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Abstract: Tiny gas bubbles are used in a number of industrial 

processes for separating solids from liquids and for facilitating 

heat and mass transfer between separate phases. Bubble size is 

known to be one of the important factors affecting the 

performance of these processes, so it would be useful to be able 

to monitor its behavior. In this paper, a novel methodology for 

automated characterization of oxygen dispersion bubbles is 

presented. The approach is based on analyzing digital images 

produced by an industrial CMOS camera which is attached to 

the process by a borescope. The developed methodology for 

analyzing images offers robustness and fastness which are 

significant advantages when it comes to online use of the method 

in real industrial environments. The approach is demonstrated 

in an oxygen delignification process, which is an important stage 

of chemical pulping and widely used for lignin removal before 

bleaching pulp. The results show that online monitoring of 

oxygen bubble size is possible using the method. 
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I. Introduction 

Small bubbles of gas are exploited in many industrial and 

other processes in order to separate solids from liquids or to 

smooth the progress of heat and mass transfer between phases. 

Gas characteristics such as bubble size may have an effect on 

the process performance and thus provide a way of controlling 

and optimizing the process. In general, smaller bubbles are 

favored in treatment techniques, because their surface 

area-to-volume ratio is high and their bubble density is larger 

[1]. This leads to more homogeneous heat and mass transfer 

and therefore more efficient separation of solids. 

Oxygen delignification is an essential stage of chemical 

pulping and widely used for lignin removal before bleaching 

pulp [2]. Oxygen delignification can be considered as a 

selective method for removing residual lignin from pulp 

suspension with oxygen and alkali. Oxygen is mixed into 

medium-consistency fiber suspension with fluidizing mixers 

to generate as homogenous three-phase dispersion as possible. 

After the mixing stage, pulp is transferred into oxygen 

delignification reactor where delignification reactions occur 

during a flow-through lasting about one hour. 

Efficient gas-liquid mass transfer is important for oxygen 

delignification [3]. As pulp passes reactor in a plug-flow state, 

it is extremely necessary to create as homogenous oxygen 

dispersion as possible in the mixing stage, because efficient 

contact between oxygen and pulp is crucial for achieving the 

maximum lignin removal. Mass transfer phenomena in 

oxygen delignification consist of several individual stages, e.g. 

oxygen dissolution to water phase, which can limit the rate of 

the overall process. Oxygen diffusion is naturally slow and 

oxygen is poorly soluble especially at a delignification stage 

having a high alkali concentration and high temperature.  

Mixing of oxygen into medium-consistency pulp is a very 

energy-intensive unit operation. It is possible that mixer 

design, its operation and operation of the whole 

delignification process could be improved if the bubble size 

distribution of the oxygen gas could be determined. Moreover, 

it is suggested that factors such as mixer rotor speed and pulp 

consistency may affect the bubble size in oxygen 

delignification [4], so it is presumable that it could be possible 

to optimize bubble size and thereby achieve a more efficient 

process, but this necessitates information on the sizes in 

different conditions. Recent development of camera and 

illumination technology has made imaging of gas dispersion 

in oxygen delignification possible, and the development of 

this kind of imaging method has been described by 

Mutikainen et. al [5]. 

Traditionally, optimization of industrial oxygen 

delignification systems is demanding, because it requires 

optimization of reaction chemistry, chemical kinetics, and 

mass transfer rates [3]. Based on the promising results by 

Mutikainen et al. [4], [5] it is assumed here that digital image 

data could provide a useful source of information to be used in 

the characterization and optimization of the oxygen dispersion 
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process. However, manual analysis of a large number of 

individual images is not feasible in the long run, because it is 

time-consuming, laborious, and prone to random and 

systematic errors. Especially the selection of single objects 

(i.e. bubbles), which has to be performed for each image, is an 

arduous step in manual image processing. For this reason, 

algorithms enabling an automatic or semi-automatic 

processing are particularly useful in characterizing dispersion 

bubbles [6]. Preferably, the images should be analyzed, not 

only automatically, but also online to enable efficient 

monitoring and control of the dispersion process. Such 

automated online and offline imaging solutions have been 

suggested for the characterization of ash particles [7], [8] and 

flocculation [9]–[12], for example. 

