5]. Listing 1 shows the ACL
message structure.

Listing 1: The ACL message structure

(r e q u e s t
: s e n d e r (agent− i d e n t i f i e r

: name alice@mydomain . com)
: r e c e i v e r (agent− i d e n t i f i e r

: name bob@yourdomain . com)
: o n t o l o g y t r a v e l −a s s i s t a n t
: language FIPA−SL
: p r o t o c o l f i p a −r e q u e s t
: c o n t e n t
””((a c t i o n
(agent− i d e n t i f i e r

: name bob@yourdomain . com)
(book−h o t e l : a r r i v a l 1 5 / 1 0 / 2 0 0 6
: d e p a r t u r e 0 5 / 0 7 / 2 0 0 2 . . .)
))””

)

1

Dynamic Publishers, Inc., USA

Definition 2 The term agent describes a software abstrac-
tion, an idea, or a concept, similar to Object Oriented Pro-
gramming terms such as methods, functions, and objects. [6]
The concept of an agent provides a convenient and powerful
way to describe a complex software entity that is capable of
acting with a certain degree of autonomy in order to accom-
plish tasks on behalf of its user. But unlike objects, that are
defined in terms of methods and attributes, an agent is de-
fined in terms of its behavior. [7]

As mentioned above, there are many other definitions of
an agent. However, we can find some common points:

• An agent is situated in a specific environment and can
to accept or respond to the outer stimuli.

• An agent can work autonomously.

• It can move, clone itself or remove itself from the envi-
ronment.

• It can communicate with other agents.

One can also meet another notion, namely that of an Intel-
ligent Agent. Such agent has a few additional features that
extend its skills:

• The ability to work in a quickly changing environment
[8].

• Flexibility; agents can respond to the current situation
and they can cope with changes.

So an agent is a computer programme that is situated
in some environment and it can work autonomously. [9]
However, autonomy is a very difficult notion. In the context
of MAS it means that an agent can work independently
of other, and if a particular agent malfunctions the whole
system does not collapse. [10]

Now the basic types of agents can be described.
A Reactive agent is the simplest type of agent. Such an agent
can receive some request and then perform a specific action
only. The agent does not keep the whole history (what was
happened in the system) and it cannot anticipate future ac-
tions. In particular, the behavior of such an agent can be
programmed by a set of rules [11]. On the other hand, it has
several advantages:

1. The system is very fast.

2. The system is simple.

3. The behavior of all agents is predictable.

Most of the current multi agent systems use this kind of
agent. Their implementation is very easy, and they can be
represented by finite automata or they can be defined by a
PTX/C code as in our case. [12] However, such systems have
many disadvantages too. In practice, we cannot represent
each agent by a set of rules in full. Especially in the case of
a real world simulation, it seems to be an impossible task.
The agents cannot anticipate their influence on the whole
state of system [11] [13].

A Deliberative agent is based on the techniques of
Artificial Intelligence and Expert systems [14]. The agent

can make a plan to reach its own objective, and it can make
a decision according to the stock of knowledge it has. The
problem consists in the speed of the decision making pro-
cess. [15] Usually it is very difficult to create an agent that
can make a decision in real time. The Artificial Intelligence
(AI) process of deduction is usually very time-consuming
[11]. However, such agents can respond to unpredictable
situations, make plans and cope with changes.

A Hybrid agent is basically a combination of the two pre-
vious types of agents. It merges the advantages of both. A re-
active subsystem handles all the time-consuming operations.
The planning and reasoning are in the hands of the delibera-
tive subsystem. The problem consists in determining the bor-
der between reactive and deliberative parts of such an agent.
[16] [17]

The design of a multi agent system which is exclusively re-
active or proactive is an easy task. However, when attempt-
ing at a combination of both and their proper balance, we
meet problems.[18]

Agents can achieve their objectives systematically. We do
not want agents to blindly perform a sequence of procedures
or functions. We need agents to react dynamically and not
try to do something that is already impossible. [19]

The last aspect of agents’ intelligence consists in coop-
eration, as was mentioned in the work of Zambonelli [20].
It is not only data exchange. It is a common term that in-
cludes communication, negotiation and cooperation. The
whole problem of agents’ cooperation is the most challeng-
ing task, and it has still not been solved in a satisfactory way.

B. Multi Agent System

The skills of intelligent agents are limited by their knowl-
edge, computer resources and surrounding behavior; agents
are resource-bound. A single agent is usually not able to
perform a complex real-world process. We need a couple
of agents to simulate such processes. [21] Groups of co-
operative agents make up a system called Multi Agent Sys-
tem. [22] [23]

MAS is dynamic; its components are not known in ad-
vanced and can be created or removed from the system. In
the case of MAS, we usually speak about distributed systems.
It means that agents can exist within different software and
hardware platforms, and communicate through a communi-
cation protocol. [24]

MAS is a hot topic of current research. Because these
agents are apt for application in many areas. Here is a list
of some advantages of MAS:

• MAS provide the solution for problems that are too ex-
tensive and time-consuming for classic realized system.

• There is a possibility for connection and cooperation be-
tween several systems.

• They work with distributed information, e.g. sensor
monitoring.

