
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 8 (2016) pp. 266-274

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Advanced Cache Techniques for SLA-Driven

Multi-Tenant Application on PaaS

K R Remesh Babu1, Saranya S2 and Philip Samuel3

1 Department of Information Technology, Government Engineering College Idukki,

Painavu, Idukki – 685 603, Kerala, India

remeshbabu@yahoo.com

2 Department of Information Technology, Government Engineering College Idukki,

Painavu, Idukki – 685 603, Kerala, India

saranyasasangan3@gmail.com

3 Division of Information Technology, Cochin University of Science and Technology,

Kochi – 682 022, Kerala, India

philipcusat@gmail.com

Abstract: Multi-tenant application is one of the main

characteristics of cloud computing. Today, most of the

application uses cache service for getting faster access and low

response time. Currently in multi-tenant cloud applications data

are often evicted mistakenly by cache service, which is managed

by existing algorithms such as LRU. Also, security mechanisms

are implemented to avoid data breach when data are accessed

improperly by another tenant. SLA Driven cache optimization

Approach for multi-tenant application is built on PaaS. It helps

to improve the cache performance and cost effectiveness of

tenants. This tries to improve the cache utilization by avoiding

faulty evictions and unnecessary storage retrievals. It considers

both tenant profile and data profile in addition to LRU for

weight the evicted data and determines re-cache mechanism.

Memcache is currently used to cache data explicitly. It provides

only average response time to users. In the proposed work,

HashMap is introduced as a new form of internal cache on PaaS

for faster access. Tenants can access this application through

web service by using PC, Laptop, Mobile etc. The test results

shows that the proposed method provides better performance

and faster access to multi-tenant users.

Keywords: Cache Optimization, Cloud computing, Multi-tenant

Application, SLA, Cache security, QoS.

I. Introduction

Cloud computing is a model like ubiquitous network, that

allows accessing the shared computing resources to handle the

application. It delivers the hosted services over the Internet.

These services are broadly divided into three categories:

Infrastructure as a Service (IaaS), Software as a Service

(SaaS), and Platform as a Service (PaaS). Many enterprises

are adopting this technology to achieve low cost and high

performance computing. Multi-Tenant application is one of

the important characteristics of cloud computing which

provides better resource utilization for application provider.

Its development and adoption are greatly promoted by cloud

computing.

A multi-tenant application supports tenants to share one

application and database instance while allowing them to

configure the application to fit their needs respectively as if, it

runs on a dedicated environment [1]. To ensure service

qualities for each tenant, more and more people advocate that

these applications should abide by Service Level Agreements

(SLAs) to perform their computation needs [20],[21]. Several

works have offered solutions to help these applications to

improve resource utilization during runtime. Most of these

works focus on virtual machine (VM) management. Storage

and cache are the important cloud services, but the issues in

these are less addressed.

Cloud distributed cache [10],[11] service plays a vital role in

improving cloud application performance. It reduces latency

and improves user satisfaction greatly. In Google App Engine

(GAE) Memcache service is used for multitenant application.

Memcached service is an open source and widely used by

many high-traffic sites, such as Facebook, Live Journal,

Wikipedia and Fotolog. In cloud, the time for reading/writing

data from/into cache T_tcache and reading/writing data

from/into data store T_tround includes transfer time between

different nodes. Where T_tround time is much greater than

T_tcache [11]. Hence effective utilization of cache service

leads to high hit rate and low response time. Therefore, how to

improve cache hit rate by reasonably appointing data to cache

becomes a key to multi-tenant application success.

Currently different methods and cache strategies are used for

managing the tenant oriented resources and cache

management in shared environment respectively. SLA-driven

optimization approach help the multi-tenant application to

better utilize cloud cache service. It can be taken as

complementary to the existing work. It considers both Tenant

Profile and Data Profile when weighting the evicted data with

re-cache method, and then adjust their re-cache priorities.

Tenant profile include tenant SLAs and tenant priorities. Data

profile including its historical trend and importance to the

tenant. Optimization process occurs at the beginning of every

cycle. This approach is built on the top of PaaS.

SLA-driven cache optimization approach for multi-tenant

application uses external cache for storing data. This will take

Advanced Cache Techniques for SLA-Driven Multi-Tenant Application on PaaS

267

average response time for handling user request. Use of an

internal cache provides faster access to users. Internal cache

can be created using HashMap technique. HashMap stores

key value pairs. User can access value by using their keys.

There are several methods to ensure Quality of Service (QoS)

in multi-tenant cloud environment such as knowledge base

resource allocation [33] and SLA based scheduling [34]. The

paper [35] proposed a method for performance measurement

of multi-tenant applications in cloud. The paper [36]

implemented client-based in-memory caching method for

cloud data store.