Processing and analysis of digital image data has become a 

regular tool in a wide variety of applications [13] – [16]. It has 

also been shown that machine vision can be useful in the 

monitoring and control of many industrial processes [17] – 

[20]. Detection of circular objects like bubbles is a general 

problem in image analysis, and a widely used method for 

dealing with round objects is circular Hough transform, which 

is typically used in many applications to detect, count and 

characterize dispersion bubbles or other circular objects [6], 

[21]–[24]. Nonetheless, Hough transform is not very efficient 

in detecting spatial connectivity [25], which deteriorates its 

performance in cluttered images, which are quite typically 

acquired from real industrial processes. Moreover, methods 

based on Hough transform are often time-consuming, and 

therefore may not be the best choice for online monitoring and 

control in a real industrial environment. In addition, it has 

been proposed that the conventional image analysis methods 

for measuring bubble size are generally limited in their 

robustness and applicability in highly turbulent bubbly flows 

[26] – [27]. 

Advanced image measurement techniques have been used 

for characterizing dense bubbly flows [26] - [27]. These flows 

are usually challenging in terms of image processing because 

of the wide range of bubble size distribution, inhomogeneity 

of image background, and the excessive presence of bubble 

clusters [26]. Karn et al. [26] presented a multi-level approach 

based on extended H-Minima binarization and a cluster 

processing algorithm to determine bubble size distribution 

from images obtained in a turbulent bubbly wake of a 

ventilated hydrofoil. The same methodology was used 

successfully for investigating the effect of air injection 

location on the resulting bubble size distribution in 

two-turbine blade hydrofoil designs [27]. Nonetheless, 

compared to oxygen delignification process, in this 

application the bubble size is approximately ten times larger, 

and also the images are obtained using a totally different 

technique (Shadow Image Velocimetry). 

Strokina et al. presented an approach for detecting 

transparent spherical objects based on the detection of 

Concentric Circular Arrangements (CCA) which are 

recovered in a hypothesize-optimize-verify framework [25]. It 

is shown by the authors that this method works efficiently for 

bubbles having bright ridge edges. Nonetheless, as the authors 

write, small blob-like bubbles which do not have a clear edge 

generally remain undetected by the method. In addition, this 

analysis procedure is reported to last about 14s on a PC with a 

single core 1.6 GHz CPU, which is acceptable in terms of 

online monitoring, but may be questionable in terms of fast 

control. 

In this paper, a novel methodology for automated 

characterization of oxygen dispersion bubbles is presented. 

The approach is based on analyzing digital images produced 

by an industrial CMOS camera. The developed methodology 

for analyzing images is totally different than those used 

traditionally, and it offers robustness and fastness which are 

significant advantages when it comes to online use of the 

method in real industrial environments. 

II. Materials and methods 

A. Process and measurement equipment 

Image data were collected from two imaging assemblies 

installed to the oxygen delignification stage of a kraft pulp 

fiber line (See Fig. 1). The first assembly was placed right 

after the mixer of the 1st oxygen stage (referred to as mixer), 

whereas the second assembly was installed before the reactor 

tower of the 1st oxygen stage (referred to as tower). 

 
 

Figure 1. Oxygen stage of the kraft pulp fiber line, in which 

the two imaging points are marked by yellow arrows. 

 

During the mill experiments, the effect of mixer rotor speed 

to oxygen gas dispersion was being observed. Image data 

were collected using a frame rate of 3.5 fps during a few 

minutes for each selected mixer rotor speed (890, 1000, 1100, 

1200, 1300 and 1380 rpm).   

Special equipment is needed to achieve images of sufficient 

quality from the delignification process. The measurement 

equipment used for image acquisition and its installation on 

the kraft pulp fiber line can be seen in Fig. 2. The system 

includes an industrial CMOS camera (Guppy PRO F-503B, 5 

megapixels), a borescope, a lighting unit (Cavilux Smart) 

connected to the borescope by an optical fiber, and a 

measurement PC. 