• The agents can be mobile within a system. They can
interrupt their activity, move into another place within
the current system, and then continue the work in a new
locality.

2

Lukas and Petr 324

The environment of the real world is inaccessible, non-
deterministic, dynamic and continuous. An agent can never
have complete knowledge of the whole environment (inac-
cessible), results of particular actions are not foreseeable, and
the actions can fail (non-deterministic). The environment is
changing in time independently of the agents (dynamic) and
it has an infinite set of states (continuous). [25] [26]

For obvious reasons, modeling such an environment is ex-
tremely difficult. That is why it is necessary to simplify the
environment for the needs of modeling and simulations. [27]

Figure. 1: BDI model

Thera are exist several architectures within a multiagent
system:

• Logic-based (symbolic) architectures draw their foun-
dation from traditional knowledge-based systems tech-
niques in which an environment is symbolically repre-
sented and manipulated using reasoning mechanisms.

• Reactive architectures implement decision-making as a
direct mapping of a situation to action and are based
on a stimulus-response mechanism triggered by sensor
data. Unlike logic-based architectures, they do not have
any central symbolic model, and therefore do not utilize
any complex symbolic reasoning.

• BDI (Belief, desire, intention) architecture describes be-
liefs as the representation of the agents knowledge about
the current world/environment and messages from other
agents, as well as internal information. Beliefs repre-
sent the information an agent has about its environment,
which may be incomplete or incorrect. Desires repre-
sent the tasks allocated to the agent, and so correspond
to the objectives or goals it should accomplish. Inten-
tions represent desires that the agent has committed to
achieving. Finally, plans specify some courses of action
that may be followed by an agent in order to achieve its
intentions. Figure 1 illustrates the BDI model scheme.

An ontology in the multi agent system means a set of vo-
cabulary that an agent has understood. Consequently, the
agent has certainly described the domain of a problem based
on this set of vocabulary and shares it with each other. In
other words, the ontology is a central pivot of the commu-
nication act in the multi agent system, and gives us a tool
how to communicate with agents. The main idea of the on-
tology is way how agents can share knowledge, describe the
domain of a problem and exchange tasks and ask or answer
each other. [28]

A programmer can use the basic ontology defined by
the FIPA organisation, or implement his/her own ontology

within the JADE platform. Moreover the programmer has
implemented its own ontology that is based on the FIPA ono-
tology. In other words, ontology can be a hierarchical struc-
ture to share the agent knowledge, as we can see in Figure 3.
The FIPA ontology standard has defined three basic kinds of
ontologies. There are top-level ontologies, domain ontolo-
gies and task and application ontologies in the standard. The
top-level ontologies contain several very basic general con-
cepts such as space, time, matter, object, event, action. The
domain ontologies and task define a vocabulary that describe
some specific domain of a problem. Figure 2 describe the
basic concept of the ontology defined by the FIPA standards.

Ontology

Agent A Agent B

Ontology Query Ontology Query

Ontology-Based Communication
ACL Communication =

Figure. 2: The FIPA ontology

A performative is defined as the type of communication
act between agents. In other words, an agent has to know
which type of message is received in order to provide a cor-
rect reaction to the received message. There are several basic
performatives that FIPA has defined: Confirm, Disconfirm,
Failure, Inform, Request, Request When, Request When-
ever, Not understood, Query If, Query ref. Confirm means a
sender agent believes that the subject of a communicative act
is true where the receiver agent is uncertain about the subject.
Disconfirm means a sender agent believes that the subject of
a communicative act is false where the receiver agent is un-
certain about the subject. The subject of the communicative
act was not completed by a sending agent. Inform means a
sender agent informs that the subject of the communicative
act is true. Request means the sender agent wants to perform
some action. Request when performative means the sender
agent is asking the receiver agent if a subject is true or not.
If the agent wants to perform some action whenever a sub-
ject is true, then a request is sent whenever it is performative.
At the end, not understood means either the sender agent did
not understand the received message from the other agent, or
the sender agent informs that it did not understand the per-
formed act (the receiver agent performed an act which was
not understood to the sender agent).

Jade ontology represents a java class. There are several
base classes such as a Predicate, Concept, Primitive, Aggre-
gate or AgentAction that can extend our ontology class in
the JADE framework. In other words, each of our ontology
classes must be extended from a base ontology class that we
can see in figure 3. The following list describes basic ontol-
ogy classes in the JADE framework:

• The predicates are expression that can be true or false
and describe the status of the world.

• The Term is a generic entity that agents can talk.

• Concepts are entities that have complex structures.

• The Agent action is an action that can be performed by
agents.

3

CUDA Code Support in Multiagent Platform JADE 325

Element

Predicate

ContentElement ContentElementList Term

AgentAction

IRE Variable
PrimitiveConcept Aggregate

Figure. 3: The base JADE ontology classes

• The Primitive contains a primitive value such as integer,
float, long, short, boolean or byte.

• The Aggregate holds several elements together (similar
to list).

• The Variable represents a variable expression that is not
known yet.

