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Abstract: Over the past two decades a wide range of na-

ture-inspired clustering algorithms has been proposed in the 

literature with competitive performance when applied to 

solving real-world complex problems. One common feature 

of most of these algorithms is the need to set a number of 

internal parameters so that they can be suitably applied to 

these problems. These parameters are usually introduced so 

as to simplify or model some biological aspects of the phe-

nomenon being modeled, but they greatly influence the per-

formance of the proposed algorithm. The present paper takes 

one of these bio-inspired algorithms and investigates how its 

input, user-defined, parameters influence its performance. By 

doing that, we provide some important clues and guidelines 

for potential users to understand how to better set the pa-

rameters so as to take the most out of the algorithm. Two 

different versions of the algorithm are considered in the 

analysis reported here. 

 
Keywords: swarm intelligence; optimal data clustering; dy-

namic size population; bee-inspired algorithms, sentitivity anal-

ysis.  

I. Introduction 

Clustering is the process of segmenting a set of objects 

such that those belonging to the same cluster are more 

similar to one another than those belonging to different 

clusters [1]. Its applications include, but are not restricted 

to, business analysis to determine groups of customers with 

similar behaviors, and medicine to determine groups of 

patients that show similar reactions to a specific medicine 

[2]. 

 Swarm Intelligence [3] is one of the main Natural 

Computing [4] fields of research which aims at investi-

gating and designing problem solving techniques inspired 

by the collective behavior of animal societies. The popu-

larity of Swarm Intelligence has stimulated the develop-

ment of several data mining algorithms [5]. The number of 

approaches based on Swarm Intelligence, more specifically 

based on bee colonies, has increased significantly over the 

past years [6] [7] [8] [9]. 

This paper presents a parametric sensitivity analysis of a 

specific bee-inspired clustering algorithm, called cOptBees, 

originally introduced in [10] [11]. This analysis was per-

formed to evaluate the influence of its user-defined pa-

rameters on its clustering performance and to guide the 

adequate parameter setting according to the problem at 

hand. cOptBees is an adaptation of OptBees [12], an op-

timization algorithm inspired by the collective decision 

making in bee colonies, and was specially designed to 

solve data clustering problems. cOptBees, as well as Opt-

Bees, is able to generate and maintain the diversity of 

solutions by finding multiple (sub)optimal solutions in a 

single run. It was tested in different real-world problems 

and the results obtained showed high quality clusters and 

diversity of solutions, whilst a suitable number of clusters 

were automatically determined.  

The present paper performs a sensitivity analysis of two 

different versions of the algorithm: cOptBees1, in which a 

bee corresponds to a partition of the data into different 

clusters; and cOptBees2, in which a bee represents a set of 

prototypes, each one representing the centroid of a cluster. 

After, and based on the experimental results, some general 

comments and guidelines are provided to point the users as 

to how to adequately set the input parameters for each 

cOptBees version. 

This paper is organized as follows: Section II presents 

the cOptBees; Section III presents the parametric sensitiv-

ity analysis and discussion of results; and Section IV brings 

the conclusions and points future research. 

II. cOptBees: A Bee-Inspired Algorithm for 

Optimal Data Clustering 

cOptBees [10] [11], presented in Algorithm 1, is an algo-

rithm that solves data clustering problems inspired by the 

foraging behavior of bee colonies. This algorithm is an 
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adaptation of OptBees, originally designed to solve con-

tinuous optimization problems and to have the ability of 

generating and maintaining diversity of candidate solutions 

in a way to find multiple local optima without compro-

mising its global search capability [12]. In cOptBees, the 

active bees can play three different roles: 1) recruiters, 

responsible for attracting other bees to explore a promising 

region of the search space; 2) recruited, those recruited by 

recruiters to explore a promising region of the search space; 

or 3) scout bees, responsible for randomly looking for new 

promising regions of the space [12].  