B. Image data 

The physical size of the collected images was determined 

visually by placing a focusing grid in front of the window. 

Picture dimensions were 1.75 x 1.31 mm having a resolution 

of 2588 x 1940 pixels. Image data were analyzed manually; 

10 images from every sampling point were evaluated one by 

one using a Matlab-based annotating tool. The numbers of 

images in validation and test sets can be seen in Table 1. 

C. Image analysis 

The starting point for designing the image analysis 

methodology for oxygen bubbles was that it should be, not 

only able to determine bubble sizes, but also online-applicable, 

relatively fast, and robust. Looking at the problem from this 
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offset, a novel computational, online applicable methodology 

for characterizing oxygen dispersion bubbles in digital images 

was developed. 

 

 
Figure 2. Measurement equipment (up) and installation on 

the kraft pulp fiber line (down). 

 

Table 1. Description of data used in validation and final tests. 

 Validation data set Entire data set 

Mixer set Number of images Number of images 

890 rpm 10 208 

1000 rpm 10 198 

1100 rpm 10 178 

1200 rpm 10 198 

1300 rpm 10 184 

1380 rpm 10 212 

Tower set   

890 rpm 10 198 

1000 rpm 10 191 

1100 rpm 10 134 

1200 rpm 10 140 

1300 rpm 10 177 

1380 rpm 10 167 

TOTAL 120 2 185 

 

The procedure is based on analyzing digital images 

produced by an industrial CMOS camera. The method 

involves the following main stages: 

 

1. Pre-processing 

2. Binarization and morphological operations 

3. Analysis 

 

Original images produced by the camera are extremely 

challenging in terms of reliable analysis (See Fig. 3 left), for 

which thorough pre-processing is needed. Pre-processing of 

bubble images constitutes a 5-stage procedure which includes 

cropping, taking an image complement, intensity adjustment, 

2-D adaptive noise removal filtering, and contrast-limited 

adaptive histogram equalization. Some pre-processing stages 

can be seen in Fig. 3. 

 

 
 

Figure 3. Preprocessing stages: an original (cropped) image 

on the top, image after intensity adjustment and 2-D noise 

removal filtering in the middle, and image after 

contrast-limited adaptive histogram equalization at the 

bottom. 
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Binarization can be performed either using an 

automatically defined or a fixed threshold [22], [28]. The 

binary image is eventually created using a 4-connected 

neighborhood. 

Connected components, or objects, can be identified from 

the binary image using the defined neighborhood. At this 

stage, as we wish to analyze oxygen bubbles, which are 

assumed to be circular in shape, we are primarily interested in 

objects having a round form. Therefore, the detected objects 

can be filtered by their eccentricity, which is the ratio of the 

distance between the foci of an ellipse surrounding the object 

and its major axis length (See Fig. 4). In this particular case, 

eccentricity limit of 0.9 was used in filtering objects. After 

this, the diameters and volumes of the detected objects can be 

calculated as pixels and transformed to desired units if the 

pixel size is known. In this case, the resolution is 1480 pixels 

per millimeter. 

 

 
Figure 4. Definition of eccentricity which is used to detect 

round objects in binary images. 

 

An example of detecting bubbles in a digital image is 

presented in Fig. 5. As can be seen, the method is able to 

detect both large and small bubbles. On the other hand, it can 

be noted that bubbles which are clearly separated from each 

other are detected most efficiently, whereas overlapping 

bubbles may not be detected by the method. 

The whole procedure of analyzing a single image takes 

about four seconds per image on a PC having a double core 

1.9 GHz CPU and Windows 8 operating system, which is 

acceptable in terms of controlling the process. 

