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Abstract: The work investigates the general suitability of pur-
pose of abstract evolutionary approaches by investigating the is-
sues involved with re-factoring an existing, gene expression pro-
gramming based, drone control system into an immunological-
ly based general purpose optimization system. The re-purposed
model is investigated regarding its suitability suitable for use in
clonal expansion based optimization contexts made possible due
to being freed from the physical constraints of real world drone
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I. Introduction

This article expands on previously introduced work [1]. This
article discusses the issues associated with re-purposing an
unrelated previously existing evolutionary model into a more
abstract problem domain. Software systems which are based
on nature and biological systems are a relatively recent de-
velopment and as such the approach is somewhat prone to
repeating some of the mistakes which have already been ad-
dressed in other fields. This process is analogous to the pre-
viously accepted biological phenomenon of ontogeny reca-
pitulating phylogeny. In this a developing embryo seemed to
go through stages in its growth which mirror the evolutionary
history of the species as a whole.
In this article an evolutionary flight control software gener-
ation system for drone platforms is discussed. The under-
lying algorithms, architecture, and approach for the evolu-
tionary generation of candidate flight control software is dis-
cussed followed by a discussion of the simulation environ-
ment which plays a key role during the fitness evaluation of
the candidate systems. The use of simulation software is cru-
cial for containing the escalation of costs which would arise
through the use of approaches to fitness evaluation other than
those performed in silico.
A general overview of the adopted evolutionary approach is

presented in the following section followed in turn by a dis-
cussion of the drone system itself. The adaptation of this
model onto the immunological paradigm is then considered
by initially describing the specific immune algorithm used
and its incorporation into the new model.

II. Gene Expression Programming

All forms of evolutionary computation approaches to prob-
lem operate by generating successive populations of candi-
date solutions and determining the suitability of those can-
didate solutions to solving the problem under consideration.
Their respective performance in solving the problem is used
as the basis of a derived fitness value which is then used in
selecting a subset of the population to undergo reproduction.
This reproduction takes the form of the application of a va-
riety of genetic operators [2] which introduce variation in
the population while attempting to ensure those attributes of
candidate solution which contribute positively to their per-
formance in the fitness metric are preferentially selected for
in the next generation. The fitness function therefore serves
to drive the evolutionary process to a point where individu-
als containing an acceptable fitness value, and by extension
a suitable level of performance in the underlying task, are
present in the population. Once this threshold is reached the
algorithm is usually terminated.
The principle differences between the approaches to evolu-
tionary computation that exist are found in either the rep-
resentation of an individual within the population or the re-
production method which is used to introduce genetic vari-
ety [3]. In traditional Genetic Algorithms, GAs, these indi-
viduals within the population are expressed as linear geno-
types, that is, some fixed string representation of the be-
haviour of the individual. Genetic Programming differs in
that the genotype is expressed into a tree structure which is
executed. The tree structure represents a candidate solution
to the problem and the tree structure is subject to evolution
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directly. These tree structures are referred to as the chromo-
somes’ phenotype, and the application of genetic operators
to these representations is therefore referred to as phenotypic
evolution [3]. These genetic operators evolve the phenotype
representations of the individual directly.
Gene Expression Programming, GEP, as defined by Ferreira
[4], is an approach to evolutionary computation. The princi-
ple difference between GEP and other evolutionary compu-
tation approaches lies in the representation of the behaviour
of an individual and in the approach to evolution. Chromo-
somes are represented by fixed length strings which, like in
GA’s, are referred to as the genotype representing that indi-
vidual. This linear representation allows for easier applica-
tion of genetic operators such as recombination, transposi-
tion, replication and mutation. These genotypes may then be
expressed as phenotypes in order to be evaluated. These ex-
pression trees are exclusively used for the expression of the
behaviour associated with the genotype, and as such no phe-
notypic evolution takes place [5]. The phenotype is simply
evaluated and assigned a fitness.
GEP chromosomes are divided into one or more genes,
which themselves are divided into both head and tail sec-
tions. The head of the gene is composed of both functions,
of a certain arity, and arguments to the functions. The tail of
gene is composed of only arguments to the functions present
in the head of the gene. This representation mimics open
reading frames when considered from a biological perspec-
tive. Open reading frames in biology are coding sequences
for a gene, where the start of the gene is identified by a s-
tarting codon. The gene is then comprised of a number of
amino acid codons before ending with a termination codon.
In GEP, this start codon is always the start of the gene. The
entire symbolic string representing the genotype is therefore
considered the open reading frame and in GEP is referred to
as a K-expression by Ferreira [5]. The length of these genes
is calculated as the sum of the length of the tail, t, and that
of the head. The length of the tail of gene is a function of the
length of head, h, and the maximum arity of the functions
present in the head, n. The length of the tail can therefore be
defined as follows in Equation 1:

t = h× (n− 1) + 1 (1)

One such benefit of this representation is that during phe-
notypic expression, all invalid regions of the genotype are
discarded. This eliminates the need to search the potentially
infinite problem space consisting of invalid programs. Geno-
types are expressed through the creation of expression trees
and as such each argument that applies to a function within
the head of the gene is placed in a position that correspond-
s to the arity of that function. Chromosomes may therefore
contain some values which do not contribute to the candidate
solution that they represent. These expression trees are al-
so guaranteed to be correct with regards to the functions that
appear within. Fig.1 illustrates the standard approach [5, 6].
There has been a great deal of recent work concerned with
improving the standard GEP approach. This section con-
cludes with a discussion of three such recently published
works summarizing their contributions and distinguishing
them from the work presented in this paper.
The first approach to improving GEP attempts to improve

the genomic representation of the k-expression strings them-
selves [7]. This is done by having the genome define sub-
functions instead of the candidate solution directly. Instead
these sub-functions are used to construct the candidate solu-
tion itself. Due to their presence in the genome these sub-
functions are themselves subject to improvement through
evolutionary pressure. One of the promising advantages of
this approach is that it builds on the key insights of GEP
(genotypic / phenotypic separation and that non-coding re-
gions act as reservoirs of diversity) by having the emergen-
t results of the execution of these functions define the can-
didate solution. This is much closer to the biological ana-
logue in that an organism is not in fact directly defined by
its genome rather the genes define the molecular machinery
which in turn assembles the organism.
The other two improved GEP variants which are now being
discussed aim to combine GEP with artificial immune system
concepts. The first of these operates in the problem domain
of modelling ordinary differential equations and combines
the standard GEP operators with clonal expansion at the op-
erator level before additionally combining the approach with
a memetic algorithm to improve local search [8]. The com-
bined approach was found to outperform the standard genetic
programming approach (it is worth noting that this compar-
ison is with genetic programming, a purely tree based ap-
proach, and not with the standard GEP approach).
The last of the GEP variants under consideration [9] im-
proved upon the original in two major ways. Firstly at the
high level algorithm layer a mirror and reset mechanism
was deployed to purge poorly performing candidate solution-
s from the population pool as well as to improve the explo-
ration behaviour of the system.
The second improvement is again at the genetic operator lev-
el and likewise involves incorporates clonal expansion. It is
worth noting that clonal expansion is the most suitable of
the artificial immune system algorithms as it is most suitably
deployed in optimisation problems as opposed to negative
selection which is better suited to categorisation problem-
s. The other immune based approaches each also have their
own niche in which they are best deployed.
These approaches to improved gene expression program-
ming differ from the ImmunoOptiDrone investigation in that
they are attempts to incorporate such improvements at the al-
gorithmic level. ImmunoOptiDrone, however, takes a more
layered approach attempting to focus on the structured re-use
of an existing model in a different problem domain.