The design of cOptBees involved the proposal of two 

different encoding schemes for the bees and, thus, the 

clusters they represent. In the first scheme, which led to the 

algorithm named cOptBees1, each bee is represented by a 

vector whose length is equal to the number of objects to be 

clustered and each position of the vector (bee) is the label 

of the corresponding object, as will be detailed in Section 

II.A.1. In the second encoding scheme (algorithm 

cOptBees2), a bee corresponds to a set of prototype vectors, 

which altogether represent a potential partition (set of 

clusters) of the input data. This means that now a bee is a 

matrix whose number of lines is equal to the dimension of 

the input data plus one (because there is with one variable 

associated with each prototype that will indicate if it takes 

part in the current proposed partition or not). A bee will 

thus be composed of a set of prototypes, 

The motivation to design these two representation 

schemes for cOptBees is because they result in algorithms 

that behave significantly differently. In the first versions 

the dynamics of the algorithm allows objects to be reallo-

cated in the clusters until a satisfactory solution is found, 

similarly to what other search-based clustering algorithms 

do. The second encoding scheme is more related to 

self-organized clustering algorithms, such as k-means, 

aimed at finding prototypes that represent the clusters, but 

without explicitly solving an optimization task. The per-

formance of these versions on a number of benchmark 

tasks are presented in [10] and [11], respectively. 

cOptBees1 was presented in [10] and the algorithm was 

applied to different clustering problems, being capable of 

finding optimal clusters, generating and maintaining the 

diversity of solutions, and finding the correct number of 

clusters. Motivated by the results obtained by this version, 

the new encoding scheme, cOptBees2, was proposed in 

[11]. The modification in the encoding scheme required 

some modifications in the recruitment process as well. 

cOptBees2 was applied to different clustering problems 

and it also used to determine the centers of radial basis 

function (RBF) neural networks [13]. Both versions of 

cOptBees were compared with other algorithms from the 

literature, showing good results and competitive perfor-

mances. 

The general procedure of cOptBees is presented in Al-

gorithm 1. The main features of cOptBees1 and cOptBees2 

encoding schemes are described in the following sections. 

 

Algorithm 1: cOptBees 

1. Input: nmin (initial number of active bees); nmax (maximum 

number of active bees); ρ (inhibition radius); nmean (average 

foraging effort); pmin (minimum probability of a bee being a 

recruiter); prec (percentage of non-recruiter bees that will be 

actually recruited); rmax (maximum number of clusters). 

2. Randomly generate a swarm. 

3. while (stopping criterion is not attained) do 

3.1. Evaluate the quality of the sites being explored by the 

bees. 

3.2. Apply local search. 

3.3. Determine the recruiter bees. 

3.4. Update the number of bees. 

3.5. Determine the recruited and scout bees. 

3.6. Perform the recruitment process. 

3.7. Perform the exploration process. 

4. end while 

5. Evaluate the quality of the sites being explored by the bees. 

6. Apply local search. 

7. Output: Bees of the swarm and their respective fitness val-

ues. 

 

A. cOptBees 1 

The cOptBees1 algorithm was proposed in [10] and will be 

detailed in the following sections. 

1) Encoding Scheme 

In cOptBees1 the swarm is represented by a ma-

trix B ℝ𝑛×𝑜, where n is the number of bees in the swarm 

and o the number of objects in the database. The initial 

swarm is generated randomly, respecting the maximum 

number of clusters, rmax. Each bee encodes a potential 

clustering and a bee can be defined as 𝐛 = [𝑏1, 𝑏2, … , 𝑏𝑜]. 
Each element 𝑏𝑖 indicates the cluster of object i (1 ≤ 𝑏𝑖 ≤
𝑟, r ≤ rmax, is the number of clusters in the dataset). Figure 1 

shows the representation of a bee with r = 3 and o = 9. In 

this case, objects 1 to 3 belong to cluster one, objects 4 and 

5 belong to cluster two and objects 6 to 9 belong to cluster 

3. 
1 2 3 4 5 6 7 8 9 

1 1 1 2 2 3 3 3 3 

Figure 1. Representation of a bee. 

2) Local Search 

Local search is performed by three local search operators: 

exclusion, division and transformation [14]. A single 

operator is applied to each bee. These operators are re-

sponsible for generating new clustering partitions at each 

generation, starting from the solution represented by the 

bee in which they are applied. The exclusion and division 

operators are applied with a 25% probability and the 

transformation operator with a 50% probability, as sug-

gested in [14]. The operators are applied in all bees in Step 

3 and work as follows: 

 Exclusion: Randomly excludes a cluster. The objects 

belonging to the cluster excluded are reallocated in the 

cluster with the nearest centroid. This operator is ap-

plied to bees that contain more than two clusters. 