III. Results 

A. Validation of the method 

The image analysis methodology was first applied to the set of 

images evaluated one by one using the manual procedure. The 

results gained by the analysis method were compared to those 

based on manual analysis. Results from validating the 

methodology can be seen in Figs. 6 (mixer set) and 7 (tower 

set). Each point in the graph represents the average values 

calculated from ten images, so that the red crosses illustrate 

the results from the analyses performed by naked eye, and the 

blue circles represent the values computed by the image 

analysis procedure. It can be seen that the correlation between 

the computed and manually estimated values is excellent, with 

the exception of the largest diameter in the mixer data set. 

B. Case application 

Next, the entire image data sets acquired from the oxygen 

delignification stage of the kraft pulp fiber line were analyzed 

using the approach. Results from analyzing the entire sets can 

be seen in Figs. 8 and 9. In general, it seems that the average 

bubble diameter decreases with the increasing rotor speed in 

both sampling points. However, it is also easy to see that there 

is large variation in the diameter, especially when low rotor 

speed is used. Moreover, it seems that there is some sort of 

cyclic behavior which is time-dependent and can be detected 

at all rotor speeds. 

 

 
Figure 5. Example of a cropped original image having 1480 x 

1480 pixels (up) and a pre-processed image (down) in which 

the detected bubbles are shown by red circles. 
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Figure 6. Comparison of averages calculated by the image 

analysis procedure to validation data (mixer data set) 

 
Figure 7. Comparison of averages calculated by the image 

analysis procedure to validation data (tower data set) 

 
Figure 8. Results from analyzing the entire mixer image set, 

using moving averages of ten images. 

 

The average bubble diameter (calculated using the entire 

image set) versus the rotor speed can be seen in Fig. 10. It can 

be seen that the behavior of the bubble diameter is quite 

similar in both sampling points. The standard deviations of the 

calculated results can be seen in Table 2. 

 
Figure 9. Results from analyzing the entire tower image set, 

using moving averages of ten images. 

 

 
Figure 10. Average diameter of bubbles vs. the mixer speed 

using the averages calculated from all images. 

 

Table 2. . Deviation of calculated results (all images). 

Rotor 

speed 

[rpm] 

Mixer Tower 

 
STD1* STD2** STD1* STD2** 

900 18.3 6.90 16.4 5.49 

1000 16.4 5.78 15.5 5.48 

1100 13.8 3.85 14.8 4.55 

1200 12.0 2.98 11.6 2.91 

1300 11.6 2.37 10.9 2.27 

1380 10.5 2.44 10.4 2.02 

*STD1 = average image-specific standard deviation [μm] 

**STD2 = standard deviation of image-specific averages 

[μm] 
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C. Software application for analyzing dispersion images 

Manual processing of dispersion images is laborious and 

time-consuming. OBSeeker is a specially designed piece of 

analysis software that can be used to automate the analysis of 

oxygen bubble characteristics. The analysis procedure used 

by the OBSeeker is based on the methodology presented in 

this paper. The standalone software has been coded using the 

Matlab-software platform (Mathworks, Natick, MA, USA). 

The calculated image-specific averages and deviations of 

bubble diameters and volumes can be seen on the screen (See 

Fig. 11). In addition, the system outputs information on both 

image-specific averages and the characteristics of individual 

bubbles to separate xls-files. 

The present version of the software is designed for offline 

use only, so that a set of images has to be first collected during 

experiments, after which the collected images can be analyzed 

by the software in a reasonable time. On the other hand, it 

would be possible to create an online working solution as well 

by decreasing the sampling rate so that the analysis could be 

performed in the meantime of taking the images. 

IV. Discussion 

Oxygen delignification is an essential stage of chemical 

pulping process, and it would be useful to optimize the 

oxygen gas dispersion during the process, because this would 

make it possible to make the delignification process more 

efficient. It is suggested that factors such as mixer rotor speed 

may affect the bubble size in oxygen delignification, so it is 

presumable that it could be possible to optimize bubble size 

and to improve the efficiency of the process, but more 

information on the bubble characteristics in different 

conditions is required to achieve this. Recent development of 

camera and illumination technology has made imaging of gas 

dispersion in oxygen delignification possible, and digital 

image data can potentially be used for process improvement 

through bubble characterization. Monitoring of oxygen 

delignification is extremely challenging, however, and highly 

specialized image analysis techniques have to be used. 

