
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume6(2014) pp.55-65
c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Two Way Concurrent Buffer System without
Deadlock in Various Time Models Using Timed

Automata
Rohit Mishra, Md Zeeshaan and Sanjay Singh

Department of Information and Communication Technology,
Manipal Institute of Technology, Manipal University

Manipal-576104, India
sanjay.singh@manipal.edu

Abstract: Two way buffer system is a system that exhibits
transfer of data using two buffers concurrently. It includes pro-
cesses that synchronize to exchange data with each other along
with executing certain delays between these synchronizations.
In existing Tiny Two Way Buffer System, both generators pro-
duce packets in half duplex manner in no time, deterministic
time, and non deterministic time. Analysis of the model for
above time options leads the model in deadlock. The model can
be out of the deadlock if timings in the model is incorporated
in alternative fashion. The generators produce packets after a
delay of 10 seconds. However, generator one has an initial shift
of 5 seconds after which it begins sending a packet every 10 sec-
onds. Hence, initial delay for generator one is 15 seconds and
for generator two it is 10 seconds. Due to this initial shift, both
generators produce packets alternatively and is deadlock free as
the packets do not meet at the same time instant. Moreover, the
existing system model is not concurrent and hence takes more
time for packet transfer in every iteration. In this paper we have
proposed a model of buffer system using an additional dummy
buffer for transfer of data packets, we thus checking the model
with various time models as no time, deterministic time and non
deterministic time. The results of proposed model under above
time models are in deadlock. We achieve deadlock free situation
by introducing appropriate delay in various buffers of the pro-
posed system, the delay timing is nondeterministic time. The
new approach speeds up the transfer of packets, as a result the
transfer of data becomes concurrent, deadlock free and hence
the model proposed is time efficient. To model and simulate
the proposed system we have used UPPAAL as a model check-
ing tool environment for modeling, validation and verification
of real-time systems modeled as networks of timed automata.
Simulation results shows that the proposed two way buffer sys-
tem is fully concurrent and time efficient as compared to the
existing buffer system.
Keywords: Timed Automata, Model Checking, UPPAAL, Real
Time Systems, Concurrent Buffer System

I. Introduction

Industrial embedded systems are hardware systems that have
associated software to operate them and which perform spe-

cific functionality. Such systems are often highly concur-
rent with several parallel components operating together [1].
These components have synchronizations and dependencies
between them that make such systems highly complex. The
formal approaches are used to design models of completely
new systems as well as to evaluate the existing systems. The
correctness of these models becomes very crucial since they
form input for the design of the actual software that controls
the operations of the system hardware. Simulation is one ap-
proach that allows the analysis of certain behavioral aspects
of the system. However, it is also essential to ensure that the
system behaves accurately under all possible circumstances.
Embedded systems with hard real time constraints are very
time-specific and require the verification of time-specific lo-
gistic rules. In such cases, model checking approaches that
also allow time based verification needs to be considered.
The main purpose of this work is to perform time based
model checking on such an industrial system.
However the accurate time-based verification requires the
translation of the current design models of the system to for-
mal semantics of existing modeling languages and analysis
of the entire state space of the system by means of state-
of-the-art model checkers. Several model checkers are suit-
able for this kind of verification such as UPPAAL [2][3],
mCRL2 [4] and other temporal logic model checkers [5].
These model checkers can be used to model highly concur-
rent systems and perform verification of required properties.
In this paper we have used UPPAAL as model checking tool
which allows verification of the required properties on the
system for all its dynamic behaviors. This paper is the ex-
tended version of our earlier work [6].
The remaining paper is organized as follows. Section II ex-
plains the concept of timed automata. Section III briefly
describe about the Various modeling approaches. Section
IV explains various Time Models which affects the dead-
lock condition. section V describes the model checking tool
UPPAAL. Section VI examines the limitation of the exist-
ing tiny two way buffer system. Section VII discusses about
the proposed two way buffer system. Section VIII explains
about the time analysis of proposed system. Section IX de-
scribes about the UPPAAL model of proposed buffer system

1

Dynamic Publishers, Inc., USA



in no time. Section X describes about the UPPAAL model
of proposed buffer system in deterministic time. Section XI
describes about the UPPAAL model of proposed buffer sys-
tem in non-deterministic time for no deadlock. Section XII
discusses about buffer sizing of the proposed system which
affects the efficiency of the overall system. Section XIII de-
scribes the scope of the work and the future enhancement.
Finally, a conclusion has been drawn in section XIV.

