
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 8 (2016) pp. 293-300

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Open NLP based Refinement of Software

Requirements

Murali Mohanan 1, Philip Samuel 2

1Department of Computer Science,

SOE,Cochin University of Science and Technology, Kochi,India.
1mohananmurali@gmail.com

2 Division of Information Technology,

 SOE,Cochin University of Science and Technology, Kochi,India.
2philips@cusat.ac.in

Abstract: . Software requirements are usually written in natural

language (NL) or speech language which is asymmetric and irregular.

This paper presents a suitable method for transforming user software

requirement specifications (SRS) and business designs written in

natural language into useful object oriented models. Here a neoteric

approach is proposed to generate object oriented items from SRS.

For NL processes like sentence detection, tokenization, parts of

speech tagging and parsing of requirement specifications we

incorporate an open natural language processing (OpenNLP) tool. It

provides very relevant parts of speech (POS) tags. This parts of

speech tagging of the SRS is quite useful for further identification of

object oriented elements like classes, objects, attributes,

relationships etc. After obtaining the required and relative

information, Semantic Business Vocabulary and Rules (SBVR) are

applied to identify and to extract the object oriented elements from

the NL processed requirement specifications.

Keywords:Requirement Elicitation, Software requirement

specification, OpenNLP, SBVR, class model generation.

I. Introduction

The major challenge in software design is the ability to

comprehend tedious, long-drawn-out user requirements as

outlined by the clients. Software analysis if done precisely

saves a lot of time of the system analyst and the software

design phase can be started right away. In the field of

information technology, there have been innumerable changes

in the way this problem has been tackled. Though there are

many traditional approaches which aim at recognising the

functionalities of the information system, the modern

object-oriented approach based on Natural Language

Processing has garnered maximum popularity because of its

strong role in object oriented modeling.

 The natural language processing is a research area in which

many researchers proposed several methods for analyzing the

natural language (NL) requirements [14],[15]. Nan Zhou and

Xiaohua Zhou (2004) proposed a methodology to generate

object oriented model from the user requirement document.

This approach used natural language processing to analyze

the written requirements and domain based ontology is used

to improve the class identification performance. The author

used a linguistic pattern to differentiate the class and attributes,

numeric pattern to analyze the relationship and parallel

structure pattern to found more classes and its attributes. But it

was not good enough in automatically identifying object

oriented elements.

 In this paper we have addressed the problem related to the

software analysis and development phase. Here we use open

natural language processing (OpenNLP) to process software

requirement specification(SRS).The OpenNLP [10],[11] is

used to produce parts of speech (POS) tag from the SRS

which contains natural language statements. The POS tag

captures the required details such as noun, verb, adverb, etc.

of the natural language statements. Sentence splitting,

tokenization and Pos tagging [12] are the phases of OpenNLP.

These phases help to process the requirement specifications in

NL which are easy to understand by both the user and the

machine [13].

 The recent trends of the software engineering largely

depends on object oriented paradigm that widely use unified

models. Unified Modelling Language(UML) is commonly

used for modelling the user software requirements, documents

the software assets, development and redevelopment of

software [1]. Our research work proposes a methodology

which is used to extract object oriented elements from NL

processed SRS. Object oriented analysis applies the object

oriented paradigm to model software information systems by

defining classes, objects and relationships between them.

 The UML model is an important component for Object

Oriented analysis and design.The existing tools such as

ReBuilder [2], CM-Builder [3] , GOOAL [4], NL-OOML [5],

UML-Generator [6] generates the UML class diagram

automatically from the natural languages.The problem with

these tools are they generate the object oriented models with

lower accuracy due to the informal nature of NL and its

ambiguity [7],[8].

mailto:1mohananmurali@gmail.com,2philips@cusat.ac.in

Mohanan et al.

294

This paper is focused on reducing the complexity in designing

the object oriented models from the user requirements. User

specifies their requirements in natural languages such as

English. Using OpenNLP, user requirement statements are

processed first. It tokenizes the input and then syntatically and

semantically processes the input. Since the natural language

processing is such a difficult task, our research work is

divided into two phases to provide to efficient work. The

initial phase is OpenNLP tool process and second phase is

Semantic Business Vocabulary and Rules (SBVR) process

[9].