As it is shown here, it is possible to estimate the size of 

oxygen bubbles in the delignification process by using digital 

image data. Monitoring the bubble size is useful, because, in 

theory, smaller bubbles enable more homogeneous heat and 

mass transfer and therefore more efficient separation of solids. 

Based on the results it seems that there is a clear dependence 

between the mixer rotor speed and bubble size. In this case it 

seems that increasing the mixer rotor speed produces smaller 

oxygen bubbles, so the general conclusion would be to 

increase the mixing rate as high as possible. However, this 

might pose some other problems and might not be economical, 

so it would be interesting to investigate where the realistic 

limit in increasing the rotor speed actually is. 

In this study, the determined bubble diameters vary from 20 

to 45 micrometers. As a matter of fact, in the literature there is 

no experimental information on the oxygen bubble size in mill 

scale oxygen delignification process. Strokina et al. estimated 

bubble radiuses of up to 0.5 mm for the majority of bubbles in 

a pilot process [25]. Moreover, Ishkintana and Bennington 

noticed in their laboratory experiments that the bubble size 

increased with suspension (fiber) concentration for a given 

gas flow rate [3], but their laboratory installation produced 

much larger bubbles than those evaluated in this study. 

Rewatkar and Bennington concluded that increasing rotor 

speed improves gas-liquid mass transfer and increases the 

energy transmitted to the pulp suspension, which increases 

turbulence intensity and thereby decreases bubble size [29]. 

This is consistent with the results of this study. As the next 

step, it would be interesting to find out what the optimal 

bubble size actually is for efficient lignin removal in different 

type of oxygen delignification processes. 

 

 

 
 

Figure 11. GUI of OBSeeker software for calculating oxygen bubble characteristics in a delignification process. 
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What is more, it is presumable that, in addition to mixer 

rotor speed, also other variables such as oxygen concentration, 

pH value, the type of wood used and the amount and nature of 

dissolved substances in the pulp have their own role in the 

oxygen delignification process. Therefore, comparison 

between bubble size and other process measurements could 

potentially produce valuable information on the behavior of 

the process. This is another important future consideration, 

because connecting information on the prevailing process 

condition with experimental information on bubble size 

would create a totally new approach for improving the 

efficiency of delignification process. One single line can 

nowadays produce five thousand tons dry pulp in a single day, 

so even small improvements in the process may yield big 

economical impacts. Mixing of oxygen to pulp does not only 

consume a lot of energy, but it may also have a decreasing 

effect on the physical properties of the pulp. That is why it 

would be economically beneficial to minimize the energy 

used for mixing the oxygen, but at the same time to guarantee 

by an online measurement that the quality of oxygen 

dispersion remains in an acceptable level. 

In summary, based on the results it can be suggested that 

digital image data are useful in characterizing and optimizing 

the oxygen delignification process. The advantages of the 

method are robustness and fastness, which are properties that 

make the method very suitable for online monitoring in a real 

process. Furthermore, addition of new information such as 

oxygen concentration and other process measurements could 

make it possible to create more exact models and to even 

design a novel control strategy. 

V. Conclusions 

As oxygen delignification is an essential stage of chemical 

pulping, it is useful to be able to characterize its condition and 

behavior. Recent development of camera and illumination 

technology has made imaging of gas dispersion in oxygen 

delignification possible. Automated processing is the most 

reasonable option to characterize dispersion bubbles using 

digital images. In terms of efficient monitoring and control of 

the delignification, the images should be analyzed, not only 

automatically, but also online. The analysis methodology and 

software presented here provides a practical and flexible way 

of monitoring the bubble size in oxygen delignification online. 

The main conclusion to be reached here is that it is possible to 

estimate the size of oxygen bubbles in this process by using 

digital image data. Furthermore, it seems that there is a clear 

dependence between the mixer rotor speed and bubble size, 

and, in theory, a more economical process can be achieved by 

optimizing the mixing rate. 
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