
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 66 -76

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

An FPGA Implementation of 1553 Protocol

Controller

JEMTI JOSE
Dept. of Electronics and Communication Engineering

St. Joseph’s College of Engineering and Technology

Palai, Kerala, India

jemtijose@gmail.com

Abstract: In a modern military avionics system all the devices

need to communicate as efficiently as possible with a minimum

amount of hardware. 1553 is a dual- redundant, bi-directional,

Manchester encoded, digital time division command/ response

data bus which eliminates the use of point-to-point wiring. It

uses a shielded twisted pair wire for data transfer. This bus can

allow communication between any devices (maximum of 31)

connected to it. Even though 1553 is an old standard (developed

in early 1970s), it is an inevitable part of almost all aircrafts of

today. Compared to other avionics data bus standards 1553 is

known for its reliability and flexibility. With the presented

method, the protocol controller is modeled as state machine in

HDL. This paper describes implementation of the Military data

bus standard MIL-STD-1553 onto a Xilinx based FPGA

platform.

Keywords: 1553 data bus, Bus Controller (BC), Remote Terminal

(RT), Command Word (CW), Data Word (DW), Status Word (SW),

FPGA, HDL.

I. Introduction

MIL-STD-1553 is a popular multiplex data bus standard

which is originally developed by the U.S Air force for data

integration in their military aircrafts. Since its inception in

1973 [2] it has undergone a number of revisions, first a

tri-service version (means for Army, Navy and Air force) [3]

is released and after further changes and improvements it has

been opened to commercial applications as well [1]. Now it

has developed as one of the internationally accepted

networking standard and an inevitable component for ships,

satellites, missiles, and the International Space Station

Program, as well as advanced commercial avionic

applications [2].

As we know the military and commercial avionic

environments are full of interferers that may affect the signal

integrity of data transmitted over the data bus. 1553 data bus

uses a twisted shielded pair wire for information transfer. The

twisted pair provides noise cancelling and the shielding limits

interference from external sources thereby providing better

EMI performance [4]. Also this bus system allows the use of

redundant pair of buses, i.e. an alternative path in the case of

damage / failure [5]. The dual redundant signal paths of 1553

make it suitable for flight-critical systems [1].

Almost all the data bus standards require point-to-point

wiring; one such standard is ARINC 429, which uses a

point-to-point unidirectional multi-drop topology [6]. Since

size and weight are the critical factors for aircrafts and

payloads, the single wire, highly flexible 1553 standard

dominated the commercial avionics industry. Also, 1553 has

a track record of more than 30 years of in service history in

avionics. Recently Airbus has decided to adopt 1553 for its

new aircraft A350 and Boeing is going to use it in its next

generation aircrafts [6]; both indicate the reliability of the

standard [1].

This paper presents the design of the military data bus

standard MIL-STD-1553 protocol controller using HDL. This

paper is organized as follows: Section 2 presents a brief

overview of the 1553 data bus protocol; Section 3 describes

the design and implementation of the protocol controller in

detail with reference to the system architecture, system design

and its implementation onto an FPGA platform. In section 4

simulation and test results obtained are presented.

Conclusions are outlined in Section 5 followed by a set of

references.

II. System overview

Figure 1. Sample of architecture of 1553 data bus [1]

A. Bus Structure

1553 data bus standard defines the characteristics of a serial,

multiplex, time-division data bus [5]. The bus operates

asynchronously, employing a command/response protocol

[5]. The main components of MIL-STD-1553 bus system are

the bus controller, the remote terminal and the twisted

An FPGA Implementation of 1553 Protocol Controller 67

shielded pair wire data bus. The 1553 bus can allow data

transmission between a number of devices, among these

devices one should be designed to work as a Bus Controller,

which controls the entire transmission operations on the bus,

and the other devices act as remote terminals. A maximum of

31 remote terminals can be connected to a single twisted pair

cable in 1553 bus [7].