II. Timed Automata

A timed automaton (TA) is a finite-state machine extended
with clock variables. It uses a dense-time model where
a clock variable evaluates to a real number [7]. All the
clocks progress synchronously. A timed automaton manip-
ulate clocks, evolving continuously and synchronously with
absolute time.
The elements of TA include:

• Each transition of such an automaton is labeled by a
constraint over clock values (also called guard), which
indicates when the transition can be fired

• A set of clocks to be reset when the transition is fired

• Each location is constrained by an invariant, which re-
stricts the possible values of the clocks for being in the
state, which can then enforce transition to be taken

• The time domain can be N, the set of non-negative inte-
gers, or Q, the set of non-negative rationals, or even R,
the set of non-negative real numbers

Definition: Timed Automaton: A timed automaton is a tu-
ple (L, l0, C, A, E, I) where,

• L is a set of locations,

• l0 ∈ L is the initial location,

• C is the set of clocks,

• A is a set of actions, co-actions and the internal τ -
action,

• E ⊆ L×A×B(C)× 2C ×L is a set of edges between
locations with an action,

• B(C) is a set of conjunctions over simple conditions of
the form x ./ c or x − y ./ c, where x, y ∈ C, c ∈ N
and ./∈ {<,≥,=,≤, >}

• a guard and a set of clocks to be reset and

• I : L→ B(C) assigns invariants locations.

III. Various Modeling approaches

These days there are many model checking tools used to
model and adopt different aspects towards verification. SMV
is the first model checker to use Binary Decision Diagrams
(BDDs) [8], which are data structures used to represent
boolean functions. mCRL2 [9] is a model checker based on
a specification language for describing concurrent discrete
event systems and which uses mu-calculus [10] for its speci-
fications. Spin is used to perform verification on distributed

systems and uses Linear Temporal Logic (LTL) to specify
its properties [11]. HyTech is designed for reasoning about
temporal requirements in hybrid systems [12].
Temporal logic model checkers are most reliable to perform
model checking on the machines where the properties to be
verified are time specific. The properties stating that an event
can eventually happen or always happen after a given period
of time is possible through temporal logic. Using temporal
logic it is possible to represent time specific properties cru-
cial for real time system we have designed.
There are various model checking tools that are used to per-
form the kind of verification for the two way buffer system
which is a real time system. Uppaal is the model checker for
real time systems that uses the concept of timed automata for
modeling purposes and a variant of Computation Tree Logic
(CTL) for its specifications [13].

IV. Various Time Models

The verification of the system requires the evaluation of var-
ious multiple time models as follows:

• No time: It is a model of the system that does not con-
sider the time taken by different actions and mainly con-
siders the various possible sequences of interactions be-
tween the components. Verification on a system with
no time ensures that all possible scenarios are consid-
ered and hence a system which satisfies a property with
no time always satisfies the property.

• Deterministic time: In this model, specific time dura-
tions are assigned to all actions and the system is ana-
lyzed for this timing behavior. With deterministic time
only a particular time sequence or behavior is consid-
ered. If a property is violated in the untimed version
of the system, the system is not necessarily incorrect.
This is because the property might be satisfied in the
deterministic model of the system for all realistic time
sequences which can occur in the actual machine.

• Non-deterministic time: This model allows actions to
occur non deterministically within time intervals. This
allows verification to be performed on a system with
variable timings within given realistic ranges. Since
the industrial systems have timing involved in them
and the time duration of activities can vary, the non-
deterministic models with time give the most realistic
models of the industrial machines. However, since the
timing variations are within very small limits, the deter-
ministic models can be efficiently used to analyze the
behavior of the system.