II Related works

 The natural language processing is a research area,

researchers proposed several methods for analyzing the NL

requirements [14],[15]. Some researchers focused on class

diagram extraction from the NL requirements. This section

describes the survey of some methods that uses the NLP or

domain ontology for NL requirement analyst and generates

the class diagram.

 Nan Zhou and Xiaohua Zhou (2004) proposed an automated

system to generate the class diagram from the user

requirement document. This approach used a natural language

processing to analyze the written requirements and domain

based ontology is used to improve the class identification

performance. The author used a linguistic pattern to

differentiate the class and attributes, numeric pattern to

analyze the relationship and parallel structure pattern to found

more classes and its attributes. The final output is filtered by

the domain ontology.

 Ambriola and Gervasi (2006) designed a framework to

develop the models such as Entity Relationship diagram, Data

Flow Diagram, even UML diagrams. The system take the user

requirement written in natural language as input and applied

the CICO parser for parsing and information extraction.

Priyanka More and Rashmi Phalnikar (2012) proposed an

approach to design the UML diagrams from the informal

natural language requirements. Requirement analysis to

provide Instant Diagrams (RAPID) is a novel tool used in this

approach. An openNLP tool is applied for parsing and the

RAPID performs the RACE stemming process to improve the

efficiency by reducing the redundancy. A Domain Ontology

in RAPID tool improves the performance of concept

identification. Object oriented items like classes are identified

by the class extraction engine.

Deeptimahanti and Babar (2009) developed a UML Model

Generator from Analysis of Requirements (UMGAR) a

domain independent tool for designing the UML models with

proper relationship. A simple requirement is generated from

the complex user requirement by the syntactic reconstruction

rule.

A set of natural language analysis tools are available in

Stanford CoreNLP [26]. It can give the base forms of words,

their parts of speech, whether they are names of companies,

people, etc., normalize dates, times, and numeric quantities,

and mark up the structure of sentences in terms of phrases and

word dependencies, indicate which noun phrases refer to the

same entities, indicate sentiment, extract open-class relations

between mentions, etc.

 Stanford CoreNLP is an integrated framework. Its goal is to

make it very easy to apply a bunch of linguistic analysis tools

to a piece of text. Starting from plain text, you can run all the

tools on it with just two lines of code. It is designed to be

highly flexible and extensible. With a single option you can

change which tools should be enabled and which should be

disabled. Stanford CoreNLP integrates many of Stanford’s

NLP tools [27], including the part-of-speech (POS)

tagger, the named entity recognizer (NER), the parser, the

coreference resolution system, sentiment analysis, and the

bootstrapped pattern learning tools. Its analyses provide the

foundational building blocks for higher-level and

domain-specific text understanding applications. Stanford

CoreNLP Provides:

1)An integrated toolkit with a good range of grammatical

 analysis tools

2)Fast, reliable analysis of arbitrary texts

3)The overall highest quality text analytics

4)Support for a number of major (human) languages)

 5)Interfaces available for various major modern

 programming languages

Stanford CoreNLP is very effective to quickly and painlessly

get linguistic annotations for a text.It supports to hide

variations across components behind a common API and to

have a minimal conceptual footprint, so the system is easy to

learn.It also provides a lightweight framework, using plain

Java objects (rather than something of heavier weight, such as

XML or UIMA’s [28] Common Analysis System (CAS)

objects).

III Proposed Methodology

Aiming to give a suitable support for software developers as

well as software engineers we have proposed a neoteric

approach for natural language processing and object oriented

modeling. This work is focused on natural language

processing and then to extract useful object oriented elements.

Software requirements are usally written in the natural

language or speech language which is asymmetric and

irregular. In our work the open natural language processing

(NLP) analyzes the user requirements and provides the parts

of speech (Pos) tagging. The SBVR process implemented

here is used to extract object oriented elements like classes,

objects, attributes, relationships etc from the NL processed

SRS. The SBVR process includes SBVR vocabulary

extraction and rule generation. This can be further refined to

form Unified Models which depict the major functionalities of

a software system.