B. Word Formats

The information transfer through the bus is done as messages,

each of which contains a set of words. There are three distinct

word types defined by the protocol. These are Command

Words (CW), Data Words (DW) and Status Words (SW) [7].

Each word type has a unique format, but all three maintain a

common structure. Each word is twenty bits in length. The

data code transmitted on the bus shall be Manchester II

bi-phase level [8]. Manchester coding has the advantage of

transitions in each bit of data. So error detection will be easy

[1].

All message transfers are initiated by a CW from BC.

Command words are transmitted by the bus controller to

remote terminals to instruct them to receive data, transmit

data or perform some other operations [5]. Data words

contain the actual information to be transmitted. Both BC and

RT can send a data word. MIL-STD-1553 allows a maximum

of 32 data words in each message. Status words are

transmitted by a remote terminal in response to an error free

message transfer, after a time period called RT response time.

Status words give information about the condition of RT,

errors in the received words or a request by RT [8]. Status

words are only transmitted by RTs after receiving a command

from a BC [8]. The word formats for the command, data, and

status words are shown in the figure 3[5].

C. Message Formats

Each message transfer over 1553 data bus includes a CW,

DWs and a SW. There are different kinds of data transfer in

1553, each of which has a defined format in this protocol. A

single transfer may contain a maximum of 32 messages. After

each message there will be a time gap called Inter Message

Gap (IMG) [8]. There are various modes of information

transfer defined in this standard. Here we consider three

important data transfers, which are BC to RT transfer, RT to

BC transfer, RT to RT transfers. Each of these follows a

pre-defined format in 1553 protocol, which is shown in figure

2[5].

For BC-RT transfer, the bus controller issues a receive

Command Word followed by the specified number of Data

Words, the number of DWs is specified in the Data Word

Count of the command word. The RT after checking the

received word, transmit a status word back to the controller, if

there is no error. RT will take a time of RT_response time to

generate a SW [5]. The will be no gaps between CW and

DWs [1].

For RT-BC transfer the bus controller issues a transmit

command to the RT [5]. It is received by all the RTs connected

to the bus wire. After decoding the CW, the particular RT

whose address is specified in the CW will transmit a status

word back to the bus controller, followed by the specified

number of data words, whose number is specified in Data

Word Count of the command word. The status and data words

shall be transmitted with no gaps between them [1].

Consider the RT-RT transfer between two RTs, say RT A

and RT B. The bus controller shall issue a receive command

to RT A followed by a transmit command to RT B without any

gap between them [5]. After decoding the CW, RT B

transmits a status word followed by the specified number of

data words, the number of DWs is specified in the Data Word

Count of the command word. There will be no gaps between

status and data words transmitted by the RT B. After all the

data transmission by RT B, RT A shall transmit a status word

after a time, say RT_response time, which indicates the status

of the previous message transfer, status of RT and also errors

in the last transmission if any [1].

68 Jose J

Figure 2. Message formats [5]

Figure 3. Word formats [5]

An FPGA Implementation of 1553 Protocol Controller 69

Figure 4. Block diagram of 1553 bus system

III. Design& Implementation

Figure 4 shows a generalized block schematic representation

of the 1553 system in a Bus Controller or in a Remote

Terminal. In the bus system there will be a BC and a number

of RTs. All the systems which are connected to the bus wire

for sharing information will act as a Remote terminal other

than it is specially designed as the Bus Controller. Only one

system connected to the 1553 bus wire can be programmed as

BC and it controls the entire operations. All the internal

blocks are same for BC and RT except the protocol controller.

The BC protocol controller is associated with entire control

of bus system and the protocol checks, whereas an RT

controller is associated with data transfers and the Status

words. Both use same encoder/ decoder system. The function

of encoder is to convert the serial data output from the

controller to Manchester format before transmitting it to the

bus. Decoder takes each bit from the 1553 bus and decodes it

from the Manchester format to normal bits. The design of

each of the modules used is explained below:

A. Design of Manchester Encoder- Decoder

MIL-STD-1553 uses Manchester II Bi-phase encoding for all

the information transmitted through the bus wire. Manchester

encoding has got a lot of advantages. It provides a

self-clocking waveform, i.e., the clock is embedded in the data

[9]. So recovering the clock at the receiver side will be easier.