This paper introduces an advanced cache techniques for multi

tenant application. Internal cache is created for multi-tenant

application using HashMap. It will take low response time for

handling user request. Internal cache is built on PaaS. This

application can access through web service from PC, Laptop,

and Mobile etc. These approaches provide integrity to original

cloud cache service and portability among different cache

services. This helps to provide better performance to

multitenant users.

II. Multi-tenant Application

Multi-tenant applications development and adoption are

greatly promoted by cloud computing [1], which aims for

“better resource utilization” for application provider and “pay

as you go” for application tenants. Multi-tenant application

supports tenants to share one application and database

instance while allowing them to configure the application to

fit their needs respectively as if it runs on a dedicated

environment.

While a number of definitions of a multi-tenant application

exist [2][3], they remain quite vague. Therefore, we define a

multi-tenant application as the following:

Definition 1.: A multi-tenant application lets customers

(tenants) share the same hardware resources, by offering them

one shared application and database instance, while allowing

them to configure the application to fit their needs as if it runs

on a dedicated environment.

Definition 2.: A tenant is the organizational entity which rents

a multi-tenant SaaS solution. Typically, a tenant groups a

number of users, which are the stakeholders in the

organization.

These definitions focus on what we believe to be the key

aspects of multi-tenancy:

a) The ability of the application to share hardware

resources.

b) The offering of a high degree of configurability of the

software.

c) The architectural approach in which the tenants (or users)

make use of a single application and database instance.

Figure. 1 show the overview of the multi-tenant application,

where tenants share one application and database instance.

Multi-instance approach [4], in which each tenant gets its own

instance of the application (and possibly also of the database).

Multi-instance approach is the “easier” way of creating

multi-tenant like applications from a development perspective

of virtualization technology and cloud computing.

Multi-tenant application can be built on top of SaaS and PaaS.

In SaaS model, users are provided access to application

software and database, where cloud provider manages the

infrastructure and platform that run the application. In the

PaaS model cloud provider deliver a computing platform,

typically include, OS programming language execution

environment, database and web server. Application developer

can develop and run their software solution on a cloud

platform without cost complexity of buying and managing the

underlying hardware and software. SLA-Driven multi tenant

application is provided to tenants in [6],[7].

Figure 1. Multi-Tenant Application

Advantages of multi-tenancy include hardware resource

sharing, high degree of configurability. The application and

database instance can also be shared in the multi-tenant cloud

environment.

The major challenges of multi-tenancy are good performance

maintenance during the computation, scalability issues and

security concerns. The maintenance of multi-tenant

applications are also an important factor.

A. Cache and Replication

In the existing method Memcached is taken for cloud cache

service. Memchaed is an in-memory caching solution.

Facebok leverages memcahced as a building block to

construct and scale a distributed key-value store [8].

Figure 2. Memcached Operation in Web Application

Figure. 2 illustrates how Memcached works in web

application. Request sent by clients for a dynamic web page

usually contains data query to database server. Web server

will find and get the data in the form of object in Memcached

through application server. If the object is found, it will return

to web server and respond to the client. However if object is

not found in Memcached or 'cache miss', the data will be

Babu et al.

268

fetched from database server and it will be set to Memcached

as a new item before it is returned to the client. The same

process will be repeating all over again. Table1 shows the

comparison between multi-tenant application with and

without cache.

Table 1. Multi-Tenant Application with and without cache.

Multi-tenant

application with cache

Multi-tenant application

without cache

Better resource

utilization

Better resource utilization

Faster access Less compared with cache

Low response time High response time

No security mechanism Different security models

used

Currently VM resource allocation has been the hottest area in

tenant oriented cache management. To know the cache

strategies, first understand the resource management among

tenants. Li in [17] put together tenants, SaaS providers and

IaaS providers to provide optimizing objective model for each

stakeholder respectively, which breaks down the global

optimization problem and solve it by an iterative algorithm.

Performance regulator based on feedback-control [18] deliver

different performance levels based on tenant-specific SLA.

The regulator has a hierarchical structure in which high-level

controller for managing request admission rates to prevent

overloading and a low-level controller manages resource

allocation for admitted requests to track a specified level of

service differentiation between the co-hosted tenants. A

method is introduced [19] for calculations of resource

requirements for multi tenants in a shared application instance

with applied constraints and propose optimal placement of

tenants and instances without violating any requirements.

Proposed resource allocation algorithms [20], help SaaS

providers to minimize infrastructure cost and SLA violations.

It maps customer requests to infrastructure level parameters

and handling heterogeneity of Virtual Machines.