III. GPU and CUDA

Architecture of GPUs (Graphics Processing Units) is suit-
able for vector and matrix algebra operations. That leads
to the wide usage of GPUs in the area of information re-
trieval, data mining, image processing, data compression,
etc. [29]. There are two graphics hardware vendors: ATI
and nVIDIA. ATI develops technology called ATI Stream,
and nVIDIA presents nVIDIA CUDA. Nowadays, program-
mers usually choose between OpenCL which is supported by
ATI and nVIDIA [30], and CUDA which is only supported
by nVIDIA [29]. An important benefit of OpenCL is its
platform independence; however, CUDA still sets the trends
in GPU programming. This article is not focused on a de-
tail comparison of these two approaches; we utilize CUDA
in our experiments.

CUDA (Compute Unified Device Architecture) is a gen-
eral purpose parallel computing architecture. GPUs utilized
in our experiments are based on the Fermi architecture [31],
which is still one of the most common GPU architectures
since the original G80. Currently, new architecture called
Kepler has been introduced by nVIDIA.

GPUs of the Fermi architecture include a number of
Streaming Multiprocessors (SM) with 32 cores, e.g. nVIDIA
Tesla 2050 provides 14 SM with 448 CUDA cores. [32] A
CUDA program calls parallel kernels. A kernel executes in
parallel across a set of parallel threads. The programmer
or compiler organizes these threads in the thread blocks and
grids of the thread blocks. Each thread within a thread block
executes an instance of the kernel. [33] The GPU instanti-
ates a kernel program on a grid of parallel thread blocks. The
simplified arrangement of threads is illustrated in Figure 5.
A thread block is a set of concurrently executing threads that
can cooperate among themselves through a barrier synchro-
nization and shared memory. [34] A grid is an array of thread
blocks that execute the same kernel, read inputs from global
memory, write results to global memory, and synchronize

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

SFU

SFU

SFU

SFU

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Core

Register File (32,768 x 32-bit)

CUDA Core

Operand Collector

Dispatch Port

Result Queue

FP Unit INT Unit

Fermi Streaming Multiprocessor (SM)

Figure. 4: Single Fermi Streaming Multiprocessor (SM) [31]

Thread Block Grid

Figure. 5: A schema of the CUDA threads arrangement [31]

kernel calls. For more detail we refer to [31].
There are several new important features like GigaTh-

read, concurrent kernel execution and Nvidia Parallel Data-
Cache in Fermi architecture. The GigaThread is Fermi thread
scheduler (second generation), which dramatically improves
the speed of context switching, thread throughput, and thread
block scheduling. Another significant feature of the Fermi
architecture is concurrent kernel execution that allows ap-
plications to run a number of small kernels to utilize the
whole GPU. [35] [36] In other words, on the Fermi archi-
tecture, different kernels of the same CUDA context can ex-
ecute concurrently, allowing maximum utilization of GPU
resources. The Fermi architecture also has improved config-
urable shared memory, Warp scheduler, and Streaming Mul-
tiprocessor (SM). Scheme of the Streaming Multiprocessor
is illustrated in Figure 4. The scheme includes Special Func-
tion Unit (SFU), load/store units, shared memory, and sev-
eral cores. Each Streaming Multiprocessor has 16 load/store
units allowing source and destination addresses to be calcu-
lated for sixteen threads per clock. The Special Function Unit
designed for efficient calculation of math operations such as
sin, cosine, reciprocal, and square root. [37]

The main advantage of CUDA technology consists in the
power of the different architecture of graphics processing
units. There are a number of tasks that were solved on GPU
rather than CPU such as Fourier transform and convolution,

4

Lukas and Petr 326

matrix multiplication, neural network or data mining algo-
rithms etc. We refer to [29] for more information.

IV. Amdahl’s Law

For the prediction of the theoretical maximum speed up of a
parallel application we used Amdahl’s Law.[38] Amdahl’s
Law is a model for the relationship between the expected
speedup of the parallelized implementations of an algorithm
relative to the serial algorithm. [39] The maximum speedup
S is defined as follows:

S =
Told

anew
=

rs + rp
rs +

rp
n

=
1

rs +
rp
n

(1)

where rs is the amount of time that the program spends in
parts that can by run sequential only, rp is the amount of time
that the program spends in parts that can be parallelized. Let
rs and rp be normalized such that rs + rp = 1. The art is
to find for the same problem an algorithm that has a large
rp. Algorithms for which rp=1 are called ”embarrassingly
parallel”. [40]

V. CudaAgent

CudaAgent is an agent that handles CUDA kernel source
code (hereinafter only kernel) in the form of C or PTX (Paral-
lel Thread Execution) code and runs it on the GPU. [41] The
CudaAgent has its own ontology which is described below
in section V-B, and it has its own implementation of inner
behavior. In other words, CudaAgent offers to another agent
its own service to compile and run the kernel. Such kernel
must be in the form of C or PTX source code. The example
of PTX code can be seen in listing 3.

Figure 6 illustrates the process of acceptance of the ker-
nel by CudaAgent. [42] If the kernel is in the form of C
source code then the CudaAgent tries to compile it. [43] If
the kernel is received and possible compilation of the kernel
source code is successful, then the kernel is integrated into
the inner execution queue of the agent with respect to priori-
ties. The CudaAgent sends the ACL message as a result after
the kernel is processed. The result can contain data or some
message information on the kernel failure/success. Note that
a part of kernel transfers also contains also running param-
eters, such as data types and values. A parameter should be
a primitive type such as float, integer, double and/or other.
Moreover, the parameter can be an array of these types.