III. Proposed Model

The core components of the prototype system are shown in
Fig.2. The system itself uses an approach to evolutionary
computation inspired by GEP called multiple-output GEP,
moGEP, as defined by Mwaura and Keedwell [10]. MoGEP
was developed as a method of creating control systems for
robotic behaviour, specifically in problems such as avoidance
and guidance. Chromosomes within MoGEP are comprised
of a number of genes which are expressed individually as
a number of sub expression trees. Other approaches exist,
to which MoGEP is similar, such as Cartesian GP, Parisian
GP and Multi Expression Programming (MEP). MoGEP d-
iffers from these other approaches in the way in which the
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Figure. 1: The standard GEP approach [5, 6]

chromosomes are evaluated. Cartesian GP used both direct-
ed graphs, instead of tree-like structures, and also utilizes a
separate, potentially identical fitness function that is used to
evaluate each gene within the chromosome [10]. MoGEP al-
so differs from Parisian GP in that in MoGEP, chromosomes
code for the entire candidate solution to a problem, where
in Parisian GP, the chromosome forms a sub-solution to the
entire problem [10].
MoGEP has been chosen as the initial model for adaptation
owing to the contribution provided by each gene within the
chromosome to the solution to the problem. Initially, the
MoGEP approach focussed on reading the values associat-
ed with sensors placed in positions around a simulated robot
and applying forces to simulated motors through the use of
various kinematic models. Unlike Mwaura and Keedwell-
s system, in this model the state variables representing the
drone in 3d space are simply updated directly based on the e-
valuation of their phenotype representations. As such, drones
maintain state about their position within an environment.
These maintained state variables include the acceleration of
a drone, the facing angle, as well as their ascent vector. Re-
moving the kinematic models required for the simulation of
motors ensures that the actions taken by a drone based on the
evaluation of its’ phenotype are deterministic. These simpli-
fications allow for the problem domain being modelled to be
extended to n-dimensions and provide the basis for the adap-
tions proposed to this system.
Each of the chromosomes within this system are, as in Mo-
GEP, divided into a number of genes, where each gene is
itself comprised of both a head an a tail. Genes are, as in
GEP, fixed length strings where the head is comprised of
both functions and arguments, as defined in table 1. Func-
tions used within the described system, refered to as I and
G and presented in equation 2 and 3 respectively, are both
functions with arity 4. I, also referred to as the “If less than
or equal” function executes the true action of the node that
appeared as argument 3 if the sensor value returned from the
argument in 1 is less than or equal to the value returned from
the argument in position 2. Otherwise, I, executes the false
action of node 4. G, also referred to as the “If greater than

or equal” which executes the true action of the node appear-
ing in argument 3 if the sensor value returned from argument
1 is greater than the sensor value returned from argument 2.
Otherwise, G performs the false action of the node provided
as argument 4. The addition of the function to MoGEP has
been performed in order to provide for greater genetic diver-
sity with regards to the head portions of genes. This cause is
further supported through the use of multiple execution op-
tions for a given node within the expression tree. Within the
equations presented below, the value of c(true) represents
the execution of the true branch of the argument represented
by c. The same is true for the second case, where d(false)
represents the execution of the false branch of the argument
represented by d.

I(a, b, c, d) =

{
c(true), if value(a) ≤ value(b)

d(false), otherwise
(2)

G(a, b, c, d) =

{
c(true), if value(a) ≥ value(b)

d(false), otherwise
(3)

Arguments correspond to both sensor output and an action
that is to take place depending on the position in the expres-
sion tree at which they are encountered. When an argument
is encountered and evaluated within the expression tree for
a gene, the value represented by the argument is always re-
turned. This is to ensure that a value tree is executed. In the
case of an argument not having an associated action, this en-
sures that the value is able to be utilized further towards the
root of the tree, thereby ensuring that each value contributes
to the candidate solution.
Within the arguments presented in table 1, the entries which
appear in the true column represent the action which takes
place when the functions at the root of 4 nodes within a sub-
tree of the decision tree evaluates to true based on the 1st and
2nd nodes. The entries within the false column take place
when the function evaluates to false.
Based on the discussed arguments and functions, the exam-
ple phenotype representation presented below (Fig. 3) codes
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Figure. 2: Component Diagram - Evolutionary Drone Control System [11]