Machine learning approach [9] reconfigures the cache

strategy online, which is off-line training coupled with online

system monitoring. A rule set is trained on the basis of system

statistics and the performance results inorder to find which

cache strategy is optimal under the current condition. The

agent then uses this rule set to identify the right cache strategy

for the current condition. An approach [10],[11] is introduced

to select optimal cache strategy dynamically using

trace-driven simulations, so as to differentiate caching and

replication policies for each document based on its most

recent trace.

The article in [2] demonstrates the need for continuous

dynamic adaptation of replication strategies for Web

documents and proposes a techniques for the selection of an

optimal replication strategy from a number of candidate

strategies with low cost. It evaluates the most likely strategies

rather than the entire set of candidate strategies, capturing the

history of transitions between different cache strategies.

A cache replacement algorithm for adaptive processor is

proposed in paper [13]. It observes the behavior of two (two or

more) replacement algorithms such as LIRS, LRU, LFU and

Random and then switches to algorithm which performing

better policy. Authors in [14] proposed a new two-step

method for storage caches management. First approach is an

adaptive QoS decomposition and optimization step uses

max-flow algorithm to determine application performance

optimization. Second approach is a storage cache allocation

steps based on feedback control theory to allocate cache

space.

Self-adaptive multi-tenant memory management achieve

tenant’s SLA requirement while minimizing the memory

consumption [15]. This method dynamically generates a

series of cache replacement units according to the current

access model and computes the corresponding I/O yield, and

then adopts a greedy algorithm for each tenant to select the

corresponding replacement units.

Table 2. Advantage and Limitations of Different cache

management policies

Cache

approaches

Advantages Limitations

Machine learning

Approach [9]

Reconfigure

cache strategy

online

Require large

amount of data,

Average response

time

Different cache

strategy for single

file in web caching

[10-12]

Select optimal

cache strategy

dynamically

Average response

time

Cache replacement

algorithm in

adaptive processor

[13]

Switches

between any

two algorithm

based on

workload

Require

additional

hardware module,

Average response

time

Adaptive QoS

decomposition and

optimization [14]

Determine

application

performance

optimization

Average response

time

Self-adaptive

multi-tenant

memory

management [15]

Minimizing

memory

consumption

Average response

time

Proportional Hit

Rate [16]

Allocate cache

space for all

clients

properly

Average response

time

SLA-driven cache

optimization

approach [21]

Better

utilization

Average response

time

Proportional Hit Rate method [16] meet clients’ SLAs, which

tries to allocate cache space properly for every client by

combining Isolated Cache Model and control theory for

storage. Controller guarantees the relationship of QoS among

classes as constant. It provides great contributions in

improving cache performance.

SLA-driven optimization approach [21] helps the multi-tenant

application to better utilize cloud cache service. Currently in

multi-tenant cloud applications, data are often evicted

mistakenly by cache service, which is managed by existing

algorithms such as LRU. The mistaken eviction leads to

wasting time to reload the data back and increase response

time. It is because the existing algorithms consider without

Advanced Cache Techniques for SLA-Driven Multi-Tenant Application on PaaS

269

Tenant Profile and Data Profile. SLA-driven optimization

approach is built on PaaS, so it respects the integrity of

original cloud cache service and improves application

portability among different cache services. Table 2 shows

advantages and limitation of different methods for cache

management policies.

III. System Design

A. Security Oriented Cache Approach

The main issue in multi-tenant cloud application with cache is

internal security due to improper memory access by other

tenants. In [31] we have developed an information security

mechanism to multi-tenant application with cache by avoiding

improper data access by other tenant's. In this method,

symmetric DES is used to encrypt the tenant's critical data

inorder to prevent improper access by the other active tenants.

DES requires lesser computational power compared to other

public key encryption methods.

Figure 3. Security Oriented Cache Approach

Figure. 3 illustrates security oriented cache for multi-tenant

application on PaaS, to incorporate all devices that are

connected to the Internet. Tenants uses web browser to access

applications. Tenants can send request to the controller for

getting data or inserting data into database. Controller will

map the user request to manager. Data encryption and

decryption is done by manager. For inserting data into

database, manager first encrypts the user data and passes it to

storage unit. Only encrypted data is stored in database. For

getting data of a particular user, the Manager will find it and

get the data in the form of object in Memcached. After getting

data from Memcached, manager will decrypt the data and

returned it to the user.

Figure 4. Insertion of user data into database

If the object is not found, data is fetched from the database

server and it will be set to Memcached as a new item. Then

decrypt the data from database and returned to the user. The

same process will be repeating all over again.

Figure. 4 demonstrate the insertion of data item into database.

User first sends a request to the controller with data, key and

its id (1). Controller will map the request to manager (2).

Using DES manager will encrypt the data and it is passed to

data access layer (3, 4, 5). Data access layer store these details

in database securely (6).

Figure 5. Data Retrieval from Memcached

Figure. 5 illustrates Data Retrieval from Memcached, when

user sends a request to controller for retrieving data (1).