 Division: Divides a randomly chosen cluster in two new 
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ones. After the division, the objects nearest to the cen-

troid of the original cluster remain in this cluster, whilst 

those that are closer to the farthest object move to the 

new cluster.  

 Transformation: Whenever applied, each object has a 

10% probability of being changed. This operator veri-

fies if the object is in the correct cluster by measuring 

its similarity to its current centroid and comparing it 

with its similarity to all the other centroids: if the object 

is in the correct cluster, its label is maintained; other-

wise, it is reallocated to the cluster of the closest cen-

troid. 

3) Determination of the Recruiter Bees 

The recruiter bees explore promising regions of the search 

space and recruit the closest bees. The number of recruited 

bees for each recruiter is proportional to the quality of the 

food sources found. Determining the recruiter bees involves 

three steps. In the first step, a probability 𝑝𝑖  of being a 

recruiter bee is associated with each active bee: 

 

 𝑝𝑖 = (
 1 − 𝑝𝑚𝑖𝑛

𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛
) ∙  (𝑞𝑖 − 𝑄𝑚𝑖𝑛) + 𝑝𝑚𝑖𝑛,         (1) 

 

where 𝑞𝑖 represents the quality of the site being explored by 

bee i, 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 represent, respectively, the minimum 

and maximum qualities among the sites being explored by 

each active bee in the current iteration (these quality values, 

named here fitness, are determined using the objec-

tive-function value) [12]. 

 In the second step the bees are processed and, according 

to the probabilities calculated in the previous step, are now 

classified as recruiters or non-recruiters. In the third step, 

the recruiter bees are processed in accordance with the 

corresponding site qualities, from best to worst, and, for 

each recruiter bee, the other recruiters who have a high 

similarity are inhibited, i.e., they are classified as non-re-

cruiters [12]. The similarity between two bees is calculated 

based on the objects classified in the same cluster, i.e., the 

greater the number of objects in common, the greater the 

similarity. The inhibition process happens when the simi-

larity between two bees is greater than or equal to the inhi-

bition radius ρ, an input parameter that represents a per-

centage of the maximum possible value for the similarity – 

the number of objects in the dataset. This process avoids 

that many recruiters explore the same promising regions of 

the search space. 

4) Updating the Number of Active Bees 

Updating the number of active bees aims to adapt the for-

aging effort in accordance with the number of recruiters and 

the maximum number of active bees. In a given iteration, 

after the determination of the recruiter bees, 𝑛𝑟  is the 

number of recruiters. The number 𝑛𝑑 = (𝑛𝑟 + 1) ∙ 𝑛𝑚𝑒𝑎𝑛 

determines the desired number of active bees, where nmean, 

the average foraging effort, determines the desired number 

of non-recruiter bees for each recruiter bee. If 𝑛𝑑 is greater 

than the current number of active bees,  𝑛𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑛𝑑 −

𝑛𝑎𝑐𝑡𝑖𝑣𝑒 is the necessary number of bees that have to become 

active in order to achieve 𝑛𝑑 active bees; if this number is 

less than the current number of active bees, 𝑛𝑎𝑑𝑗𝑢𝑠𝑡 =

𝑛𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑛𝑑 is the necessary number of bees that have to 

become inactive in order to achieve 𝑛𝑑  active bees. This 

process is constrained by the maximum (𝑛𝑚𝑎𝑥) and mini-

mum (𝑛𝑚𝑖𝑛) numbers of active bees. If 𝑛𝑑 > 𝑛𝑚𝑎𝑥 , then 𝑛𝑑 

is set to 𝑛𝑚𝑎𝑥; otherwise, if 𝑛𝑑 < 𝑛𝑚𝑖𝑛 , then 𝑛𝑑 is set to 

𝑛𝑚𝑖𝑛. When an inactive bee becomes active, it is inserted in 

a random position in the search space. For the inactivation 

process, the bees are selected according to the correspond-

ing site quality they explore, from the worse to the best [12]. 