IhIIG(25.1)jhhekccixhcifkgcfab

IFLE

h:angleToMovement IFLE h:angleToMovement c:altitude

IFLE c:altitude i:distanceToHighestTemp x:(25.646346)

IFG e:health k:velocity c:altitude

x:(25.100000) j:distanceToMovement h:angleToMovement h:angleToMovement

Figure. 3: Example phenotype representation for the individual, IhIIG(25.1)jhhekccixhcifkgcfab
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Function Arguments
Symbol Returned Value True False
l Ascent vector Ascend Descend
f Facing angle Rotate left Rotate right
k Velocity Accelerate Decelerate
a X Coordinate - -
b Y Coordinate - -
c Altitude (Z Coordinate) - -
d Power remaining for drone - -
e Structural integrity of the drone - -
g Angle to highest detected temperature Rotate -
h Angle to movement detected Rotate -
i Distance to highest detected temperature Rotate -
j Distance to detected movement Rotate -
x Double constant Constant Constant

Table 1: Table containing arguments for functions appearing in the head of a gene.

for behaviour where the drone will rotate to face the angle
of movement detected if the distance to the moving objec-
t, based on results from the relevant sensors, is greater than
the constant value, 25.1. Otherwise, the drone will also ro-
tate to the angle to movement. The value returned from the
function being executed will then be compared to the struc-
tural integrity of the drone. If the structural integrity of the
drone is greater than the returned value, the drone will in-
crease accelerate, otherwise it will return the ascent vector of
the drone. This returned value is then compared with the cur-
rent altitude, and if it is less, the drone will return the distance
to the highest detected temperature. Otherwise the function
will return the constant value 25.646346. This value is final-
ly compared to the angle to movement that is detected. If the
angle to movement is less than this returned value, the drone
will rotate to face this angle, otherwise it will simply return
it’s altitude to the root of the decision tree.
In this way, the drone’s state is updated based on the deci-
sions taken throughout the execution of the various decision
trees which represent these genes within the chromosome.
The environment within which these chromosomes are eval-
uated is represented as a 3-dimensional height map in jMon-
keyEngine3, an example of which is provided in 4. Height
maps for the proposed system may either be rendered from
images or created with use of arrays of values. This allows
the height map to be adapted to represent values from a func-
tion being modelled.

Figure. 4: Rendered environment represented as a 3-d
heightmap

The individual genes are then evaluated in order, with each
evaluation leading to a change in the state maintained by
the drone based on the result of the execution of the phe-
notype structure. The proposed model evaluates the fitness
of a given drone within the population based on a number
of criterion. This problem is therefore considered to be a
multi-objective problem where the criteria used to evaluate
each drone is the distance to the object of interest, the fuel
used by the drone, the total number of control cycles used,
as well as the damage that has occurred to the drone during
the simulation. This system has also been designed to be
extensible, where the fitness function may simply be adapt-
ed given the problem domain being explored. In this way,
the fitness could be considered to be a maximum or mini-
mum value thereby allowing for the adaptation to multiple
domains.

IV. Experimental Setup

In order to evaluate the viability of the initial system to the
problem at hand, populations were initialized based on a
number of parameters. These parameters included the num-
ber of individuals, the number of genes that each individual is
comprised of, as well as the length of the head for each gene.
These individuals were randomly generated and allowed to e-
volve according to the canonical GEP algorithm as presented
by Ferreira [5]. The replacement strategy of the population
for subsequent generations is performed between parents and
children, where the weakest parent is always replaced by the
strongest child. This takes place by way of a Parent-offspring
competition [3]. The object to be located was placed in a
fixed position for testing purposes and the algorithm was al-
lowed to progress for a total of 50 generations, after which
the average and best fitnesses were recorded. Roulette Wheel
Selection was implemented for the selection process among
the parents of the next generation [3].
In order to contrast between the various genetic operators so
that the best configuration given the problem domain may
be found, a number of operators have been implemented.
These operators are then configured at the start of each ex-
ecution of the simulation. In terms of Recombination, both
One Point and Two Point Recombination were implemented
at a selectable rate. Both Gene and Root Transposition were
likewise implemented according to Ferreria’s definitions of
these operators [5]. Owing to the variety of genetic material
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within each chromosome representing a solution, mutation is
implemented in such a way that each allele within each gene
is subject to mutation at a fixed rate. The mutation operator
in use examined each allele and randomly selected either a
function node, or argument node to replace the value con-
tained within. In cases where floating point valued nodes
were subject to mutation, either the value was regenerated or
the preexisting value was simply modified by a fixed value,
namely±0.1. In terms of the fitness function, presented in e-
quation 4, the weights were fixed such that dWeight = 10.0,
hWeight = 2.0, pWeight = 1.0, and cWeight = 0.5.
Therefore, more emphasis was placed on the distance to the
object being searched for. The problem can therefore be con-
sidered to be a minimization problem.