Controller will map the request to manager (2). The Manager

will check and get the data from Memcached (3, 4). After

getting data from Memcached, the manager will decrypt it and

returned to the user (5, 6).

Figure 6. Data Retrieval from database if not found in

Memcached

If data is not found in cache, then it is fetched directly from

database and it will be set to Memcached before decryption.

Then manager will decrypt the data and returned to the user.

This procedure is shown in Figure. 6.

B. Internal Cache

The main issue in multi-tenant application with Memcached

[31] is low average response time. In this proposed method, an

Internal Cache is created on application context using

HashMap. Internal caching of data makes faster retrieval to

users. Users can access this application through web service

using PC, laptop and Mobile etc. Internal cache method is

automatically generated on all devices from which user access

this application. It stores key value pairs, i.e. it keeps tenant

key and its data. It provides quick response time and better

performance to tenants.

Internal cache and Memcached mechanism for SLA-Driven

multi-tenant application on PaaS is shown in figure 7. Tenants

can send a request to controller for getting data or inserting

data into database. Request is send in the form of URL.

Controller will map this request to manager. An internal

security is provided at manager by using DES. Only encrypted

Babu et al.

270

data is stored at storage unit. Decrypted data is passed to

tenants. For inserting data into database, manager first

encrypts the data and stored at database.

Figure 7. Proposed Internal Cache Method

Data retrieval request is handled by manager. When a data is

requested, it first looks into internal cache and gets the data in

the form of object in internal cache. If it is not found, check in

Memcached and get data and set to internal cache as a new

item. If not found in Memcached, data is fetched directly from

the database server and it will be set to Memcached as a new

item. The same process will be repeating all over again. It is

built on the top of PaaS, so as to available to all devices that

are connected to the Internet.

Figure 8. Optimization Processing Flow

Cache optimization is done at manager. Figure. 8 illustrates

the cache optimization processing flow. An SLA model

depicting tenant’s expectations and a miss list recording

evicted data in past are two core data models. At the beginning

of optimization, tenant ranking procedure is invoked to

calculate tenant priority for the coming cycle based on tenants’

status at the last cycle. And then predication is invoked to

predict average response time for every tenant, which also

makes an optimization budget. Finally data weight is invoked

to weight every data in miss list by considering tenant rank as

well as the data relative importance.

Figure. 9 describes how to access service data in our approach.

When a data is requested, it first looks up on the internal cache.

If cache hit, it directly fetches data and return. If it not found,

it looks up on the Memcached. If data found in Memcached,

directly fetches data from database and set to internal cache as

a new item. If the data is missing, it first checks whether the

budget approves data retrieval from database. After that

increment the miscount and get data from the storage. Only if

the budget permits, it reloads data and caches it in

consideration of data likelihood as well as optimization

budget.

Figure 9. Data Access Service

C. Tenant Profile

A tenant profile includes SLA, penalty and optimization

budget. A tenant SLA is expressed as a multi-tuple ap_id,

tenant_id, tenant_fea, avg_rt_exp, pay_wil, ap_id is

application ID, tenant_id is the tenant id, tenant_fea describes

tenant features such as tenant priority, avg_rt_exp describes

tenant expectation on average response time, pay_wil

specifies tenant willingness to pay for the response time

expectation in every cycle which is already decomposed from

previous budget.

Gompertz function [29] is used to calculate tenant

compensations from application providers, which is a ratio to

tenant’s pay_wil. Gompertz function is a mathematical model

for time series, where its growth is the slowest at both the start

and the end of the time series. This curve imposes penalty

rationally on the application provider: slow growth at the

beginning gives the provider a cushion in detecting causes;

slow growth at the end indicates although the application

continues to violate SLA.

Initiate the formula constants in consideration of function

characteristic and SLAs. u sets the penalty rate upper

asymptote, which is set to 0.5 according to SLA on Google

App Engine (GAE) [30]. v sets the y displacement which is set

to -5. w determines the growth rate of y which is set to -1/2.

Besides, we take into account the accumulated relative

Advanced Cache Techniques for SLA-Driven Multi-Tenant Application on PaaS

271

difference of response time, expressed as ∆(rspt)/ rt_exptID to

encourage service provider to improve response time as much

as possible. ∆(rspt) is the difference of response time

expectation rt_exptID and actual average response time

avg_rt_exptID for the tenant. Equation (1) specifies the penalty

ratio for the tenant. Initial value of n is set to 0 and increases

once a violation is detected. Once violation is eliminated, n

resets again

penltyRattID(n) = 0.5 ∗ e
−5∗e−1/2[𝑛+∑∆(rspt)/ rt_exptID]

 (1)