V. UPPAAL - Model Checking Tool

In TA, notion of time is introduced by clock variables, which
are used in clock constraints to model time-dependent be-
havior. Systems comprising multiple concurrent processes
are modeled by networks of timed automata, which are ex-
ecuted with interleaving semantics and synchronization on
channels. UPPAAL is a tool set for the modeling, simu-
lation, animation and verification of networks of timed au-
tomata. The UPPAAL model checker enables the verification

Mishra et al.56



of temporal properties, including safety, liveness and reach-
ability properties. The simulator can be used to visualize
counterexamples produced by the model checker in case the
given specification is not satisfied by the model.
The UPPAAL modeling language extends timed automata
by introducing bounded integer variables, binary and broad-
cast channels, and urgent and committed location. Timed
automata are modeled as a set of locations, connected by
edges. The initial location is denoted by }. Invariants can
be assigned to locations which enforce synchronization be-
tween them. Edges may be labeled with guards, synchro-
nizations and updates. Updates are used to reset clocks and
to manipulate the data space. Processes synchronize by send-
ing and receiving events through channels. Sending and re-
ceiving via a channel ’c’ is denoted by c! and c?, respec-
tively. Binary channels are used to synchronize one sender
with a single receiver. A synchronization pair is chosen non-
deterministically if more than one channel is enabled. Broad-
cast channels are used to synchronize one sender with an ar-
bitrary number of receivers. Any receiver that can synchro-
nize must do so. Urgent and committed locations are used
to model locations where no time may pass. Committed lo-
cations enforce that the synchronization is atomic and are
denoted by the symbol c©. Leaving a committed location has
priority over leaving non-committed locations.
A UPPAAL model comprises three parts: global declara-
tions, parameterized timed automata and a system declara-
tion. In the global declarations section, global variables, con-
stants, channels and clocks are declared. In the system dec-
laration, TA templates are instantiated and the system to be
composed is given as a list of TA.

VI. Existing Tiny Two Way Buffer System

The existing system consists of two generators, two buffers,
and two exits as shown in Figure 1 [1]. The first generator
G1 repeatedly produces packets. This packet is received over
channel ’a’ by buffer M1 which sends it over channel ’c2’.
The packet is received over this channel by a second buffer
M2 which again sends it over channel ’e’ to be received by
the exit E2. Similarly, the second generator G2 repeatedly
generates packets and sends them over channel ’b’. This is
received by buffer M2 which sends it over channel ’c1’ to
buffer M1. M1 again forwards the packet over channel ’d’ to
exit E1. This system, obviously, has a deadlock which occurs
when both G1 and G2 produce packets at the same instant of
time.
In that case, the packet is received by the buffers M1 and M2
respectively at the same time. As a result, both M1 and M2
wait to send packets to each other and the system deadlocks.
Verification of the system has been done for various time
models as for no time, deterministic time and non determin-
istic time. and it is giving significance results as for no time,
deterministic time and nondeterministic time deadlock prop-
erty not satisfied in the Uppaal user interface ie deadlock oc-
curs with no time, deterministic time and nondeterministic
time.
In order to study a system with no deadlock, a slightly mod-
ified version of the tiny two way buffer system was consid-
ered [1]. In this system, both generator G1 and G2 produce a
packet after a delay of 10 seconds. However, G1 has an ini-

tial shift of 5 seconds after which it begins sending a packet
every 10 seconds. Hence, initial delay for G1 is 15 seconds
and for G2 it is 10 seconds. Due to this initial shift of 15 sec-
onds at G1 and 10 seconds delay at G2 the time consumption
in waiting to maintain synchronization in transfer of packets
is more.

Figure. 1: Existing Model of Two Way Buffer System

VII. Proposed Two Way Buffer System

In this paper we have proposed a two way buffer system
which consists of two generators, three buffers and two exits.
The generators generate the packets to be transferred until it
reaches the exits. Figure 2 depicts the proposed model.