5) Determination of the Recruited and Scout Bees 

After the classification of bees as recruiters or non-re-

cruiters, a percentage of non-recruiter bees are classified as 

recruited and exploit promising regions already found. The 

other non-recruiters are classified as scout bees, which ex-

ploit the search space to find new promising regions, rein-

forcing the generation and maintenance of diversity. The 

number of non-recruiter bees, in Step 6, is determined by 

𝑛𝑛𝑟 = 𝑛𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑛𝑟. The number of recruited bees is 𝑛𝑟𝑑 =
[𝑝𝑟𝑒𝑐 . 𝑛𝑛𝑟], where 𝑝𝑟𝑒𝑐 is the percentage of non-recruiter 

bees that will be recruited and [.] denotes the nearest integer 

function. The number of scout bees is 𝑛𝑠 = 𝑛𝑛𝑟 − 𝑛𝑟𝑑. The 

process for determining the recruited bees works as follows. 

First, the number of recruited bees to be associated with 

each recruiter is determined. The relative quality of the site 

operated by each recruiter in relation to the others deter-

mines this number: each recruiter recruits a number of bees 

proportional to the quality of the site that it explores. With 

these numbers already determined, the non-recruiter bees 

are processed and associated with the most similar recruiter. 

After these procedures, the remaining 𝑛𝑠 non-recruiter bees 

are considered scout bees [12] . 

6) Recruitment Process 

Recruitment is based on the idea of recombination, as 

proposed in [15]. Recombination consists of combining the 

information present in a set of solutions to create new 

solutions without losing the features of previous solutions. 

Recombination here was adapted for the clustering problem 

and integer encoding. Two recombination schemes were 

implemented: 1) the conciliator behavior, which is a re-

combination procedure that respects features present in both 

bees (every bee it produces contains all the values common 

to its two predecessor bees); and 2) the obsequent behavior, 

which respects features present in the recruiter (for the 

different values of both bees, the value of the corresponding 

recruiter bee is maintained). For example, for bees C = [1 1 

1 1 2 3 3] and D = [1 1 2 2 2 2 3], assume that C is a recruiter 

and D is recruited. The recombination schemes using these 

parents would produce the offspring shown below. 

 

Scheme Offspring 

Conciliator [1 1   2  3] 

Obsequent [  1 1  3 ] 
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The labels of objects represented by  are replaced by the 

labels of the clusters with the nearest centroid. 

7) Exploration Process 

In the exploration process, the scout bees are moved to a 

random position in the search space. By doing this, the 

exploration process allows the scout bees to explore new 

regions in the search space [12].  

B. cOptBees 2 

In cOptBees1 the length of a bee corresponds to the number 

of objects in the dataset, thus the computational effort to 

processing the swarm may become very high for databases 

composed of a large number of objects. In the second en-

coding scheme, cOptBees2, the swarm is represented by a 

set of prototypes whose structure is associated with the 

dimension of the data. The main adaptations of cOptBees2 

when compared with cOptBees1 are presented in the se-

quence. 

1) Encoding Scheme 

In this new implementation of cOptBees, each bee is 

composed of a set of prototypes that encode a potential 

clustering. A bee is defined by a matrix Bi×j, where i = (d + 

1), d being the number of attributes in the input data, and j 

the maximum number of clusters in a clustering (rmax). Thus, 

in a given column j, lines 1 to d represent the dimensions of 

prototype Cj and the last line represents a threshold value, Lj 

 [0,1], that defines if the centroid Cj is active or not. The 

centroid Cj is active when its threshold is greater than or 

equal to 0.5. Figure 2 shows the matrix representation of a 

bee [11]. 

 

𝐁 =

[
 
 
 
 
𝐶1,1 … 𝐶1,𝑟𝑀𝑎𝑥

𝐶2,1 … 𝐶2,𝑟𝑀𝑎𝑥

⋮ … ⋮
𝐶𝑑,1 ⋱ 𝐶𝑑,𝑟𝑀𝑎𝑥

𝐿1 … 𝐿𝑟𝑀𝑎𝑥 ]
 
 
 
 

  

Figure 2. Matrix representation a Bee in cOptBees. 

The swarm is composed of n bees and, for each bee, the 

objects in the database are associated with the nearest 

prototype. The initial swarm is randomly generated, re-

specting the maximum number of clusters, rmax (an input 

parameter introduced in cOptBees).  