Figure 1. Proposed Approach Framework

NL(English Text)

Parsing Module

SBVR

SBVR Vocabulary

SBVR Rules

UML Module
UML contraints

I/p text

http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/dcoref.shtml
http://nlp.stanford.edu/software/dcoref.shtml
http://nlp.stanford.edu/sentiment/
http://nlp.stanford.edu/software/patternslearning.shtml
http://nlp.stanford.edu/software/patternslearning.shtml

Open NLP based Refinement of Software Requirements

295

IV Open Natural Language Processing

The OpenNLP is a research area that aims to obtain how

computer understands and process the natural language.It is

really fast to implement. The OpenNLP tool used in the

proposed system understands the natural language as

suggested by Deeptimahanti (2009). The OpenNLP starts to

execute by extracting tokens from user requirement

statements and then it proceeds to the syntax [10] and

semantic analyzes [20] by parsing each and every sentence.

The parser removes the stop words which has no information

and also removes the function words such as on, over,

between, has, do and generates the content word which has

noun, adjectives, adverb and verb. Thus a Pos tagger [21] is

generated.

 The Apache OpenNLP library is a machine learning based

toolkit for the processing of natural language text. The

common NLP tasks, such as tokenization, sentence

segmentation, part-of-speech tagging, named entity extraction,

chunking, parsing, and co-reference resolution are done using

this tool. OpenNLP project is developed to create a mature

toolkit for the above mentioned NLP tasks.

 To write program code in Java, one can use a variety of

IDEs:Eclipse, IDEA and NetBeans or just use a text editor and

for Java development, we suggest using Maven to build a new

project using the plugin Maven Archetype Plugin-Simple.

Here is some example code to extract Noun Phrases from

sentences using OpenNLP models. It involves tokenizing

some (plain) text to sentences, sentences to words, extracting

the POS tags of words, then chunking the token+POS into

phrases, then filtering noun phrases out of that. So it covers

quite a few basic text preprocessing tasks, so may be the code

serves as an useful example. Its a single test, and we need to

put it into a Java class (call it TestClass.java, say) under the

directory src/test/java/com/ourcompany/ourapplication

(where ourcompany and ourapplication are the parameters we

gave to the mvn project create command).

[Java] JUnit/OpenNLP code to extract Noun Phrases from

text - Pastebin.com.

To run the code, we need the OpenNLP libraries and JUnit as

well. We need to add this into our pom.xml that Maven

generated for us.

* OpenNLP - org.apache.opennlp, opennlp-tools

* JUnit- junit

 When we run "mvn clean compile" from command line it

will download these libraries and compile the code against it.

We can also run "mvn -Dtest=ourTestClass test" to run the

JUnit test.

A. General Library Structure

The Apache OpenNLP library contains several components,

enabling one to build a full natural language processing

pipeline. These components contain parts which can be

enabled to execute the respective natural language processing

tasks and to train them as a model and also to evaluate the

model. Each of these facilities is accessible via its application

program interface (API) [7].

B. Methods used in our concept are:

1) Sentence Detection

The OpenNLP Sentence Detector can detect that a

punctuation character marks the end of a sentence or not. In

this sense a sentence is defined as the longest white space

trimmed character sequence between two punctuation marks.

The first and last sentence makes an exception to this rule. The

first no whitespace character is assumed to be the begining of

a sentence, and the last non whitespace character is assumed

to be a sentence end.

2)Tokenization

The OpenNLP Tokenizer segments an input character

sequence into tokens. Some of the tokens generated are

punctuation, words, numbers, etc.

Input text

 Eg.Robert Clive,50yearsold,will join the
Company as an executive chairman Jan.15.

Mr. Harry is President of Ford B.V., the

German automobile company.

Output is shown as individual tokens in a whitespace

separated representation.

Robert Clive, 50 years old , will join the

Company as an executive chairman Jan. 15.