fitness(xi) = (dWeight ∗ distance(xi, p))

+ (hWeight ∗ health(xi))

+ (pWeight ∗ power(xi))

+ (cWeight ∗ controlCycles(xi))

(4)

V. Results

Results, as presented in table 2, are classified according to
the parameters that were selected for the execution of the
algorithm. Let P be the tuple comprised of the parameters
for the simulation, such that:

P = {nGenes, hLength,
mRate, rOp, rRate, tOp, tRate}

Where nGenes is the number of genes that each drone is
comprised of, hLength is the length of the head of each
gene, mRate is the mutation rate, rOp is the recombination
operator, rRate is the rate at which recombination occurs,
and finally tOp and tRate are the transposition operator and
transposition rate respectively. Presented within these results
are both the average and best fitnesses at the end of 50 gen-
erations.

Figure. 5: Average vs. Best Fitness over the course of 50
generations of 30 Drones comprised of 30 genes and a head
length of 5, using Roulette Wheel Selection, Uniform Muta-
tion at a rate of 0.02, Two Point Recombination, and Gene
Transposition at a rate of 0.01.

As can be seen within table 2, the algorithm is tunable in
order to favour either exploration or exploitation within the
simulation. This is evident in both the average and best fit-
nesses found in Test 3 compared to other configurations. This
configuration, where each chromosome was comprised of 20
genes, with a head length of 6, resulted in poor convergence
with the selected operations and rates, instead favouring ex-
ploration. This is in comparison with Test 6, presented in
fig. 5, where the best fitness of any configuration is observed.
The configuration presented in Test 6 was able to generate the
best solution observed throughout the testing process, ow-
ing to the increased tendency towards exploitation during the
simulation.

VI. ImmunoOptiDrone via Clonal Expansion

The vertebrate adaptive immune response has evolved in or-
der to supplement the fixed innate immune response found
in older organisms. Innate immunity provides an unchang-
ing response to predetermined pathogens which have been
identified during the evolutionary history of the organism.
Adaptive immunity supplements this response by allowing
an organism to develop appropriate immune responses to
new pathogens encountered within the life-span of the or-
ganism. The adaptive immune response is in truth not a s-
ingle response but rather a multitude of interrelated respons-
es each dealing with a different sub-problem each governed
by differing cells and effector molecules. The problem of
self / non-self recognition is mediated by T-cell lymphocytes
through negative selection while the problem of providing an
optimal response is handled by B-cell lymphocytes via clonal
expansion’s positive selection [12].
In general clonal expansion is most similar to a mutation-
heavy evolutionary algorithm. Fig. 6 details the steps in-
volved in clonal expansion. Initially immature B-cells are
produced en mass in the bone marrow. Each B-Cell then
undergoes somatic hyper-mutation in a specialized variable
region of its DNA. This region controls which peptide se-
quence the lymphocyte will bond to i.e. its affinity to a spe-
cific antigen. During maturation clonal expansion is used
in order to filter out those lymphocytes which have affini-
ty to peptide sequences which are not present and amplify
the response of those lymphocytes whose affinity is for those
antigens which are present. In order to do so antigen pre-
senting cells provide samples on their surface (via the ma-
jor histo-compatibility complex molecule) of those peptides
which are present within the organism together with danger
signals such as those produced when tissues are damaged.
Those lymphocytes which happen to bond with the presented
antigens are preferentially duplicated via the process of clon-
al expansion and a limited subset of those clones have their
life-spans increased to serve as memory cells and thereby in-
crease the rapidity of future responses to those antigens [13].
In order to adapt the evolutionary drone control mechanis-
m discussed in this model to the task of function optimisa-
tion the following observations need to made. Firstly as the
new problem domain is purely virtual physical constraints
on drones need not apply. The original evolutionary system
would have to heavily penalize drone control software which
lead to crash however in the new problem domain this is not
such a dire consequence. Additionally drones are not lim-
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Results
Test nGenes hLength mRate rOp rRate tOp tRate Best Avg