In Manchester encoding there are two conventions used for

representing encoded data. The one we are following is

described here: a low-to-high transition is used to encode a

“zero” and a high-to-low transition is used to encode a “one”

[10]. So a bit in Manchester encoded data has a transition in

it, either from low to high or vice versa.

As explained in section II B, each word in 1553, whether it

is DW, CW or SW, follows a particular format, i.e., a 3 bit

sync pattern, followed by 16 bits of information and 1 parity

bit. The Manchester II bi-phase encoder and decoder used for

the data bus should consider the sync pattern, data bits and

parity bit separately.

The sync field is a 1.5 bit periods high pulse followed by a

1.5 bit periods low pulse for CW and SW, and for DW it is a

1.5 bit periods low pulse followed by a 1.5 bit periods high

pulse. The sync field has to be considered as an invalid

Manchester encoded form because there is no transition

within a bit period [9]. While decoding, decoder understands

the type of data from the sync field. And the decoded

information does not have this field since this is removed by

decoder.

Data bits come after the sync field, each of which occupies

a single bit period. The data bits are encoded as half bit period

high and other half low. In Manchester encoding a

low-to-high transition is used to encode a “zero” and a

high-to-low transition is used to encode a “one”. The encoded

data bit portion has same frequency as the original signal. The

encoding of sync field and data field is shown in figure 5 and

6 respectively [10].

The last bit in all the words transmitted via 1553 bus

system is the parity bit. Odd parity is used here. This parity bit

can detect an error in the transmitted word. The encoder will

encode this parity bit too in the Manchester format, i.e., either

with a half bit high followed by another half low or with a half

70 Jose J

bit low followed by next half high for a parity bit of “one” and

“zero” respectively. This bit is sent as the 20th bit of each

word. At the decoder the reverse operation takes place, i.e., it

checks whether the parity is correct or not. Decoder finds the

parity of all the coming bits in a word excluding the sync field.

Then it compares the obtained parity bit with the coming

parity bit. If there is any parity mismatch found then the

decoder sends that information to controller and requests for

retransmission of that entire word.

The Figure 5 shows how the sync field of a CW, SW and a

DW are generated by a Manchester encoder in the 1553 bus

system. Bit period is shown at the top. As we have explained

earlier the entire sync field occupies three bit periods, half of

which is high and next half low or vice versa. Figure 6 shows

the Manchester encoding of normal bits other than sync. Both

data bits and parity bits are encoded in the same format, i.e.,

each bit occupies a single bit period with a transition in it. It

shows the Manchester encoding of both “one” and “zero” bits

for a period of three bit times. The main advantage of using

such an encoding scheme is that we are getting a transition in

each of the bit times, except for sync field which is an invalid

Manchester encoding, thereby increasing the easiness of

detecting errors if any occurs in the information transmitted.

Figure 5. Manchester encoding of (a) Command &

Status sync (b) Data sync

Figure 6. Manchester encoding of the sequence (a) “111”

 (b) “000”