2) Recruitment Process 

In the recruitment process, the recruiter bees attract the 

recruited bees to the sites they explore. This recruitment 

process is implemented by Eq. (2) or Eq. (3), each with 50% 

probability, in which  is the recruitment rate, an input 

parameter, xi is the recruited bee, y is the recruiter bee, u is a 

random number with uniform distribution in the interval [0, 

1], U is a vector whose elements are random numbers with 

uniform distribution in the interval [0, 1] (U has the same 

dimension as xi and y) and the symbol  denotes the ele-

ment-wise product [11] 

 𝐱𝑖 = 𝐱𝑖 + 𝑢 . 𝛼 . (𝐲 − 𝐱𝑖) (2) 

 𝐱𝑖 = 𝐱𝑖 + 𝛼 . 𝐔  (𝐲 − 𝐱𝑖) (3) 

III. Parametric Sensitivity Analysis  

The parametric sensitivity analysis of cOptBees was per-

formed to evaluate the influence of each input parameter on 

its behavior. The following parameters were analyzed for 

both versions of the algorithm: nmin (initial number of bees); 

ρ (inhibition radius); nmean (mean foraging effort); pmin 

(minimum probability of a bee being a recruiter); prec (per-

centage of non-recruiter bees that will be actually recruited); 

and rmax (maximum number of clusters). For cOptBees2 the 

parameter α (recruitment rate) was also analyzed. For both 

versions of the algorithm, the maximum number of  bees, 

nmax, was defined as 200 bees. 

 The choice of the parametric configuration of 

cOptBees1 and cOptBees2 was based on preliminary ex-

periments. Table I summarizes the parameters and their 

analyzed values. Each parameter was varied individually 

while the others were maintained fixed in the default values. 

 The sensitivity analysis was performed using the Rus-

pini dataset [16], shown in Figure 3, which is composed of 

75 objects, each one having two integer attributes, orga-

nized in four classes. For each configuration, cOptBees was 

run 10 times and the following aspects were analyzed: a) 

mean fitness value of the best bee (solution); b) mean 

number of recruiters, recruited and scout bees in the final 

swarm; and c) mean variation in the swarm size. 

 

 
Figure 3. Graphical representation of the Ruspini dataset. 

 

The modified Silhouette was used as quality or fitness 

function [17] [18]. The Silhouette for an object xi is calcu-

lated by: 

 𝑠(𝑥𝑖) =
𝑐(𝑥𝑖) −  𝑎(𝑥𝑖)

max{𝑎(𝑥𝑖), 𝑐(𝑥𝑖)}
 ,    (2) 

where 𝑎(𝑥𝑖) represents the dissimilarity between 𝑥𝑖 and its 

centroid, and 𝑐(𝑥𝑖) represents the dissimilarity between 𝑥𝑖 

and the closest centroid. 

 The next sections present the results obtained by the two 

versions of cOptBees and the analysis for each parameter.  
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TABLE I.  DEFAULT AND TEST VALUES ASSESSED IN THE SENSITIVITY ANALYSIS OF COPTBEES1 AND COPTBEES2. 

Parameter 
cOptBees1 cOptBees2 

Default value Values tested Default value Values tested 

nmin 50 5; 25; 50; 75; 100 50 5; 25; 50; 75; 100 

ρ 0.2 0.05; 0.1; 0.2; 0.4; 0.8 0.2 0.1; 0.2; 0.3; 0.4; 0.5 

nmean 10 5; 10; 15; 20; 25 10 5; 10; 15; 20; 25 

pmin 0.25 0.05; 0.15; 0.25; 0.35; 0.45 0.01 0.01; 0.1; 0.15; 0.20; 0.25 

prec 0.9 0,1; 0,3; 0,5; 0.7; 0.9 0.7 0.1; 0.3; 0.5; 0.7; 0.9 

rmax 8 2; 4; 8; 16; 32 8 2; 4; 8; 16; 32 

α - - 0.5 0.15; 0.25; 0.75; 0.9 

 

 

A. Initial Number of Bees (nmin)  

This parameter defines the number of bees that initially 

explore the search space. The initial swarm is generated 

with the minimal number of bees (nmin), as explained in 

Sections II.A.1 and II.B.1, and the number of bees in the 

swarm is updated in each iteration based on the number of 

recruiters and the foraging effort required. It is expected that 

the higher its value, the higher the capability of exploring 

the search space and, consequently, the higher the proba-

bility of finding promising regions in the first iterations. 

However, the computational effort increases proportionally. 