1 20 5 0.04 One Point 1.00 Gene 0.01 1836.56 3204.14
2 20 5 0.02 One Point 1.00 Gene 0.01 1905.25 2204.65
3 20 6 0.02 One Point 0.7 Gene 0.01 2456.15 3360.75
4 30 5 0.02 One Point 1.00 Gene 0.01 2304.54 2980.5
5 30 5 0.04 One Point 1.00 Gene 0.01 1950.15 2845.32
6 30 5 0.02 Two Point 1.00 Gene 0.01 1450.31 2745.34
7 30 5 0.04 Two Point 1.00 Gene 0.01 2285.31 3047.51
8 30 5 0.02 One Point 1.00 Root 0.01 1845.65 2403.54
9 30 6 0.04 One Point 1.00 Root 0.01 2206.45 3014.68

10 20 6 0.04 Two Point 0.8 Root 0.02 2050.49 3405.95

Table 2: Table containing the results of various configurations utilizing Roulette Wheel Selection over the course of 50
generations of a population comprised of 30 Drones.

ited to their initial number and be dynamically created and
destroyed by the system as needed. The second observation
is that the fitness function of the evolutionary drone control
system can be adapted so that instead of favouring drones
which come closest to victims in need of rescue it instead
favours those which maintain a fixed distance above the ter-
rain’s surface yet achieve a high elevation. In this way the
function being optimised can be substituted for the terrain
of the environment. The system can then be mapped onto
the clonal expansion algorithm by having the fitness func-
tion of the underlying GEP algorithm substitute for affinity
in an evolutionary algorithm layered on top of it. Individual
lymphocytes are then realized by the drones themselves with
new instances brought in and out according to their affinity
at fixed intervals. Somatic hyper-mutation does not need to
be expressly implemented instead the pre-existing mutation
function of the underlying GEP can be used.

Figure. 6: UML Activity Diagram - Clonal Expansion [12–
14]