Figure. 2: Proposed Model of Two Way Buffer System

First, the generator G1 repeatedly produces packets. This
packet is received over the channel ’a’ by buffer M1. The
packet is received by buffer M2 over channel ’e’ and sends
it to exit E1 via the channel ’c’. Similarly, the second gen-
erator G2 repeatedly generates packets and sends them over
channel ’b’. This is received by buffer M2 which sends it
over an intermediate dummy buffer Md through channel ’g’.
The dummy buffer sends the packet to buffer M1 via channel
’f’. M1 again forwards the packet over channel ’d’ to exit E1.
This process is repeated infinitely until it is stopped. We are
incorporating the delay (θ) in transmission of packet at buffer
M1 and waiting for M2 to be free. After waiting, buffer M1
will release the packet and send it to M2. On the other di-
rection the packet released from M2 will reach at buffer Md,
now Md will wait until M1 is free. Then Md will release the
packet and send it M1. Based on the clocks being synchro-
nized the data is transferred concurrently. The two way data
packet transfer through the proposed system is concurrent.
The deadlock is avoided as there is a continuous synchro-
nization of time between each of the entities modeled.
The Timed Automata representation of the proposed two way
concurrent buffer system is shown in Fig 3.

VIII. Timing Analysis

In this section, the timing analysis of individual buffers, entry
and exit points has been done.
Notations used:

Two Way Concurrent Buffer System without Deadlock in Various Time 
Models Using Timed Automata 57



Figure. 3: Timed Automata Representation of Proposed Two
Way Buffer System

• ζ : Time required over the channel for transfer of pack-
ets from one location to next consecutive location

• θ : Delay in transmission time of packet at buffer M1
and Md

• α : Iteration time for every transfer of packet from gen-
erator to exit in both the directions

At G1, time required to move the packet from G1 to M1 is
ζ time units. At M1 it will wait for θ time units, because it
has to wait for M2 to be free, after waiting θ time units M2
will be free. So, total time at M1 is ζ + θ time units. Time to
reach from M1 to M2 will take ζ time units, so the total time
at M2 is 2ζ + θ time units. The time to reach from M2 to
E1 is ζ time units, so the total time at exit point E1 is 3ζ + θ
time units. Thus the time taken for transfer of packet from
G1 to E1 is 3ζ + θ time units. Additional delay of ζ time
units is added to perform synchronization with G2. For next
iteration G1 will release the packet at 4ζ + θ time units.
On the other end at entry point G2 the packet is ready at 0th

time unit. Time taken by a packet to move from G2 to M2
requires ζ time units, total time required at M2 is ζ time unit.
From M2 to Md , the time required is ζ time units, and there
is a delay in the buffer Md, so total time at Md is 2ζ+ θ time
units. At Md it will wait for θ time units. Because it has to
wait for M1 to be free, after waiting θ time units M1 will be
free. The time taken to move the packet from Md to M1 is ζ
time unit, now total time at M1 is 3ζ + θ. On the other side
M1 will move the packet to exit E2 and the time taken is ζ
time unit, now the total time at E2 is 4ζ+θ time units. At this
point on completion of one cycle G2 is ready at 4ζ + θ time
units. In this way the synchronization is maintained because
G1 and G2, releasing the packets at 4ζ + θ time units in ei-
ther direction. Also the concurrency is maintained as packet
transfer is concurrent in both the directions throughout the
system.
Below is the mathematical form of timing analysis and cer-
tain assumptions:
Assumptions: Let α be a iteration number, θ be the delay at
buffer and ζ be the delay duration of channel.

• Time for subsequent packet transfer at generators G1 or
G2 is:
For α = 0, the packet is ready at 0 time units;
For α = 1, time consumed is 4ζ + θ time units;

For α = 2, time consumed is 8ζ + 2θ time units;

In general
∞∑
α=0

[α(4ζ + θ)].

At G2, first packet will transfer without any delay at
3ζ + θ, but one additional delay is provided to synchro-
nize with G2.