For all executions and all nmin values tested in both versions, 

the best fitness was 0.8158 and all objects were grouped 

correctly.  

 Figure 4 shows the influence of the initial number of 

bees in the final swarm size and the number of recruiters, 

recruited and scout bees. This parameter does not directly 

influence the final swarm size, because the number of bees 

in the swarm is updated at each iteration based on the 

number of recruiters. In this case, the variation of the swarm 

size is produced by the variation in the number of recruiters. 

 

 

  
(a)                     (b) 

Figure 4. Sensitivity in relation to the initial number of bees. Swarm size and number of recruiters, recruited and scout bees 

as a function of nmin to a) cOptBees1, and b) cOptBees2. 

 

B. Inhibition Radius (ρ) 

The inhibition radius avoids that many recruiters explore 

the same region of the search space. The number of re-

cruiters is directly proportional to ρ: the larger the ρ of a 

recruiter, the larger the region explored by it and, therefore, 

the lower the number of recruiters in the swarm.  

 In cOptBees1, for ρ equals to 0.05, 0.1, 0.2 and 0.4 the 

algorithm obtained a fitness value equals to 0.8158 and all 

objects were grouped correctly in all executions. For ρ = 0.8, 

in the first execution the algorithm found seven groups, 

with 13 objects incorrectly classified and fitness value 

equals to 0.7564.  For the other values of ρ the algorithm 

grouped all objects correctly again and the fitness value was 

maximal. In cOptBees2, for all executions and all ρ values 

tested, the best fitness was the maximal one and all objects 

were grouped correctly. 
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(a)                   (b) 

Figure 5. Sensitivity in relation to the inhibition radius. Swarm size and number of recruiters, recruited and scout bees as a 

function of ρ. a) cOptBees1. b) cOptBees2. 

 

Figure 5 presents the swarm size and the number of re-

cruiters, recruited and scout bees for each value of ρ. The 

results show that the number of recruiters decreases as ρ 

increases. For ρ = 0.05, cOptBees1 assigned 92.2 recruiters 

and cOptBees2, 141. For cOptBees1, for ρ = 0.8 the mean 

number of recruiters decreased considerably: the number of 

recruiters was one and all recruited bees were attracted to 

exploit the same region. In this case, the effort was con-

centrated in the search for the global optimum. For ρ = 0.4 

the mean number of recruiters was 7.4 for cOptBees1 and 

2.2 for cOptBees2, and the mean number of recruited bees 

was 65.8 for cOptBees1 and 32.7 for cOptBees2, which 

indicates a stronger exploitation and search for local optima. 

For lower values, such as ρ < 0.2, the number of recruiters 

was higher than the number of recruited bees. Hence, there 

are promising regions that may not be well exploited. 

 The results indicate that the number of recruiters is 

inversely proportional to the inhibition radius. For ρ = 0.8 

this value decreases substantially and the algorithm found 

just one recruiter in both cases. The number of recruiters, in 

turn, directly influences the swarm size together with the 

nmean parameter. The lower the number of recruiters (prom-

ising regions), the lower the number of recruited bees 

required to the exploitation processes and, consequently, 

the lower the number of bees in the final swarm (swarm 

size). In both cases, for ρ lower than 0.1 the swarm size 

reached the maximum number of bees, defined as an input 

parameter, and for the higher value tested the number of 

bees in the swarm was 50, the minimal number of bees 

defined by nmin parameter. 

C. Mean Foraging Effort (nmean) 

The mean foraging effort controls the swarm size based on 

the number of recruiters at each iteration (see Section 

II.A.4). For all executions the best fitness was 0.8158 and 

all objects were grouped correctly.  

 The value of nmean influences the swarm size depending 

on the number of recruiters. The higher the value of this 

parameter, the higher the foraging effort spent to exploit 

each region found by recruiters, i.e., the higher the number 

of bees attracted to exploit each region. Thus, the higher the 

number of recruiters, the higher the number of recruited 

bees to explore all regions found. As shown in Figure 6, the 

higher the number of nmean, the higher the number of bees in 

the final swarm. Figure 6 presents the swarm size and the 

number of recruiters, recruited and scout bees for each value 

of nmean. 