The sender agent expects an ACL message, which should
contain kernel execution result. Otherwise, the sender agent
could receive an ACL message informing the sender agent
about kernel process failure, e.g. kernel transformation fail-
ure, compilation failure, kernel run failure, etc. Each kernel
is sent to the CudaAgent through an ACL Message. The ker-
nel code (including input parameters) is converted into byte
array before being sent. The kernel code is converted back
when it is received by the CudaAgent.

Listing 2: An example of the C cuda kernel
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used
to

// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used
to

// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are
loaded

__syncthreads();

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

Listing 3: An example of the compiled PTX kernel
mul.wide.s32 %rl10, %r71, 64;
mov.u64 %rl11,

__cuda_local_var_15874_39_non_const_As;
add.s64 %rl6, %rl11, %rl10;
mul.wide.s32 %rl12, %r70, 4;
add.s64 %rl4, %rl6, %rl12;
ld.param.u32 %r69, [matrixMul_param_5];
.loc 2 96 1
mad.lo.s32 %r10, %r71, %r69, %r70;
mov.u64 %rl13,

__cuda_local_var_15878_39_non_const_Bs;
add.s64 %rl14, %rl13, %rl10;
add.s64 %rl5, %rl14, %rl12;
add.s64 %rl7, %rl13, %rl12;
mov.f32 %f55, 0f00000000;

BB0_2:
.loc 2 95 1
add.s32 %r19, %r9, %r75;
mul.wide.s32 %rl15, %r19, 4;
add.s64 %rl16, %rl3, %rl15;
ld.global.f32 %f5, [%rl16];
st.shared.f32 [%rl4], %f5;
.loc 2 96 1
add.s32 %r22, %r10, %r74;
mul.wide.s32 %rl17, %r22, 4;
add.s64 %rl18, %rl2, %rl17;
ld.global.f32 %f6, [%rl18];
st.shared.f32 [%rl5], %f6;
.loc 2 99 1
bar.sync 0;
.loc 2 105 1
ld.shared.f32 %f7, [%rl7];
ld.shared.f32 %f8, [%rl6];
fma.rn.f32 %f9, %f8, %f7, %f55;
ld.shared.f32 %f10, [%rl7+64];
ld.shared.f32 %f11, [%rl6+4];
fma.rn.f32 %f12, %f11, %f10, %f9;
ld.shared.f32 %f13, [%rl7+128];
ld.shared.f32 %f14, [%rl6+8];
fma.rn.f32 %f15, %f14, %f13, %f12;
ld.shared.f32 %f16, [%rl7+192];
ld.shared.f32 %f17, [%rl6+12];

A. CudaAgent Implementation

CudaAgent implementation can be divided into three main
parts:

5

CUDA Code Support in Multiagent Platform JADE 327

CudaAgentAgent

kernel call action

agree (performative)

kernel result

Agent

kernel call action

agree (performative)

kernel result

Figure. 6: The cuda kernel transfer

1. Handling ACL messages

2. Kernel management

3. CudaAgent behaving

The first part is represented by several java classes that
manage the handling and processing of ACL messages: Mes-
sageParser and MessageFactory, then Kernel, KernelParam-
eter and KernelBase as part of Kernel management. [44] An
initial CudaAgent behavior is implemented as a java class
ReceiveMessage and KernelCallManager. There are also
other classes, see table 1. [45]

B. Ontology and Performatives

The important part of a CudaAgent is its own ontology and
performative definition. [46] [47] There are several ontology
schemes: KernelParameter, KernelBase, KernelCallAction,
KernelRegisterAction, KernelUnregisterAction, CudaAgent-
Description and CudaResult.

An agent needs to register some kernel by the CudaAgent
when the agent wants to process it. There are two ways the
agent can make the registration. First, the agent sends an
ACL message as a kernel register action (an instance of the
KernelRegisterAction class). After that, the agent will be
informed about successful kernel registration and will also
get a kernel ID in this ACL message. After receiving the
kernel ID, the agent can send a request with the kernel ID
for the kernel process as a kernel call action (an instance of
a KernelCallAction class). The second way is to send an
ACL message directly as a kernel call action that contains
the whole kernel code with appropriate kernel parameters.
[48]

The CudaAgent supports other actions such as KernelUn-
registerAction and GetCudaAgentDescription. The Ker-
nelUnregisterAction is dedicated to unregister CUDA ker-
nels. It has to contain a kernel ID. This is part of the memory

Class name Description

CopyDirection Define if a parameter is input or output.

CudaAgent The main class of the CudaAgent project.

CudaAgentOntology CudaAgent ontology include schemas for a
class KernelParameter, a KernelBase and kernel
actions.

CudaAgentVocabulary Interface as vocabulery list used in the CudaA-
gent ontology.

CudaResult CudaResult has used as an answer.

CudaResultParser Helper able to parsing result.

dim3w Wrapper for a JCuda class dim3 because the
class dim3 is not serializable.

GetCudaAgentDescription An action for short description about the Cud-
aAgent such as number of GPU, performance
and other.