• When M1 receives a packet from G1, the timing analy-
sis is done as follows:
For α = 0, time consumed is ζ + θ ;
For α = 1, time consumed is 5ζ + 2θ units;
For α = 2, time consumed is 9ζ + 3θ units;

In general
∞∑
α=0

[ζ + θ + α(4ζ + θ)]

• When M1 receives a packet from Md, the timing analy-
sis is done as follows:
For α = 0, time consumed is 3ζ + θ ;
For α = 1, time consumed is 7ζ + 2θ units;
For α = 2, time consumed is 11ζ + 3θ units;

In general
∞∑
α=0

[3ζ + θ + α(4ζ + θ)]

• When M2 receives a packet from M1, the timing analy-
sis is done as follows:
For α = 0, time consumed is 2ζ + θ ;
For α = 1, time consumed is 6ζ + 2θ units;
For α = 2, time consumed is 10ζ + 3θ units;

In general
∞∑
α=0

[2ζ + θ + α(4ζ + θ)]

• When M2 receives a packet from G2, the timing analy-
sis is done as follows:
For α = 0, time consumed is ζ ;
For α = 1, time consumed is 5ζ + θ units;
For α = 2, time consumed is 9ζ + 2θ units;

In general
∞∑
α=0

[ζ + θ + α(4ζ + θ)]

• When Md receives a packet from M2, the timing analy-
sis is done as follows:
For α = 0, time consumed is 2ζ + θ ;
For α = 1, time consumed is 6ζ + 2θ units;
For α = 2, time consumed is 10ζ + 3θ units;

In general
∞∑
α=0

[2ζ + θ + α(4ζ + θ)]

• When E1 receives a packet from M2, the timing analysis
is done as follows:
For α = 0, time consumed is 3ζ + θ ;
For α = 1, time consumed is 7ζ + 2θ units;
For α = 2, time consumed is 11ζ + 3θ units;

In general
∞∑
α=0

[3ζ + θ + α(4ζ + θ)]

• When E2 receives a packet from M1, the timing analysis
is done as follows:
For α = 0, time consumed is 4ζ + θ ;
For α = 1, time consumed is 8ζ + 2θ units;

Mishra et al.58



For α = 2, time consumed is 12ζ + 3θ units;

In general
∞∑
α=0

[4ζ + θ + α(4ζ + θ)]

The pseudocode for the system proposed:
// Initial state is current state
while(new_packet=TRUE)

check(delay)
if(buffer.next = TRUE)

delay = 0 //Assigning zero delay
if(delay = = 0)

transition(l, lˆi)
l=l’
l’=next_location
if(buffer.next = free)

decrement_delay
check(delay)

Here l, li are the locations as per the timed automata formal-
ism. Check() function verifies if there is any packet on the
opposite way being transferred then it will delay the packet
in the corresponding buffer.

IX. Uppaal Model of proposed buffer system
without time

This kind of model of the system has no delay incorporated
as there is no time. Hence, the delay variables are all null in
this system. This system has a deadlock when both genera-
tors produce a packet at the same time which are received by
M1, M2 and Md. The buffers wait for each other to be free
so they can forward their packets and the system deadlocks.
The location marked with red indicates where the control is
at the moment.

A.

Generators G1 and G2 has no delay so they do not wait. as
the new packet generates it transfers that to next channel. as
shown in the Fig 4.

Figure. 4: Generators G1 nad G2 in no time

B.

Similar to generators, buffers will transfer the packets to next
channel as they received it without any delay. as shown in the
Fig 5.

Figure. 5: Buffers M1, M2 and Md in no time

Two Way Concurrent Buffer System without Deadlock in Various Time 
Models Using Timed Automata 59



C.

Similar to Generators and buffers Exits also forward the
packets as they receive it. as shown in the Fig 6.

Figure. 6: Exit E1 and E2 in no time

D.

Verifier gives the result for deadlock, because ”no time” ap-
proach violates the Proposed two way concurrent buffer sys-
tem timings where we require slight delay at various posi-
tions to make the system concurrent. as shown in the Fig 7.

Figure. 7: verification result for no time

X. Uppaal Model of proposed buffer system in
Deterministic time

In this section, some deterministic time is added to the sys-
tem. The generator, G1, produces a packet every α sec-
onds and the generator G2 produces packets every β sec-

onds. Also, after receiving a packet the intermediate buffers
M1,M2 and Md delay for γ seconds each before forwarding
the packets to the respective exits. This process repeats over
time. One possibility is that α is delay 10, β is delay 1 and γ
is delay 2. It can be observed easily that there exists a dead-
lock in the system at time 10 seconds when both generators
produce a packet at the same time.

A.