Optimization budget op_budgettID is different from tenant to

tenant, and the budget is different under different tenant status

as well. Equation (2) describes how to calculate op_budget

when a violation is predicted to happen or not. Based on

current tenant status, that is, a tenant SLA is satisfied or not,

rout_rattID and penlty_RattID determines op_budget

respectively. rout_rattID indicates the routine budget for the

tenant.

penltyRattID(t)

=

{

paywiltID ∗ (1 − routrattID) ;
if present tenant status is normal

paywiltID ∗ (penltyRattID(n− 1) − penltyRattID(n));

otherwise

(2)

Tenant ranking is achieved by (3) determining the importance

of tenants. At the beginning of tth cycle, every tenant is graded

as follows:

tenantrnktID(t) = ∗ tenant_featID +
[1 + penlty_RattID(t)]pay_wiltID

rt_exptID
 (3)

where,

penltyRattID(t)

=

{

0 ; if present and predicted
 tenant status is normal

penltyRattID(𝑛 + 1) ; otherwise n is accumulated

 cycle of present violation

D. Data Profile

Miss list mis_list included in data profile, it is vital part of data

profile. Every tenant is equipped with one miss list, which is

periodically updated to reflect miss hit statistics. Miss list

mis_list include {paramList<>, wght, miscnt, len},

paramList records list of parameters, wght is the data weight,

miscnt is the miss count, len is the data size.

Weight of data determining the importance and the cost

benefit brought by data caching. Then weight calculation

considers both tenant importance tenant_rnktID described by

(3) as well as data importance. Data importance is relevant to

its miss count and its past performance.

if t > 0,

wghtij = ∗ wghtij(t − 1) + (1 −) ∗ [ztenantrnki(t−1)
∗ zmiscntij(t − 1) ÷ zlenij]

when t = 0

weiij(0) = (1 −) ∗ ztenant_rnkti(0) (4)

Data weight at the first cycle only depends on tenant rank

tenant_rnktID (0). set to eT/2 determines the effect imposed on

predicted weight by distant past, which is affected by length

of cycle. Variables starting with letter “z” represent

standardized values of tenant rank, miss count and length

respectively.

Beyond that, optimization cost should be considered as well.

According to the data accessing process, its major cost arises

from two aspects: loading data from database and occupying

cache space. To calculate the optimization cost use equation

(5).

opcosti(𝑡) = unit_prcsstore ∗ [∑ miscntij(t − 1) ∗
𝑙𝑠𝑡_𝑙𝑒𝑛
𝑗=0

wghtij(t)] + unit_prcscache ∗∑ lenij
𝑙𝑠𝑡_𝑙𝑒𝑛

𝑗=0
 (5)

In equation (5) i indicates ith tenant and lst_len indicates the

size of mis_listtID, unit_prcstore and unit_prccache indicate

the unit price of storage retrieval operation and cache space

respectively. Furthermore, op_cost is constrained by the

budget. According to (5), it should be checked before fetching

data from storage or putting data into cache to satisfy (6).

op_costtID(t) < op_budgettID(t) (6)

IV. Experimental Setup and Results

In this section, present simulation experiments to evaluate this

approach and its performance. Currently, we adopt

Memcached to simulate cache service in GAE [8], which is

implemented by Memcached. Memcached is a powerful

distributed cache management system which already

integrates powerful caching policies in its architecture and

widely applied in industry such as Facebook.

Internal cache implemented to provide faster access and low

response time to users. It is created using HashMap. It stores

key value pairs. It is automatically generated to user’s

application context on PaaS. Internal cache mechanism

provides better performance as compared to Memcached.

A. Experimental Design

The experiment environment is constructed by machines with

cloud service. Memcached version v 1.4.15 is installed on

these machines. The experiment test cases is conducted by

using Tomcat version 7.0.39, and available to all the devices

that are connected to this network. The experiment case is

implemented with a visited data set on [30]. This data set

stores application accessible data. Each row includes

identifying fields such as a global unique identifier and value

field that store value of the corresponding identifier.

The test cases are implemented as a web service. This helps

the tenants to access the data through web browser. The

business logic using cache service is as follows. The users

send requests for data by keys, and the server first looks up to

the internal cache. If it is not found, check in Memcached and

get data and set to internal cache as a new item. If it is not

Babu et al.

272

found in Memcached, it gets from database and set to

Memcached. To investigate the relation between internal

cache and Memcached, we consider up to four tenants, each of

which owns identical amount of users and workloads. The

Table 3 shows the response time required for tenants using

internal cache and Memcached for data retrieval.

Table 3. User performance with Memcached and Internal

Cache

Experiment Cycle Memcached Internal

Cache

Tenant 1 0.25 0.033

Tenant 2 0.17 0.033

Tenant 3 0.13 0.017

Tenant 4 0.10 0.017

During experiment, we considered multiple users for every

tenant. Every tenant has its own key. This key is same for all

users under one tenant. The proposed method controls the data

characteristics by using this pre-generated key. Table 4 shows

the response time for tenants from without cache, with

Memcached and with Internal Cache.