KernelBase A concept for the CUDA kernel.

KernelCallAction An action dedicated to running a CUDA kernel.

KernelCallManager A behaviour class dedicated to maintaining a
CUDA kernel (running kernel, copying in/out
data).

Kernel Helper for easier manipulating a CUDA kernel.
This class extends the class KernelBase.

KernelParameter A concept for the kernel parameter.

KernelPriorityComparator The class implements a Comparator interface
because of kernel comparation.

KernelRegisterAction An action dedicated to registering kernel by the
CudaAgent.

KernelUnregisterAction An action dedicated to unregistering kernel by
the CudaAgent.

MessageFactory The class implements Factory pattern to create
ACL message such as reply.

MessageParser The MessageParser is able to parse ACL mes-
sage specific for the CudaAgent.

ReceiveMessage A behaviour class dedicated to receiving ACL
message.

Table 1: The CudaAgent classes

6

Lukas and Petr 328

management system of CudaAgents. If the agent wants to
know some basic information on the CudaAgent, e.g. the
number of devices or its GFlop/s, then the agent sends to the
CudaAgent the ACL message as the GetCudaAgentDescrip-
tion. [49]

The CudaAgent supports these performatives: request, in-
form, unknown, not understood, agree and failure. Every
agent must understand these performatives if it wants to com-
municate with the CudaAgent. [50]

C. Compilation and Data Transfer

The list of behaviors of CudaAgents also contains compileK-
ernel, prepareKernel, runKernel and finalizeKernel meth-
ods. Table 2 describes the mentioned methods. There are
also implemented behaviors like KernelCallManager and Re-
ceiveMessage. These behaviours are responsible for the
management of the kernel and receiving ACL messages re-
spectively. Algorithm 1 describes the method responsible for
calling kernels on the GPU.

Method name Description

prepareKernel The method initializes kernel, copies necessary
input parameters on the global memory space of
GPU.

runKernel It runs the kernel.

finalizeKernel It frees allocated memory on the GPU.

prepareCudaAgentInfo It makes a set of basic information on the Cud-
aAgent, e.g. the number of GPU devices.

setup Bootstrap method of the CudaAgent.

getMessageParserInstance The method returns an instance of Mes-
sageParser, it also overrides handle-like meth-
ods of ACL message management.

Table 2: The CudaAgent important methods

Input : Kernel kernel
Output: CudaKernel cudaKernel

get kernel launcher from kernel;1
if is not initialize kernel launcher then2

initialize kernel;3
call prepareKernel method on cudaAgent instance;4

run kernel;5
receive result of the kernel as cudaResult;6
return cudaResult;7

Algorithm 1: Kernel call

VI. The Usage of CudaAgents

If some agent wants to use CudaAgents to manage GPU com-
putation, it has to perform several kernel call actions and wait
for an adequate response. Generally, such an agent must re-
ceive a kernel ID, which means that the kernel is compiled
and prepared for execution on the CudaAgent side. After re-
ceiving kernel ID, the agent can send an ACL message to
the CudaAgent to start the execution of kernel and wait for
computation result.

VII. Experiments

Two agents and their codes were performed in the experi-
ment (CudaAgent and CudaAgentSample). The primary goal
of the CudaAgentSample is to deliver a CUDA kernel code

to CudaAgent, then invoke compilation and execution. The
kernel code is a simple matrix multiplication adapted to the
parallel CUDA environment. The whole process can be di-
vided into three parts:

1. CudaAgentSample tries to register the kernel on the side
of CudaAgent.

2. CudaAgentSample sends to the CudaAgent the kernel
and call actions (compile, execute).

3. CudaAgentSample waits for the response in the form of
some kernel result from the CudaAgent.

Moreover, the performance of the CudaAgent will be com-
pared with the performance of a non-parallel agent called
CpuAgent. The CpuAgent executes the same matrix multi-
plciation code, but adapted to the CPU environment without
parallel execution. The CudaAgentSample tries to execute
the kernel code (via kernel call action) several times on the
CudaAgent and CpuAgent, respectively.

CudaAgentSample sends an ACL Message as the cuda
kernel call action to the CudaAgent. It contains kernel
(source code and ptx code respectively) with the kernel pa-
rameters. Algorithm 2 describes how a kernel call action is
sent. After sending the cuda kernel call action, the CudaA-
gentSample has to wait until receiving the reply from the Cu-
daAgent with a kernel ID. After receiving the kernel ID, the
kernel can be called with pre-set parameters. The kernel does
not have to be sent anymore. The kernel ID indicates that the
kernel is already compiled and ready to use on the side of
CudaAgent.

The second way to send kernel data to the CudaAgent is
using the kernel register action. After sending the kernel reg-
ister action, we receive a reply (same reply as the reply after
sending the kernel call action) containing the kernel id via
overrided the handle methods of instance of the class Mes-
sageParser (described in the next section). This action just
sends the kernel with the parameters to the CudaAgent, but
the kernel will not be run. If we want to run this kernel, we
send another ACL message as the kernel call action with the
kernel id. The difference between the kernel register action
and the kernel call action is shown in Table 1.