VII. Experimental Setup of ImmunoOp-
tiDrone

In order to more accurately compare the use of the Clon-
al Selection algorithm to GEP, a number of considerations
have been made. Firstly, the fitness function remains the
same as that presented in equation 4. This is so that the
results of adapting the system to Clonal Selection may be
directly contrasted to the performance of GEP, as in the ini-
tial model. The final goal position also remains the same as
that of the initial model so that the results presented in ta-
ble 2 may be compared to the results of the execution of the
Clonal Selection algorithm. This is simply an abstraction,
as in ImmunoOptiDrone, the final position can also be seen
as the highest point in terms of elevation within the simulat-
ed environment. The simulated environment may therefore
be considered to be affinity landscape in which these drones
function. The affinity landscape could therefore represent a
function being optimized and in this way may be instead re-
placed by examining the highest or lowest point within this
landscape.
Initially, the population of drones, referred to as lympho-
cytes, are initialized at a fixed starting position. This fixed
starting position was selected so as to provide a baseline by
which performance may be measured between the differen-
t models. This location is surrounded by local minima and
maxima which the chromosomes within the initial model tra-
versed to reach the goal position. This location also remains
fixed between executions so that the performance of each ex-
ecution of the model may be compared to one another. As
in GEP, these lymphocytes are allowed to execute their ini-
tial randomly generated behaviours. However, in contrast to
GEP, the physical constraints of the simulation environmen-
t are removed and the lympocytes may freely traverse the
affinity landscape irrespective of whether they collide with
the terrain or not. These lympocytes continue to execute their
behaviours until they have reached the end of their lifespans
or they begin to move outside of the domain of the func-
tion that defines the affinity landscape in which they func-
tion. Once these lymphocytes have reached the end of their
lifespan, their final affinity is calculated based on equation 4.
Based on this the problem domain can be seen as a mini-
mization problem, where larger distances to the target po-
sition indicate a higher affinity in much the same way as
GEP and affinity is therefore considered to be the differ-
ence between the target position and the final position ob-
tained by the drone. The weights for this affinity calculation
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were fixed such that dWeight = 10.0, hWeight = 2.0,
pWeight = 1.0, and cWeight = 0.5. This allows for a
more accurate comparisson between the results obtained for
GEP and those obtained with ImmunoOptiDrone. Follow-
ing this affinity calculation, the best lymphocytes are select-
ed so that they may undergo the process of clonal expansion.
That is, those lymphocytes within the population with lower
affinities are selected for cloning. The n lympocytes with
the best affinities are selected from the population, where
n = populationSize/portion and portion is the sample
of the population that is to be examined.
These selected lymphocytes are then cloned in relation to the
population size and cRate as defined in equation 5.

numClones() = populationSize ∗ cRate (5)

Where cRate is the rate at which clones are created. The
number of clones generated is therefore in proportion to the
initial population size. Higher numbers of clones are gener-
ated within larger lymphocyte populations.
These clones then undergo the process of affinity maturation,
where these high affinity lymphocytes are mutated in propor-
tion to their affinities. That is, higher affinities indicate larger
differences between the final position of these drones and the
goal position. This may be adapted to instead be the highest
point within the terrain, however, for comparisson purpos-
es this has been selected as the same point being searched
for as that in the GEP approach. As the behaviours of these
lympocytes is defined as a decision tree, as specified in fig-
ure 3, the mutation operators remain the same as that of the
GEP approach within the initial model. That is, the original
mutation operators remain in use, however, the rate at which
mutation occurs is altered depending on the affinity of the
lymphocytes being examined. Through empirical study, the
function which determines the rate at which mutation occurs
has been defined. As can be seen in equation 6, the muta-
tion rate is defined in terms of a lymphocytes affinity, where
high affinities in this case indicate worse performance, and
mRate, where mRate is tunable to allow the algorithm to
exhibit either more or less mutation for these cloned lym-
phocytes.

mutationRate(affinity) =
(affinity600 − 1)2

mRate
(6)

As can be seen in figure 7, the mutation rate for each lym-
pocyte is in terms of both the affinity for that lymphocyte and
the rate of mutation defined as mRate. Based on this, it can
be seen that higher affinities represent lower performance,
and therefore the mutation rate increases in order to improve
on the performance of that lymphocyte. These lymphocytes
are subject to the original mutation operators of the initial
model, that is One Point Recombination and Gene Transpo-
sition at these calculated mutation rates. As sexual reproduc-
tion does not take place within the clonal selection algorithm,
those operators which were present within the initial model
have been disabled.
After these lymphocytes have undergone the affinity matu-
ration process, they are allowed to execute in order to cal-
culate their final affinities. Based on these calculated affini-
ties, the lymphocyte clones and the original lymphocyte pop-
ulation are combined in order to select the new population.
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Figure. 7: Percentage of mutation based on a lymphocytes
affinity with mRate = 10, mRate = 12, mRate = 14,
and mRate = 20 as defined in equation 6. Lower affinities
represent better performance.

This is performed by selecting the best performing lympho-
cytes from both of these sets and combining them. The
worst performing lymphocytes are then replaced with new
stochastically generated lymphocytes and the process contin-
ues. These new lymphocytes serve as the method by which
randomness is injected into the algorithm and aids in prevent-
ing stagnation as the population evolves.