Generators G1 and G2 will transfer the packets only when
clock hits particular time not before and not after. so giving
delay with this time system is logically difficult. in Fig 8 be-
low transfer of packets will occur only at 0th and 5th second.

Figure. 8: Generators G1 and G2 in deterministic time

B.

Similar to generators the time is deterministic. the buffers
will release the packets only at 0th, 1st, and second second.
this is shown in Fig 9

C.

Similar to generators and buffers the exits E1 and E2, release
the packets at particular time as shown in the Fig 10 below.

D.

The verification results for proposed model is shown in the
Fig 11 below. The model is in Deadlock, because determin-
istic time approach violates the Two way concurrent buffer
system timings where we require slight delay on or before a
particular time, at various positions to make the system con-
current.

XI. Uppaal Model of proposed buffer system in
non-deterministic time with no deadlock

Timing model on various states in the UPPAAL model for
no deadlock is non deterministic time. in the figure below
the model is incorporated with the time which is non deter-
ministic. For the proposed two way buffer system, each com-
ponent of the system is denoted by a separate automaton on
the model.

Mishra et al.60



Figure. 9: Buffers M1, M2 and Md in deterministic time

Figure. 10: Exit E1 and E2 in deterministic time

Figure. 11: verification result for deterministic time

A.

G1 and G2 has been modeled as an automaton with two lo-
cations as shown in Fig 12. In G1 on transition, the packet
is sent over the channel ’a’ by the send operation a!, with a
guard condition of x ≥ 0 and invariant x ≤ 5 when it moves
to next location. So that next packet will not be produced
until that time and once the packet is transferred through all
the components, the guard condition is checked for x ≥ 5.
In G2 on transition, the packet is sent over the channel ’d’ by
the send operation d!, with a update of x=0, when it moves to
next location and checks for invariant x ≤ 5 at that location.
This is depicted below in Fig 12.

Figure. 12: Generators G1 and G2 for non deterministic time

B.

The model of buffer M1 consists of three locations. Firstly,
when it receives a packet from G1 over the channel ’a’ by
the receive operation a?, with a guard condition x ≥ 0 and

Two Way Concurrent Buffer System without Deadlock in Various Time 
Models Using Timed Automata 61



invariant x ≤ 3 it reaches to the next location. The packet re-
ceived and is ready to be sent over the channel ’b’ by the send
operation b! to buffer M2. This is done with a guard condi-
tion x > 2 and it updates the clock time to x = 3. Similarly
when it receives packet from M2 through the channel ’f’ by
receive operation f?. The packet is then sent to E2 through
the channel ’g’ through send operation g!. Fig 13 depicts the
model of Buffer M1.

Figure. 13: Buffer M1 for non deterministic time

C.

Buffer M2 is also modeled on similar lines but with different
invariant constraints which is shown in Fig 14.

Figure. 14: Buffer M2 for non deterministic time

D.

The dummy buffer Md , Clock variable, E1 and E2 are mod-
eled as shown in Fig 15.

E.

The simulation results of the proposed two way concurrent
system given by UPPAAL are shown in the Fig 16 where the
packet goes in the same sequence as describes in section VII.
In UPPAAL, the simulation has two ways to start, in first way
G1 initiate the packet after that G2 which is shown in Fig 16
(a), in second way G2 initiate the packet after that G1, which
is shown in Fig 16 (b).
We have modeled the proposed two way buffer system in UP-
PAAL. The main purpose of this work is to verify the model
with respect to a requirement specification. Like the model,
the requirement specification is expressed in a formally well-
defined language [14]. UPPAAL tool has been used to test
three properties reachability, safety (Deadlock) and liveness.

(a). Reachability: The reachability property is described
as ’Does there exist a path starting at the initial state,
such that ϕ is eventually satisfied along that path’ [15].
This specification in UPPAAL is expressed as E<>
M1.G2 receive. This property checks for a path from

Figure. 15: Clock, Exits E1 and E2, Dummy buffer Md for
non deterministic time

Figure. 16: Simulation results for Two way concurrent
buffer system for non deterministic time

Mishra et al.62



M1 to G2 and the proposed model satisfies this prop-
erty. The verification result of reachability property is
shown in Fig 17.