Input : Kernel kernel
Output: void
prepare selected kernel;1
make kernel register action;2
wait until received a reply contains a kernel ID;3
create an ACL message with the kernel ID;4
send the ACL message to execute required kernel;5
Algorithm 2: Sending the ACL message: CudaAgentSample→ CudaAgent

Algorithm 3 illustrates the receiving of a result after the
kernel is processed. Moreover, each response is identi-
fied with the conversation ID to manage subsequent pro-
cesses. The kernel result data represents parameters that were
marked as output (a constant COPY TO HOST) parameter
in the kernel call action or possibly in the kernel register ac-
tion. The instance of MessageParser handles the reply of
the ACL message and extracts its content as the kernel re-
sult data. If a transformation fails, the CudaAgent sends an
ACL message with failure performative.

Java emulation kernel has to be implemented to compare
the performance of the CUDA technology with performance

7

CUDA Code Support in Multiagent Platform JADE 329

Input : void
Output: ACLM ACL message

create an instance of MessageParser;1
override method handleInform;2
fill the ACL message with respect to process result;3

Algorithm 3: Receiving the kernel result data: CudaAgent→ CudaAgentSample

of the java platform. CudaAgent supports CUDA technology
for the kernel call. Another agent called AgentCPU extends
the CudaAgent and overrides several methods for kernel call-
ing. It calls the kernel on the java platform instead of kernel
call on the CUDA capable device. This kernel is adapted to
the java platform, which means that the kernel supports only
one thread. Moreover, the kernel is compiled into java byte
code.

A. Performance Tests and Summary Results

A performance test scenario and summary results are de-
scribed in the following part. A central point of the perfor-
mance test consists in the utilization of matrix multiplication
algorithm. Two matrices were generated. One is 1200x80
and the other was 80x1600. The multiplication result is saved
into a third matrix.

The time spent on a kernel call on CudaAgent and CPUA-
gent was measured, respectively. Next, the total time of
sending a request to run a kernel (as the kernel call action)
and back transfer of matrix results to CudaAgentSample was
measured. The kernels were called 2000 times. The compar-
ison of measured times can be seen in figures 7 and 8.

0

20000

40000

60000

80000

100000

120000

1 41 81 12
1

16
1

20
1

24
1

28
1

32
1

36
1

40
1

44
1

48
1

52
1

56
1

60
1

64
1

68
1

72
1

76
1

80
1

84
1

88
1

92
1

96
1

10
01

10
41

10
81

11
21

11
61

12
01

12
41

12
81

13
21

13
61

14
01

14
41

14
81

15
21

15
61

16
01

16
41

16
81

17
21

17
61

18
01

18
41

18
81

19
21

19
61

CPU

GPU

Figure. 7: Time spent on the kernel call [ms]

The figure 7 shows computation times. It is evident that
GPU brings significant improvements in comparison with
the CPU version. Sometimes, there are some jumps in mea-
sured values which caused by system just-in-time workload.
The JADE framework runs as a process with pre-set priority,
which must be lower than the priorities of system processes.
The computation time can be disturbed by requests of display
devices, system memory management (swapping), etc.

Figure 8 illustrates transfer times. Even if the transfer
times seem to be small and almost the same for CPU and
GPU, it is evident, that data transfer within MAS plays an
important role in comparison to the computation time. This
is a general problem in GPU programming, and it is partially
solved in new architectures. On the other hand, some com-
pression algorithm can be used to reduce transfer time, etc.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 43 85 12
7

16
9

21
1

25
3

29
5

33
7

37
9

42
1

46
3

50
5

54
7

58
9

63
1

67
3

71
5

75
7

79
9

84
1

88
3

92
5

96
7

10
09

10
51

10
93

11
35

11
77

12
19

12
61

13
03

13
45

13
87

14
29

14
71

15
13

15
55

15
97

16
39

16
81

17
23

17
65

18
07

18
49

18
91

19
33

19
75

CPU

GPU

Figure. 8: Time spent on received kernel result [ms]

Matrix size Time [ms] copy host to de-
vice [ms]

copy device to
host [ms]

16 x 16 1 1 1

32 x 32 1 1 1

64 x 64 1 1 1

128 x 128 1 2 1

256 x 256 1 2 1

512 x 512 3 4 2

1024 x 1024 28 11 5

2048 x 2048 250 23 13

4096 x 4096 2164 146 71

8192 x 8192 3971 580 197

Table 3: The matrix multiply using jcuda

VIII. Future research and conclusion

A novel approach to parallel programming in the area of
multi-agent system was presented in this article. The im-
plementation of CudaAgent in the Mutli-agent framework
JADE was described in more detail. The benefits of utiliza-
tion of GPU was illustrated in experiments, and the results
were compared with the CPU version. It can be seen that
GPU can increase performance in the MAS system, and it
can be deploy in MAS systems where several tasks are crit-
ical and time-consuming. More complex algorithms should
be tested in the near future, e.g. signal processing or matrix
decomposition, to measure the performance of the proposed
solution and to avoid possible divergences in time measure-
ment.