 

 
(a)                    (b) 

Figure 6. Sensitivity in relation to the mean foraging effort. Swarm size and number of recruiters, recruited and scout bees 

as a function of nmean. a) cOptBees1. b) cOptBees2. 
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D. Minimum Probability of a Bee Being a Recruiter (pmin)  

The probability 𝑝𝑖  of a bee being a recruiter is a function of 

the minimum probability of a bee being a recruiter, pmin. For 

pmin = 0, the worst bee (i.e., the one with minimum fitness) is 

not able to become a recruiter; whilst pmin = 0.5 indicates 

that the worst bee has a 50% probability of becoming a 

recruiter. The probability of a bee exploring a low quality 

region becoming a recruiter increases with higher values of 

pmin. Therefore, higher values for pmin allow the selection of 

recruiters located in non-promising regions. This fact can 

compromise the quality of the solutions found. For all 

executions the best fitness was 0.8158 and all objects were 

grouped correctly. 

 The pmin value directly influences the number of re-

cruiters and, consequently, the swarm size. For cOptBees1, 

as pmin increases, the number of recruiters also increases: for 

pmin = 0.05 the mean number of recruiters was 3.2 and for 

pmin = 0.25 the mean number of recruiters was 38.5. On the 

other hand, considering the parametric configuration used, 

the cOptBees2 does not present great variations of the mean 

number of recruiters: for pmin = 0.01 the mean number of 

recruiters was 18.5; and for pmin = 0.25 the mean number of 

recruiters was 27.3.  

 
(a)                   (b) 

Figure 7. Sensitivity in relation to the minimum probability of a bee being a recruiter. Swarm size and number of recruiters, 

recruited and scout bees as a function of pmin to a) cOptBees1, and b) cOptBees2. 

 

E. Percentage of Non-Recruiters that Will Be Actually 

Recruited (prec)  

Parameter prec determines the percentage of non-recruiter 

bees that will be recruited, and controls the exploration and 

exploitation efforts. Higher values for prec indicate higher 

exploitation and lower values indicate higher exploration 

[12]. For prec = 0.1, as shown in Figure 8(a), the average 

number of recruiters was 102.5 for cOptBees1 and the effort 

was totally dedicated to exploration, thus all bees were re-

cruited to exploit promising regions. In this case, the algo-

rithm obtained a fitness equals to 0.0506, which indicates 

that the objects are not well grouped. For prec = 0.1, 

cOptBees2 presents similar behavior, the average number 

of recruiters was 28.8 and effort was concentered in the 

exploration and search of new promising regions. In this 

case, the average number of recruited bees was 2 and the 

average number of scout bees was 169.2. The cOptBees1 

presented the best results for values of prec higher than 0.5. 

For prec = 0.5, 0.7 and 0.8 the cOptBees1 obtained a fitness 

equal to 0.8158 and was able to find the best solution. 

cOptBees2 obtained the best fitness for all configurations 

and all objects were grouped correctly. Figure 8 presents the 

distribution of bees in the swarm. As prec is increased the 

number of recruited bees increases and, consequently, the 

number of scout bees decreases, indicating intensification 

of the exploitation in regions found by recruiters. 
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(a)                    (b) 

Figure 8. Sensitivity in relation to the mean foraging effort. Swarm size and number of recruiters, recruited and scout bees 

as a function of prec to (a) cOptBees1, and (b) cOptBees2. 

F. Maximum Number of Clusters (rmax) 

Parameter rmax indicates the maximum number of clusters 

that can be found in the dataset. The values tested for rmax 

were 2, 4, 8, 16 and 32. This parameter directly influences 

the performance of the algorithm. For rmax smaller than the 

number of clusters in the dataset, the solutions present low 

fitness values and, consequently, the number of bees that 

become recruiters is lower, as presented in Figure 9. As 

already mentioned, the number of recruiters influences the 

swarm size: the lower the number of recruiters, the lower 

the number of bees in the final swarm.  

 For rmax = 2 the mean number of clusters found by the 

best bee in all runs was 2. For rmax = 4 and rmax = 8 the 

number of clusters was 4 for all executions for both versions. 