Figure. 17: Reachability Property satisfied for non determin-
istic time

(b). Safety: Safety property is of the form ’For the path for-
mula ϕ covering all the states (locations) there is no
deadlock in the system’. The safety specification in
UPPAAL is expressed as A[] no deadlock. This prop-
erty checks for deadlock and the proposed model satisfy
this property. The Fig 18 depicts the satisfiability of the
safety property.

Figure. 18: Safety Property satisfied for non deterministic
time

(c). Liveness: In the model when a packet is sent it should
eventually be received. This specification in UPPAAL
is expressed as G1.send −−> E1.receive. It checks
whether E1 is eventually receiving the packet sent from
G1 and in the result which is shown in Fig 19 this prop-
erty is satisfied.

Figure. 19: Liveness Property satisfied

XII. Buffer Sizing

Buffer system widely used in routers, Buffer sizing is very
important aspect of the buffer system. As the proposed Two
Way Buffer System may be over buffered in a high speed
network system and be unusable and can lead to many com-
plaints of congestion [16]. But keeping aspects of buffer siz-
ing standards can reduce the chances of congestion or any
other flaws in high speed networks too. The paragraph be-
low is giving light on the buffer sizing constraints.
Internet routers are packet switches, and therefore buffer
packets during times of congestion. Arguably, router buffers
are the single biggest contributor to uncertainty in the Inter-
net. Buffers cause queuing delay and delay-variance; when
they overflow they cause packet loss, and when they under-
flow they can degrade throughput. Given the significance of
their role, we might reasonably expect the dynamics and siz-
ing of router buffers to be well understood, based on a well-
grounded theory, and supported by extensive simulation and
experimentation [16].
Router buffers are sized today based on a rule-of-thumb com-
monly attributed to as discussed in [17] . Using experimen-
tal measurements of at most eight TCP flows on a 40 Mb/s
link, they concluded that because of the dynamics of TCP’s
congestion control algorithms a router needs an amount of
buffering equal to the average round trip time of a flow that
passes through the router, multiplied by the capacity of the
router’s net-work interfaces.
This is the well-known [16]

B = RTT ∗ Crule (1)

Network operators follow the rule-of-thumb and require that
router manufacturers provide 250ms (or more) of buffering
[18]. The rule is found in architectural guidelines [19], too.
Requiring such large buffers complicates router design, and
is an impediment to building routers with larger capacity.

Two Way Concurrent Buffer System without Deadlock in Various Time 
Models Using Timed Automata 63



For example, a 10Gb/s router line card needs approximately
50ms10Gb/s= 2.5Gbits of buffers, and the amount of buffer-
ing grows linearly with the line-rate [20].
It is not well understood how much buffering is actually
needed, or how buffer size affects net-work performance
[21].
Overall study of buffer sizing lights on the usability of small
buffers in the high speed network. significantly smaller
buffers could be used in backbone routers without a loss in
network utilization [16].

XIII. Scope of Work and Future Enhancement

The Two way buffer system can be used in the backbone of
the network where two way transfer of the packet is required
on a single line. The two way system will provide slight de-
lay in the channel and support for concurrent packet transfer.
The buffer system mainly used in routers. There are various
kind of routers available in the market which fulfills different
purposes. The Two way buffer system is most appropriate
for core routers which are used in backbone of the network,
subscriber edge routers this type of router belongs to an end
user (enterprise) organization. The Two Way Buffer System
is also appropriate for the system where there is heavy traffic
of packets from one way and less traffic from other way.
This research is beyond the scope of Ultra high speed net-
work (GBPS) where optical links are used to transfer the
data. This can be done by making ”Two Way Concurrent
Buffer System” more specific to this kind of networks, by
keeping constraints of such system in mind.

XIV. Conclusion

The existing two way tiny buffer system when modeled us-
ing the UPPAAL tool it satisfy only the safety property only.
The system is not time efficient because of unusual delays
in transmission of packets of some buffer locations. In this
paper we have tried to overcome the drawback of the exist-
ing tiny two way buffer system by incorporating a dummy
buffer Md. The entire model has been modeled and veri-
fied in UPPAAL which incorporates the concepts of Timed
Automata. The simulation result has satisfied all the three
properties namely Safety, Liveness and Reachability, also it
is fully concurrent.