B. Design of BC and RT

Detailed block schematic representation of BC and RT are

shown in figure 7 and figure 8 respectively. First consider a

BC block. The two blocks, named as descriptor and memory,

indicates storage locations, a descriptor module for storing

the control words and a memory module for storing data

words. In addition to these two modules there is one encoder,

one decoder and a protocol controller. The encoder used is a

Manchester II bi-phase encoder, which encodes each bit of the

information to be transmitted via 1553 data bus in to a

Manchester format. The decoder has the opposite function of

decoding the Manchester encoded data bits coming via 1553

data bus. So all the devices connected to the bus wire for

sharing information should include a Manchester encoder

and decoder since we are following the Manchester encoding

scheme for 1553 data bus protocol. The encoder attaches a

parity bit to each word which is to be transmitted via 1553 bus

wire. The parity error check is performed by the decoder. And

the most important component is a protocol controller, which

performs all the operations related to the protocol. The main

function of BC protocol controller is to issue CWs to RTs,

only a CW can initiate any of the message transfers in a 1553

protocol. Also it performs all the protocol checks, monitors

the entire bus system, checks the status of all RTs and all

message transfers and a lot more. In short the BC protocol

controller is the heart of 1553 bus system which controls the

entire operations.

An FPGA Implementation of 1553 Protocol Controller 71

Figure 7. Design of 1553 BC

Figure 8. Design of 1553 RT

 In the case of an RT it has a single memory module, named

as Buffer in figure 8, since it needs to send only DWs. This

memory block stores data words to be transmitted by the RT

and the DWs received by the RT. Along with the memory unit

an RT block ha an encoder, a decoder and a protocol

controller. The encoder and decoder are same as we have

explained in the case of BC block diagram. The encoder

attaches a parity bit to each word which is to be transmitted

via 1553 bus wire. The parity error check is performed by the

decoder. The RT protocol controller performs all the

functions that an RT must handle, i.e., it decodes the CWs

sent by the BC, either receives DWs from BC or transmits

DWs to the BC according to BC commands, and

acknowledges each message transfer with a SW which

indicates the status of RT, whether any error present in the

previous message transfer, etc.

All the blocks are designed using state machine modeling

in VHDL. State diagrams of BC controller and RT controller

are given in figure 9 and figure 10 respectively. MSGCMD

and Dataptr [11] in the figure 9 indicate the control words for

BC system. As we have explained first BC sends a CW, which

is common for all the three types of message transfers. The

next states of the diagram are different for each type of the

transfer. And this state machine strictly follows the protocol

rules of 1553. As we can send a maximum of 32 DWs only in

a single message, there is a counter for counting data words

which checks whether the count exceeds 32. Similarly for

messages, there will be a message counter which checks the

number of messages, which should not be more than 32 in a

single transfer.

State diagram of RT is given in figure 10. It performs the

functions that an RT must handle in a 1553 protocol. An RT

should receive the CW first, should be able to decode it, then

either receive or transmit DWs and finally should sent back a

SW acknowledgement back to the BC. The state diagram in

figure 10 follows all these functions of an RT. As we

explained for BC, we are using a data counter and message

counter in RTs also.

C. Timing diagram of BC

Bus controller is associated with three types of transfers:

BC-RT transfer, RT-BC transfer and RT-RT transfer. Each of

these message transfers is initiated by a CW from BC. Each

transfer may contain a maximum of 32 Data Words and at

least one Status Word indicating the status of that message

transfer. And a maximum of 32 such message transfers are

allowed in each communication. There are pre-defined

formats for each of the above said transfers. BC controller’s

state diagram follows the same formats.

72 Jose J

Figure 9. State diagram of 1553 BC

Figure 10. State diagram of 1553 RT

Similarly RT’s function is to act according to the

commands of Bus Controller, i.e., to receive or transmit the

data words according to the command word sent by BC. After

receiving DWs, the RT prepares a SW indicating the status of

the last message transfer and sends it to the BC.

For all message transfers, first the BC sends a CW; which

initiates the message transfer in 1553 data bus. It may be

either transmit CW or receive CW according to the type of

transfer. First we will discuss the BC-RT transfer. Here the

controller sends a CW to the bus via BC_out (shown in figure

11), which is followed by continuous DWs (a maximum of 32

DWs are possible). The initial CW carries the address of the

RT to which BC wish to communicate. All RTs decode the

CW and only the particular RT whose address is present in the

CW receives the following DWs. After receiving the CWs and

DWs the RT sends the SW as acknowledgement, which is

received in BC_in signal, which is also shown in figure 11.