Acknowledgement

This article has been elaborated in the framework of the
IT4Innovations Centre of Excellence project, reg. no.
CZ.1.05/1.1.00/02.0070 funded by the Structural Funds of
the European Union and the state budget of the Czech Re-
public. The work is partially supported by Grant of SGS
No. SP2013/70, VŠB - Technical University of Ostrava,
Czech Republic. This work was also supported by the Bio-
Inspired Methods: research, development and knowledge
transfer project, reg. no. CZ.1.07/2.3.00/20.0073 funded by
Operational Programme Education for Competitiveness, co-
financed by ESF and state budget of the Czech Republic.

8

Lukas and Petr 330

References

[1] S. Sotiriadis, N. Bessis, Y. Huang, P. Kuonen, and
N. Antonopoulos, “A jade middleware for grid inter-
cooperated infrastructures,” in AINA Workshops, 2011,
pp. 135–140.

[2] C. Guo, Z. Lin, and K. Guo, “Research and implemen-
tation of an enterprise-class mas application develop-
ment framework-jadeee,” in CSCWD (Selected Papers),
2007, pp. 294–303.

[3] M. Baldoni, G. Boella, V. Genovese, R. Grenna, and
L. van der Torre, “How to program organizations and
roles in the jade framework,” in MATES, 2008, pp. 25–
36.

[4] F. T. F. for Intelligent Physical Agents,
“http://www.supercomp.org/sc95/proceedings/-
473 MBER/SC95.HTM,” 2005.

[5] M. Verdicchio and M. Colombetti, “Communication
languages for multiagent systems,” Computational In-
telligence, vol. 25, no. 2, pp. 136–159, 2009.

[6] M. de Weerdt, Y. Zhang, and T. Klos, “Multiagent task
allocation in social networks,” Autonomous Agents and
Multi-Agent Systems, vol. 25, no. 1, pp. 46–86, 2012.

[7] J. Ferber, Multi Agent Systems, An introduction to Dis-
tributed Artificial Intelligence, 1993.

[8] L. Braubach, W. Lamersdorf, and A. Pokahr,
“Jadex: Implementing a BDI-Infrastructure for
JADE Agents,” http://vsis-www.informatik.uni-
hamburk.de/papers/pokahrbraubach2003jadex-
exp.pdf, September 2003.

[9] N. T. M. Khue and N. V. Do, “Building a model of
an intelligent multi-agent system based on distributed
knowledge bases for solving problems automatically,”
in ACIIDS (1), 2012, pp. 21–32.

[10] K. Schelfthout and T. Holvoet, “Object Places: An En-
vironment for Situated Multi Agent Systems,” in Inter-
national Conference on Autonomous Agents and Multi
Agent Systems, AAMAS. IEEE Computer Society,
2004.

[11] B. M. Namee, “A Proposal for an Agent Archi-
tecture for Proactive Persistent Non Player Char-
acters,” http://www.cs.tcd.ie/publications/tech.reports/-
reports.01/TCD-CS-2001-20.pdf, 2001.

[12] A. Kerr, G. F. Diamos, and S. Yalamanchili, “A charac-
terization and analysis of ptx kernels,” in IISWC, 2009,
pp. 3–12.

[13] C. Nyulas, M. J. O’Connor, S. W. Tu, D. L. Buckeridge,
A. Okhmatovskaia, and M. A. Musen, “An ontology-
driven framework for deploying jade agent systems,” in
IAT, 2008, pp. 573–577.

[14] E. J. Friedman-Hill, Jess, The Java Expert System Shell,
Sandia National Laboratories, Livermore, CA, USA,
Mar. 1998.

[15] K. Chouchane, O. Kazar, and A. Aloui, “Agent-
based approach for mobile learning using jade-leap,” in
ICWIT, 2012, pp. 300–305.

[16] A.-H. Tan, Y.-S. Ong, and A. Tapanuj, “A hybrid agent
architecture integrating desire, intention and reinforce-
ment learning,” Expert Syst. Appl., vol. 38, no. 7, pp.
8477–8487, 2011.

[17] F. Capkovic, “Cooperation of hybrid agents in models
of manufacturing systems,” in KES-AMSTA, 2011, pp.
221–230.

[18] J. M. Alberola, J. M. Such, V. J. Botti, A. Espinosa, and
A. Garcı́a-Fornes, “A scalable multiagent platform for
large systems,” Comput. Sci. Inf. Syst., vol. 10, no. 1,
pp. 51–77, 2013.

[19] J. Odell, “The Foundation for Intelligent Physical
Agents,” http://www.fipa.org/, 2006.

[20] F. Zambonelli, “Developing Multi-Agent Systems: The
Gaia Methodology,” 2003.

[21] T. P. Filgueiras, L. C. Lung, and L. de Oliveira Rech,
“Providing real-time scheduling for mobile agents in
the jade platform,” in ISORC, 2012, pp. 8–15.

[22] A. Akramizadeh, A. Afshar, M. B. Menhaj, and S. Ja-
fari, “Model-based reinforcement learning in multia-
gent systems with sequential action selection,” IEICE
Transactions, vol. 94-D, no. 2, pp. 255–263, 2011.

[23] W. the free encyclopedia, “http://en.wikipedia.org,”
2006.