References

[1] S. Adyanthaya, “Formal time-based modelling and ver-
ification of industrial machines,” TUe Master Thesis,
2011.

[2] G. Behrmann, A. David, and K. Larsen, “A tutorial on
uppaal,” Formal Methods for the Design of Real-Time
Systems, pp. 200–236, 2004.

[3] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and
W. Yi, “Uppal - a tool suite for automatic verification of
real time systems,” Verification and Control of Hybrid
Systems, pp. 232–243, 1995.

[4] J. F. Groote, A. Mathijssen, M. Reniers, Y. S. Usenko,
and M. van Weerdenburg, “The formal specification

language mcrl2,” in Seminar Proceedings, Interna-
tionales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Dagstuhl, Germany, 2006.

[5] Wikipedia, “Model checking,” [Available Online]
http://en.wikipedia.org/wiki/Model checking, 2012.

[6] R. Mishra, M. Zeeshaan, and S. Singh, “Modeling two
way concurrent buffer system using timed automata in
uppaal,” in Information and Communication Technolo-
gies (WICT), 2012 World Congress on, 30 2012-nov. 2
2012, pp. 846 –851.

[7] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey,
“Quantitative analysis of real-time systems using priced
timed automata,” Communications of the ACM, pp. 78–
87, 2012.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri,
“Nusmv: a new symbolic model checker,” Interna-
tional Journal on Software Tools for Technology Trans-
fer, vol. 2, p. 2000, 2000.

[9] J. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stap-
pers, C. Tankink, Y. Usenko, M. v. Weerdenburg,
W. Wesselink, T. Willemse, and J. v. d. Wulp, “The
mcrl2 toolset,” in Proceedings of the International
Workshop on Advanced Software Development Tools
and Techniques (WASDeTT 2008), 2008.

[10] E. A. Emerson, “Model checking and the mu-calculus,”
in DIMACS Series in Discrete Mathematics. American
Mathematical Society, 1997, pp. 185–214.

[11] G. Holzmann, Spin model checker, the: primer and ref-
erence manual. Addison-Wesley Professional, 2003.

[12] T. A. Henzinger, P.-H. Ho, and H. Wong-toi, “Hytech:
A model checker for hybrid systems,” Software Tools
for Technology Transfer, vol. 1, pp. 460–463, 1997.

[13] K. G. Larsen, “Symbolic and compositional reachabil-
ity for timed automata,” in Proceedings of the 4th inter-
national conference on Reachability problems. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 24–28.

[14] M. Huth and M. Ryan, Logic in Computer Science.
Newyork: Cambridge University Press, 2004.

[15] G. Behrmann, A. David, and K. Larsen, “A
tutorial on uppaal 4.0,” [Available Online]
www.it.uu.se/research/group/darts/papers/texts/new-
tutorial.pdf, 2006.

[16] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing
router buffers,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 281–292, Aug. 2004.

[17] Villamizar, Curtis, Song, and Cheng, “High perfor-
mance tcp in ansnet,” SIGCOMM Comput. Commun.
Rev., vol. 24, no. 5, pp. 45–60, October 1994.

[18] Cisco, “High-performance, mobile, and se-
cure user experience,” [Available Online]
http://www.cisco.com/en/US/prod/collateral/modules/index.html,
2011.

Mishra et al.64



[19] R. Bush and D. Meyer, “Some internet architec-
tural guidelines and philosophy,” [Available Online]
http://bgp.potaroo.net/ietf/rfc/PDF/rfc3439.pdf, De-
cember 2002.

[20] Cisco, “Deploy differentiated services while
protecting investments,” [Available Online]

http://www.cisco.com/en/US/products/hw/routers/ps167/index.html,
2005.

[21] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C.
Doyle, “Dynamics of TCP/RED and a scalable con-
trol,” in IEEE Infocom, June 2002, 2002.

Two Way Concurrent Buffer System without Deadlock in Various Time 
Models Using Timed Automata 65