Table 4. Tenant performance without Cache, with

Memcached and Internal cache

Tenant Without

Cache (sec)

Memcached

(sec)

Internal

cache (sec)

Tenant 1 14.610 4.38 1.40

Tenant 2 15.433 4.40 1.50

Tenant 3 13.650 3.40 1.73

Tenant 4 14.200 3.90 1.60

B. Performance Calculation

Performance Calculation indicates whether multi-tenant

application with internal cache captures trends in response

time. Figure. 10 Shows the response time for tenants with

Memcached and Internal Cache. Here a tenant contains only

one user. So there is a huge difference in response time

between Memcached and internal cache. We can see that the

response time for Memcached is more than double as

compared to Internal Cache. In other words, internal cache

takes few milliseconds to respond to user request. Response

time of tenants with internal cache is less as compared to

tenants with Memcached. So it provides faster performance

and QoS to the users.

Figure 10. Response time with Memcached and Internal

Cache

To provide further evidence for the performance of the

proposed method, we consider multiple tenants and their

response time with Memcache, internal cache and without

cache. Here each tenant contains 100 users. Internal cache

service provides a greater difference in response time as

compared with database storage and Memcached. Response

time without cache means data is fetched directly from the

database. It takes more time compared with internal cache.

Response time with cloud cache service means data fetched

from Memcached. It takes more time compared with internal

cache. It is shown in figure. 11.

Figure 11. Response time without cache, with Memcached

and with internal cache

Figure. 12 shows Response time vs. number of users in

tenants. Number of users within the tenants is incremented to

study the relation with response time. The number of users in

each tenant is incremented periodically and checked their

corresponding response time for Memcached and internal

cache mechanism. A high number of user leads to high

response time. When number of users is less, response time

also improves. Internal cache provides better performance

than Memcached.

Figure 12. Response time vs. Number of users

Figure. 13 shows the miscount rate for three tenants in each

experiment life cycle. Miscount incremented after every

experiment cycle, that means, corresponding tenant’s data is

frequently requested. It first checks in internal cache, if it is

not present in the internal cache then checks in Memcached. If

not found in Memcached increment miscount. This leads to

the caching of tenant data for faster access.

Advanced Cache Techniques for SLA-Driven Multi-Tenant Application on PaaS

273

Figure 13. Miss Count vs. number of tenants

V. Conclusion

In cloud multi-tenant application, most of the work focuses on

VM migration and load balancing issues. Efficient and secure

data storage and retrieval are important issues to improve the

resource utilization and response time. Multi-tenant

applications have made the need for cache mechanism for

effective and faster service. Security is another major concern

in cloud computing. In order to address security issues in the

proposed cache approach employs DES algorithm for

encryption.

Currently in multi tenant cloud applications data are often

evicted mistakenly by cache service, which is managed by

existing algorithms such as LRU. SLA-Driven cache

optimization for multi-tenant application based on PaaS help

to improve the cache performance and meet tenant’s needs for

better and improve cost effectiveness. The proposed method

tries to improve the cache utilization by avoiding mistaken

evictions and unnecessary storage retrievals. It introduces

tenant profile and data profile to weight the evicted data.

Tenant profile considers SLA, runtime penalty and budget.

The optimization introduces prediction methods to rank tenant

and determine budget. This approach satisfying tenant SLA

requirements and cost effectiveness. Internal cache is

implemented to improve the performance of multitenant

application. This internal cache is built on the top of users’

application context. It is created using Hashmap. It provides

better performance and faster access to multi-tenant users.

References

[1] M., Peter, T., Grance. “The NIST definition of cloud

computing”, NIST special publication 800.145: 7,

pp.1-3, 2011

[2] Bob Warfield. “Multi-tenancy can have a 16:1 cost

advantage over single-tenant”,

http://smoothspan.wordpress.com/2007/10/28/multitena

ncy-can-have-a-161-cost-advantage-over-single-tenant,

2007

[3] Craig D. Weissman, Steve B. “The design of the

force.com multi-tenant internet application development

platform”, In Proceedings of 35th SIGMOD Int. conf. on

Management of data (SIGMOD), pp. 889–896, 2009

[4] Bezemer, Zaidman. “Multi-Tenant SaaS Applications:

Maintenance Dream or Nightmare?”, In Proceedings of

ACM 4th Joint ERCIM Workshop on Software Evolution

(EVOL) and International Workshop on Principles of

Software Evolution (IWPSE), pp.88-92, 2010

[5] Zheng Xuxu, Li Qingzhong, Kong Lanju. “A Data

Storage Architecture Supporting Multi-level

Customization for SaaS”, In Proceedings of IEEE 7th

International conference on Web Information Systems

and Applications (WISA), pp.106-109, 2010

[6] Wu, Linlin, S K Garg, Rajkumar Buyya. “SLA-based

resource allocation for software as a service provider in

cloud computing environments”, In Proceedings of 11th

IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), pp.195-204, 2011

[7] Nandi, Bipin B. “Dynamic SLA based elastic cloud

service management: A SaaS perspective”, In

Proceedings of IFIP/IEEE International Symposium on

Integrated Network Management (IM2013), pp.60-67,

2013

[8] Rajesh Ni, H Fugal, S Grimm, M Kwiatkowski, H Lee, H

C. Li, R McElroy, M Paleczny, D Peek, P Saab, D

Stafford, T Tung,V Venkataramani. “Scaling Memcache

at Facebook”, In Proceedings of 10th USENIX

Symposium on Networked Systems Design and

Implementation (NSDI ’13), pp. 385-398, 2013

[9] Qin Xiulei, “On-line Cache Strategy Reconfiguration for

Elastic Caching Platform: A Machine Learning

Approach”, In Proceedings of IEEE 35th Annual

Conference on Computer Software and Applications

Conference (COMPSAC), pp.523-534, 2011

[10] Pierre, Guillaume, A S Tanenbaum. “Differentiated

strategies for replicating Web documents”, Journal of

Computer Communications, vol. 24, Issue. 2, pp.

232-240, 2001

[11] P Guillaume, Maarten Van Steen, Andrew S. Tanenbaum.

“Dynamically selecting optimal distribution strategies

for Web documents”, IEEE Transactions on Computers,

vol. 51(6), pp. 637-651, 2002

[12] S Swaminathan, G Pierre, Maarten Van Steen. “A case

for dynamic selection of replication and caching

strategies”, Web content caching and distribution,

Springer Netherlands, pp. 275-282, 2004

[13] Subramanian, R., Yannis, S., Loh, G.H. “Adaptive caches:

Effective shaping of cache behavior to workloads”, In

Proceedings of 39th IEEE/ACM International

Symposium on Microarchitecture, pp. 385-396, 2006

[14] Prabhakar, Ramya. “Adaptive QoS Decomposition and

Control for Storage Cache Man-agement in Multi-server

Environments”, In Proceedings of 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pp. 402-413, 2011

[15] Yao, J.C., Z., Shi-Dong, S., Yu-Liang, L., Qing-Zhong.

“Multi-Tenant Database Memory Management

Mechanism based on Chunk Folding”, Chinese Journal

of Computers, vol. 34.12, pp. 2320- 2331, 2011

[16] G., Ang, Dejun M., Yansu H. “A QoS Control Approach

in Differentiated Web Caching Service”, Journal of

Networks, vol. 6.1, pp. 62-70, 2011

[17] Li, Chunlin., Layuan Li. “Efficient resource allocation

for optimizing objectives of cloud users, IaaS provider

and SaaS provider in cloud environment”, The Journal

of Supercomputing, pp. 1-20, 2013

[18] Hailue Lin, Kai Sun, Shuan Zhao, Yanbo Han.

“Feedback-control-based performance regulation for

multi-tenant applications”, In proceedings of 15th IEEE

International Conference on Parallel and Distributed

Systems (ICPADS), pp. 134-141, 2009

Babu et al.

274

[19] Kwok, Thomas, Ajay Mohindra. “Resource calculations

with constraints, and placement of tenants and instances

for multi-tenant SaaS applications”, In Proceedings of

Service-Oriented Computing ICSOC. Springer Berlin

Heidelberg, pp. 633-648, 2008

[20] LinLin Wu, Saurabh Kumar Garg, Steve Versteeg,

Rajkumar Buyya. “SLA-based Resource Provisioning

for Hosted Software as a Service Applications in Cloud

Computing Environments”, IEEE Transactions on

Services Computing, vol.7, no. 3, pp. 465-485, 2013

[21] Huihong He, ZhiYi Ma, Hongjie Chen. “An SLA-Driven

Cache Optimization Approach for Multi-tenant

Application on PaaS”, 38th IEEE Annual International

Computers on Computer Software and Applications

Conference (COMPSAC), pp. 139-148, 2014

[22] Jose M. Alcaraz Calerot, Nigel Edwards, Johannes

Kirschnick, Lawrence Wilcock, Mike Wray. “Towards a

Multi-tenancy Authorization System for Cloud

Services”, IEEE Security & Privacy, vol.8, no. 6, pp.

48-55, 2010

[23] Mohemed Almorsy, John Grundy, Amani S. Ibrahim.