[24] P. Tichý, P. Kadera, R. J. Staron, P. Vrba, and V. Marı́k,
“Multi-agent system design and integration via agent
development environment,” Eng. Appl. of AI, vol. 25,
no. 4, pp. 846–852, 2012.

[25] R. Erol, C. Sahin, A. Baykasoglu, and V. Kaplanoglu,
“A multi-agent based approach to dynamic scheduling
of machines and automated guided vehicles in manu-
facturing systems,” Appl. Soft Comput., vol. 12, no. 6,
pp. 1720–1732, 2012.

[26] C. Boutilier, “Learning conventions in multiagent
stochastic domains using likelihood estimates,” CoRR,
vol. abs/1302.3561, 2013.

[27] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa,
“JADE - A White Paper,” 1999.

[28] A. Schuldt, J. D. Gehrke, and S. Werner, “Designing a
simulation middleware for fipa multiagent systems,” in
IAT, 2008, pp. 109–113.

[29] D. B. Kirk and W. mei W. Hwu, Programming Mas-
sively Parallel Processors: A Hands-on Approach (Ap-
plications of GPU Computing Series). Morgan Kauf-
mann, Feb. 2010.

[30] Khronos, “Khronos: Opencl,”
http://www.khronos.org/opencl/.

9

CUDA Code Support in Multiagent Platform JADE 331

[31] nVIDIA, “nVIDIA Fermi - White Paper,”
http://www.nvidia.com/content/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.
pdf, 2012.

[32] D. Kumar and M. A. Qadeer, “Fast heterogeneous com-
puting with cuda compatible tesla gpu computing pro-
cessor (personal supercomputing),” in ICWET, 2010,
pp. 925–930.

[33] G. Caggianese and U. Erra, “Gpu accelerated multi-
agent path planning based on grid space decomposi-
tion,” Procedia CS, vol. 9, pp. 1847–1856, 2012.

[34] M. Ciznicki, M. Kierzynka, P. Kopta, K. Kurowski,
and P. Gepner, “Benchmarking data and compute inten-
sive applications on modern cpu and gpu architectures,”
Procedia CS, vol. 9, pp. 1900–1909, 2012.

[35] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi
gf100 gpu architecture,” IEEE Micro, vol. 31, no. 2, pp.
50–59, 2011.

[36] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning
gemm kernels for the fermi gpu,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 23, no. 11, pp. 2045–2057, 2012.

[37] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and
N. Sun, “Fast implementation of dgemm on fermi gpu,”
in SC, 2011, p. 35.

[38] B. H. H. Juurlink and C. Meenderinck, “Amdahl’s law
for predicting the future of multicores considered harm-
ful,” SIGARCH Computer Architecture News, vol. 40,
no. 2, pp. 1–9, 2012.

[39] K. W. Cameron and R. Ge, “Generalizing amdahl’s law
for power and energy,” IEEE Computer, vol. 45, no. 3,
pp. 75–77, 2012.

[40] J. L. Gustafson, “Amdahl’s law,” in Encyclopedia of
Parallel Computing, 2011, pp. 53–60.

[41] nVIDIA, “Cuda Programming Guide,” http:
//developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA C Programming Guide.pdf,
2012.

[42] I. Vondrák, Úvod do softwarového inžen´yrstv (in
Czech). VB–Technical University of Ostrava, 2002.

[43] R. Farber, CUDA Application Design and Develop-
ment, 1st ed. Morgan Kaufmann, 2011.

[44] I. Vondrák, Methods of Business Modeling. VŠB-
TUO, Ostrava, 2004, vol. I.

[45] C.-J. Su and C.-Y. Wu, “Jade implemented mobile
multi-agent based, distributed information platform for
pervasive health care monitoring,” Appl. Soft Comput.,
vol. 11, no. 1, pp. 315–325, 2011.

[46] F. Bellifemine, “Java Agent Development Framework
Documentation,” http://jade.tilab.com/, 2005.

[47] Ryerson, “JADE Documentation,”
http://www.scs.ryerson.ca/%7edgrimsha/jade/doc/-
index.html, 2006.

[48] R. R. de Azevedo, E. R. D. Galvão, R. C. dos San-
tos, C. M. de Oliveira Rodrigues, F. Freitas, and M. J.
Siqueira, “An autonomic multiagent system ontology-
based for management of security of information,” in
ICITST, 2009, pp. 1–9.

[49] A. Sarkar, U. Marjit, and U. Biswas, “A middleware ar-
chitecture for secure service discovery using ontologies
with multiagent approach,” IJISSC, vol. 3, no. 1, pp.
47–55, 2012.

[50] V. Dignum, “Ontology support for agent-based simu-
lation of organizations,” Multiagent and Grid Systems,
vol. 6, no. 2, pp. 191–208, 2010.

Author Biographies

Lukáš Zaorálek is a PhD student at the Department of
Computer Science of VŠB-Technical University of Ostrava.
His research interests involve soft-computig.

Petr Gajdoš is an Assistant Professor at the Department
of Computer Science of VŠB-Technical University of Os-
trava. He did his Ph.D. Degree in Informatics and Applied
Mathematics at the same university in 2006. Nowadays, his
research is primarily focused on parallel programming, soft-
computing and application of bio-inspired methods.

10

Lukas and Petr 332