For rmax = 16, the mean number of clusters found was 4.7 for 

cOptBees1 and 4.0 for cOptBees2. For rmax = 32 the mean 

number of clusters found was 7.4 for cOptBees1 and 4.0 for 

cOptBees2. The best performance of cOptBees1 was ob-

tained for rmax = 8, with a fitness value of 0.8158. Consid-

ering the tested values, the cOptBees2 obtained the best 

fitness value for rmax higher than 4. It was observed that the 

maximum number of clusters, rmax, does not influence 

directly the distribution of bees in the swarm and final 

swarm size.  Figure 9 presents the plot of the best fitness for 

each value tested. Figure 10 presents the number of 

recruiters, recruited and scout bees, as well as the total 

number of bees in the final swarm. 

 

 

 

(a)                  (b) 

Figure 9. Sensitivity in relation to the maximum number of clusters. Plot of the best fitness related to rmax for (a) cOptBees1, 

and (b) cOptBees2. 
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(a)                  (b) 

Figure 10. Sensitivity in relation to the maximum number of clusters. Swarm size and number of recruiters, recruited and scout 

bees as a function of rmax for (a) cOptBees1 and (b) cOptBees2. 

 

G. Recruitment Rate 

 The recruitment rate is an input parameter of cOptBees2 

and it defines how many of the recruited bees had approached 

the recruiters, as explained in Section II.B.2. This parameter 

does not directly influence the distribution of bees in the 

swarm. For all values tested cOptBees2 was able to group all 

objects correctly and the fitness value was 0.8158. Figure 11 

presents the number of recruiters, recruited and scout bees, as 

well as the total number of bees in the final swarm. As shown 

in Figure 11, as the recruitment rate increases, so does the 

number of recruiters. For α = 0.15, 15.1 bees were classified as 

recruiters and for α = 0.9 the mean number of recruiters was 

24.4. As already mentioned, the number of recruiters influ-

ences directly the total number of bees in the swarm, as shown 

in Figure 11. For α = 0.9 the number of bees in the swarm 

reached the maximum number of bees, defined as 200 bees. 

 

 
Figure 11. Sensitivity in relation to the recruitment rate. 

Swarm size and number of recruiters, recruited and scout bees 

as a function of α. 

IV. Discussion 

Both cOptBees versions present efficient mechanisms to 

control the swarm size and adjust the swarm effort to exploit 

or explore the search space. The sensitivity analysis is im-

portant to show the behavior of cOptBees in relation to each 

input parameter, to investigate the impact of each parameter in 

the performance of cOptBees, and to guide the parametric 

configuration according to the problem at hand. Some pa-

rameters, such as pmin and ρ, have a greater impact on the 

algorithm performance. 

The dynamic variation of the swarm size allows the ad-

aptation of the computational effort for each problem. This 

variation is based on the number of recruiters (promising 

regions found). The number of bees in the final swarm is 

directly influenced by the number of recruiter bees (number of 

promising regions). 

 The number of recruited and scout bees is influenced by the 

number of recruiters, prec. This input parameter must be set 

according to the problem: higher values produce a larger 

number of recruited and are adequate in problems where the 

intense exploitation of promising regions is needed; whilst 

lower values result in larger numbers of scout bees and are 

used in problems that require more exploration than exploita-

tion. The number of recruiter bees directly impacts the diver-

sity of solutions, since the recruiters represent the best and 

diverse solutions found by the algorithm. 

 The inhibition radius directly influences the number of 

promising regions and allows the algorithm to search for 

global or local optima, generating diverse solutions. The 

quality of the solutions found by the recruiter bees can be 

influenced by the maximum number of clusters, prec and pmin. 

V. Conclusions and Future Research 

This paper presented a sensitivity analysis of two versions of 

cOptBees, an algorithm inspired by the foraging behavior of 

bee colonies for performing optimal data clustering. The 

analysis was performed to increase the understanding of the 

influences of the many parameters in the behavior of the 

algorithm.  To assess the impact of each input parameter in 

the performance of cOptBees, the algorithm was tested with 

different configurations. Each parameter was varied individu-

ally while the other ones were maintained fixed. 

 The quality of the clusters found by cOptBees, based on an 

internal quality function, and the final swarm size are directly 

proportional to the number of promising regions, represented 
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by recruiter bees, and the foraging effort in these regions. The 

number of recruiters, in turn, is directly influenced by the 

minimum probability of a bee being a recruiter, pmin, and by the 

inhibition radius, ρ. 

 Important future research include the investigation of the 

impact of the parameters on the diversity of solutions, the 

assessment on different types of clustering tasks, and the use of 

various internal and external measures in the assessments. 
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