VIII. ImmunoOptiDrone Results

In order to determine the validity of this model a number of
tests were executed, the results of which are presented in ta-
ble 3. The model was initialized with variations in the popu-
lation size, represented by pSize, and as in the initial model,
the length of the head for each chromosome, hLength, and
the number of genes present in the chromosomes, nGenes.
The simulation was allowed to execute for a total of 50 gen-
erations in order to contrast these results to those presented in
table 2. After each simulation had executed successully, both
the average and best affinity exhibited was recorded. These
affinities can be directly compared to the fitness of the drones
recorded in the initial model owing to the use of the identical
fitness function.
When comparing the perfomance of the initial model, in ta-
ble 2, to that of ImmunoOptiDrone in table 3, it can be seen
that the average affinity of the population of lymphocytes is
consistently higher than the average fitnesses presented in the
original model throughout each execution of the simulation.
This is true for the best affinities of ImmunoOptiDrone as
well, where despite attempting to tune the algorithm it is still
unable to converge on an ideal solution. It can also be seen
that this is the case despite modifications to the population
size which was not considered in the original model. That
is, within the original model, the population size was fixed at
30 individuals. Owing to the functioning of the clonal selec-
tion algorithm in use in ImmunoOptiDrone, the population
size was allowed to fluctuate. Initially, these executions were
set so that a fixed number of lymphocytes were generated,
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Results
Test pSize nGenes hLength portion mFactor cRate Best Affinity Avg. Affinity

1 30 20 6 4 14 0.1 2952.48 5046.53
2 30 20 6 4 12 0.1 1909.05 4951.18
3 30 20 6 4 10 0.1 3032 4882
4 30 20 6 5 10 0.1 3035 4827
5 30 20 6 5 10 0.2 2718 4773
7 20 20 6 5 12 0.2 2444 7428
8 30 20 6 5 14 0.3 2337 5048
9 30 20 6 5 20 0.2 2425 4642
10 30 20 6 5 12 0.2 2672 4743

Table 3: Results of configurations utilizing the ImmunoOptiDrone model over 50 generations.

however, it was observed that the population size fluctuat-
ed as the algorithm progressed. This allowed for more di-
versity within the population compared to the initial model,
and the inability of the population to converge and exploit
good solutions may also be attributed to this increased di-
versity within the population. The best performance of this
model was achieved in Test 2 which was initialized such that
pSize = 30, nGenes = 20, hLength = 6, portion = 4,
with mFactor = 12 and cRate = 0.1. The performance of
this execution of the ImmunoOptiDrone model is presented
in figure 8.

Figure. 8: Average vs. Best Affinities over the course of
50 generations of 30 Drones comprised of 20 genes and a
head length of 5 within the ImmunoOptiDrone model. Lower
affinities indicate better performance.

The results of the execution presented appear in figure 8,
where the average vs. best affinities within the population of
30 lymphocytes over 50 generations is charted, demonstrates
the inability of ImmunoOptiDrone to converge. While the
average affinity of the population of lymphocytes does in-
deed decrease, it is still consistently higher than the affinity
of the best lymphocyte within the population. When com-
pared to the results of an execution of the initial model, pre-
sented in figure 5, the average fitness of the population does
decrease and the algorithm is able to capitalize on good solu-
tions. This behaviour was not exhibited by the ImmunoOp-
tiDrone model, where the performance of the best lympho-
cyte makes large sudden improvements to its performance.
These large sudden decreases can be attributed to the in-
creased mutation rate of the clonal selection algorithm when
compared to that of GEP. As the mutation rate increases with

an increase in affinity, larger modifications are made in order
to attempt to minimize the function being optimized. When
considering the structure of the chromosomes that define the
behaviour of these lymphocytes it may be seen that these
large mutations serve to create even larger changes in the be-
haviours of these drones within the simulation. It may there-
fore be concluded that ImmunoOptiDrone when configured
in the manner presented above, is unsuitable to this problem
domain.
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