The RT-BC transfer is also initiated with a BC Command

Word via BC_out. The RT whose address is specified in the

CW, after receiving it, acknowledges by sending a SW. This

is followed by continuous DWs to the BC, which are received

serially by BC via BC_in as shown in figure 12.

 For RT-RT transfer, two CWs and two SWs are to be

transmitted. First BC sends a receive CW to the RT which

should receive data followed by a transmit CW to the RT

which should transmit data as shown in BC_out in figure 13.

In response the transmitting RT sends back a SW to BC and

after transmission the receiving RT also sends a SW, which

are received by BC via BC_in as shown in figure 13.

Figure 11. Timing diagram of Bus controller (BC-RT transfer)

An FPGA Implementation of 1553 Protocol Controller 73

Figure 12. Timing diagram of Bus controller (RT-BC transfer)

Figure 13. Timing diagram of Bus controller (RT-RT transfer)

D. Timing diagram of RT

The function of Remote terminal is to take part in the

communication according to the commands of Bus

Controller. An RT can either send Data Words, can receive

Data Words and can send a Status Word. The Remote

Terminal can also support all the three transfers we discussed

in section B. We will discuss them one by one. All the

transfers in 1553 bus system are initiated a BC Command

Word, which is received by all the RTs connected in the bus

system via RT_in.

First consider BC-RT transfer. RT receives the CW and the

DWs, transmitted by BC, via RT_in. After receiving all words

the RT sends the SW as acknowledgement to the bus system

via RT_out as shown in figure 14. For RT-BC transfer, the

RT, after receiving the CW via RT_in, acknowledges by

sending a SW which is followed by continuous DWs to the BC

via RT_out as shown in figure 15. For RT-RT transfer, two

CWs and two SWs are involved. First RT receives a receive

CW via RT1_in, second RT receives a transmit CW via

RT2_in. In response the transmitting RT, i.e., RT2 sends back

a SW followed by DWs via RT2_out to the bus system which

will be received by RT1 via RT1_in. And after receiving

entire words, the receiving RT, i.e., RT1 sends back a SW to

the BC via RT1_out as shown in figure 16.

Figure 14. Timing diagram of Remote terminal (BC-RT transfer)

74 Jose J

Figure 15. Timing diagram of Remote terminal (RT-BC transfer)

Figure 16. Timing diagram of Remote terminal (RT-RT transfer)

E. Implementation

The design of the system including the Manchester encoder,

decoder, BC protocol controller and RT protocol controller

are to be carried out using VHDL state machine modeling,

and required memory modules for BC and RT are generated

using Xilinx Core Generator tool for optimized operation in

Xilinx FPGAs. The entire code is downloaded and

implemented on a Xilinx Spartan-2 FPGA (xc2s200-5pq208)

using Xilinx ISE tool. The target device utilization of the

proposed design is shown in figure 17. It is clear from the

same that the device utilization is below 25%. Also by using a

platform like Spartan II, a cost effective way to implement the

designed system can be provided. And FPGA implementation

of 1553 BC and RT provides a flexible core, which when

integrated to the systems that need to share information,

provide a highly reliable data transfer method between critical

systems in an aircraft.

IV. Results

The design described in the previous section has been

simulated using ModelSim. The proposed system has

successfully worked as 1553 bus system, which provided

information transfer between BC and RTs in the Manchester

II bi-phase encoded format. So a test result that is matching

the expected timing diagrams is obtained. Then the design is

synthesized using Xilinx ISE. The target system selected was

a Xilinx Spartan II FPGA (xc2s200-5pq208). Finally the

resulting bit streams have been downloaded onto the FPGA

platform in order to verify the design and the expected results

were obtained. The target device utilization by the design is

given in figure 17. It is clear from the figure that only 25% of

the available LUTs in the target device are occupied by the

proposed design. So this provides area efficient

implementations for the 1553 bus system including protocol

controller for BC and RT, Manchester encoder and decoder

and the required memory modules. Compared to many other

designs available in market the area utilization of the

proposed design is comparatively much less, which can be

considered as an advantage.