“Collaboration-Based Cloud Computing Security

Management Framework”, In Proceedings of IEEE

International Conference on Cloud Computing

(CLOUD), pp. 364-371, 2011

[24] Mandy W., W., Zimmermann. “Controlling Data-Flow in

the Cloud”, In Proceedings of 3rd International

Conference on Cloud Computing, GRIDs, and

Virtualization, pp. 24-29, 2012

[25] Y., Liang, Z., Hao, N., Yu, B., Liu. “RandTest: Towards

More Secure and Reliable Dataflow Processing in Cloud

Computing”, In Proceedings of Int. Conf. on Cloud and

Service Computing, pp. 180-184, 2011

[26] M Almorsy, J Grundy, AS Ibrahim. “TOSSMA: A

Tenant-Oriented SaaS Security Management

Architecture”, In Proceedings of IEEE 5th Int. Conf. on

Cloud Computing (CLOUD), pp. 981-989, 2012

[27] Eyad Saleh, Ibrahim Takouna, Christoph Meinel.

“SignedQuery: Protecting Users Data in Multi tenant

SaaS Environments”, In Proceedings of IEEE

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp.

213-218, 2013

[28] HMAC RFC 2104. Website. [Online]. Available:

http://tools.ietf.org/html/rfc2104 [retrieved: April, 2015]

[29] Ho-Yu Lam, Song Zhao, Kang Xi, H. Jonathan Chao.

“Hybrid Security Architecture for Data Center

Networks”, In Proceedings of IEEE International

Conference on Communications (ICC), pp. 2939 – 2944,

2012

[30] Multi_Tenant Data: https://developer.salesforce.com/

pages/Multi_Tenant_Architecture, January 2016.

[31] Remesh Babu K.R., Saranya S., Philip Samuel. “Secure

Cloud Multi-tenant Applications with Cache in PaaS”,

Innovations in Bio-Inspired Computing and

Applications”, Advances in Intelligent Systems and

Computing, vol. 424, pp. 15-27, 2015

[32] H. AlJahdali, A. Albatli ; P. Garraghan, P. Townend.

"Multi-tenancy in Cloud Computing", In Proceedings of

IEEE 8th International Symposium on Service Oriented

System Engineering (SOSE), pp. 344-351, 2014

[33] Gongzhuang Peng, Hongwei Wang, Jietao Dong, and

Heming Zhang. "Knowledge-Based Resource

Allocation for Collaborative Simulation Development in

a Multi-tenant Cloud Computing Environment", IEEE

Transactions on Services Computing, DOI

10.1109/TSC.2016.2518161, pp. 1-13, 2016.

[34] G. Peng, J. Zhao, M. Li, B. Hou, H. Zhang. "A

SLA-based scheduling approach for multi-tenant cloud

simulation", In Proceedings of IEEE 19th International

Conference on Computer Supported Cooperative Work

in Design (CSCWD), pp. 600-605, 2015

[35] A. O. Ayodele, J. Rao, T. E. Boult. "Performance

Measurement and Interference Profiling in Multi-tenant

Clouds", In Proceedings of IEEE 8th International

Conference on Cloud Computing (CLOUD), pp.

941-949, 2015

[36] Jens Kohler, Thomas Specht. "Performance Analysis of

Vertically Partitioned Data in Clouds Through a

Client-Based In-Memory Key-Value Store Cache",

International Joint Conference, Advances in Intelligent

Systems and Computing, 369, pp. 3-13, 2015.

Author Biographies

K R Remesh Babu holds Bachelor degrees in

Mathematics and Information Technology. He received

his Masters Degree in Computer Science from Anna
University, Chennai. He is currently pursuing the Ph.D.

degree at Cochin University of Science & Technology

(CUSAT). He is an assistant professor in department of
Information Technology, Government Engineering

College Idukki, India. His main research interests include

distributed systems, grid & cloud computing, Internet of
things, WSN, and data mining.

Saranya S Born on 1992 in Thiruvananthapuram, India.
She received the B. Tech degree in Computer Science and

Engineering from Kerala University, Kerala, India in 2013,

and M. Tech degree in Network Engineering from
Mahatma Gandhi University, Kottyam, Kerala, India in

2015. Her current research interest includes Cloud

computing, Multi-tenant applications, Cache protection,
and Cloud security.

Philip Samuel is Reader in Information Technology
Division, School of Engineering, Cochin University of

Science & Technology (CUSAT). He holds a Masters

Degree in Computer & Information Science from CUSAT
and Ph.D degree in Computer Science & Engineering from

IIT Kharagpur, India. He has more than 17 years of

experience in teaching and research as a faculty at CUSAT.
He has published more than 35 research papers in

International Conferences and Journals. His research

interest includes Big Data Analytics, Distributed
Computing and Automated Software Engineering.