V. Conclusion & Future Works

This paper describes an approach to implement the military

standard 1553 data bus protocol onto a Xilinx based FPGA

platform. Being a widely used data bus standard in avionics, it

will be a good idea if we could provide an inexpensive option

for the same. Here in this paper this could be achieved using a

relatively inexpensive ordinary FPGA. The system design is

done using state machine modeling in Hardware Description

Language (HDL). Tool used for testing and simulation is

ModelSim and the design has been downloaded onto a Xilinx

An FPGA Implementation of 1553 Protocol Controller 75

Spartan FPGA kit using Xilinx ISE. The target system

selected was a Xilinx Spartan II FPGA (xc2s200-5pq208).

After implementation we could say that the area utilization

of the proposed design is much less. Also as the FPGA can be

reconfigured easily, the flexibility of design will be more.

Since this standard has only a limited data rate of 1 Mega bits

per second, the future work for this design will be the speed

improvements of the standard and integration of new

technologies into this. Even with the recent developments of

newer and higher-speed technologies, 1553 is used for data

transfer between mission critical systems of an aircraft where

the reliability is of more importance than speed. Also some of

today’s modern aircrafts use a mix of high-performance data

buses and 1553. So it is clear that 1553 will continue its

journey in the new applications and integration platforms for

years to come.

Figure 17. Target device utilization by designed system

References

[1] Jemti Jose and Sharone Varghese, “Design of 1553

protocol controller for reliable data transfer in aircrafts”,

In Proceedings of the 12th International Conference on

Intelligent Systems Design and Applications (ISDA

2012), Cochin, India, pp 686-691.

[2] Carey B. R (2007, Dec), Avionics magazine, [online].

Available: http://www.AvionicsToday.com

[3] MIL-STD-1553A Multiplex Applications Handbook,

1988, Washington, D.C., Department of Defense.

[4] Kobus van Rooyen, “FPGA based MIL-STD- 1553B for

new aircraft and mid-life upgrades”, Data week

electronics and communication technology magazine,

May 2003.

[5] J. Furgerson, “MIL-STD-1553 Tutorial”, AIM-Avionics

Databus Solutions, U.K, November 2010.

[6] Military aerospace magazine, (2010, May 20), [online].

Available: http://www.militaryaerospace.com

[7] MIL-STD-1553B, Aircraft Internal Time- Divison

Multiplexing Data Bus, Washington, D.C., Department

of Defense, 1978.

[8] MIL-STD-1553 Designer's Guide, Data Device

Corporation, Bohemia, NY, 2003.

[9] Mil-std-1553 tutorial [online]. Available:

http://mil-std-1553.org/ManchesterTutorial.html

[10] Jemti Jose, “Design of Manchester II bi-phase Encoder

for MIL-STD-1553 Protocol”, In Proceedings of the

IEEE International Multi Conference on Automation,

Computing, Control, Communication and Compressed

Sensing (iMac4s), Kerala, India, March 2013, in press

(not indexed).

[11] Core1553BBC- MIL-STD-1553B Bus Controller,

Actel Corporation, CA, USA, December 2005.

76 Jose J

Author Biography

Jemti Jose was born in Kerala, India, in 1987. She received

her Bachelor of Technology (B.Tech)

degree in Electronics and

Communication Engineering from

Mahatma Gandhi University,

Kottayam, India, in 2009 and her

Master of Technology (M.Tech) in

VLSI and Embedded Systems from the

Cochin University of Science and Technology (CUSAT),

Cochin, India in 2012. She is now Assistant Professor in St.

Joseph’s College of Engineering and Technology Palai, India.

Her main areas of interest are Design of VLSI systems, VLSI

Signal Processing and FPGA based Design.