Mr. Harry is President of Ford B.V., the

German automobile company.

3)Tagging

The Part of Speech Tagger marks tokens with their

corresponding word type based on the token itself and the

context of the token. A token might have multiple pos tags

depending on the token and the context. The OpenNLP POS

Tagger uses a probability model to predict the correct pos tag

out of the tag set. To limit the possible tags for a token a tag

dictionary can be used which increases the tagging and

runtime performance of the tagger.

Robert Clive, 50 years old , will join the

company as an executive chairman Jan. 15 .

Mr. Harry is President of Ford B.V. , the

German automobile company.

POS Tagger generates the following:

Robert_NNPClive_NNP ,_, 50_CD

years_NNSold_JJ ,_,

will_MDjoin_VBthe_DTCompany_NNas_INan_DTe

xecutive_JJchairman_NNJan._NNP 15_CD ._.

Mohanan et al.

296

Mr._NNP

Harry_NNPis_VBZPresident_NNof_INFord_NNPB

.V._NNP ,_,

the_DTGerman_NNPautomobile_VBGcompany_NN

4) Parsing

OpenNLP parsing can be done by training the API.

Input text Eg. The slow white cat jumps over the
quick rat .

The parser output is.

(TOP (NP (NP (DT The) (JJ quick) (JJ white)

(NN cat) (NNS jumps)) (PP (IN over) (NP (DT

the)

(JJ slow) (NN rat))) (. .)))

V. SBVR

Semantic Business Vocabulary and Rules [23] is introduced

by the Object Management Group (OMG) in 2008 for

software and business people. It describes the desired

vocabulary and rules for providing the semantic

documentation of vocabulary, facts and rules of business. It

provides a multilingual, unambiguous and rich capability of

languages that are used by software designers and business

people in various domains.

 The Object Management Group proposal called Semantics

of Business Vocabulary and Business Rules (SBVR) offers a

vocabulary for describing meaning. A part of SBVR called

Logical Formulation of Semantics focuses on the structure of

meaning.

 Business rules are generally expressed in natural language,

although some rules are at times illustrated graphically.

SBVR is not a logic language for restating business rules in

some other language that business people don’t use. Rather,

SBVR provides a means for describing the structure of the

meaning of rules expressed in the natural language that

business people use. SBVR calls this “semantic

formulation”[25]. Semantic formulations are not expressions

or statements. They are structures that make up meaning.

SBVR provides a vocabulary for describing them. Using

SBVR, the meaning of a definition or statement is

communicated as facts about the semantic formulation of the

meaning, not as a restatement of the meaning in a formal

language. Semantic formulations are described below with

examples. Readers are referred to the SBVR document

(currently available to OMG members) for the full Logical

Formulation of Semantics Vocabulary.

Semantic formulations in SBVR [25] generally:

1) Involve concepts from other kinds of models

2)Provide basis in first order logic

3)Provide communication of semantics of vocabularies and

 rules using XML

4)Have extension to intentional logics

SBVR draws from ORM/NIAM and from ISO terminology

work (particularly ISO 1087- 1). SBVR takes a

fact-orientation from ORM/NIAM and incorporates the

concept of fact type.

 SBVR focuses on meaning independently of any possibilities

for automating business rules completely or partially.

However, semantics of business rules can be used as input to

construct production rules for rule engines. Efforts at

automating such transformations are already underway.

Example

Here is an example of a very simple business rule taken from

rules for a car rental company. The rule is stated in different

ways but is one rule having one meaning. Many other

statements are also possible.

 A barred driver must not be a driver of a rental.

 It is prohibited that a barred driver be a driver of a rental.

 It is obligatory that no barred driver is a driver of a rental.

Below is a description of the semantic formulation of the rule

above expressed in terms of the SBVR Logical Formulations

of Semantics Vocabulary. It is easily seen that SBVR is not

meant to provide a concise formal language, but rather, to

provide for detailed communication about meaning. The

description is verbose, when separated into simple sentences.

But it captures the full structure of the rule as a collection of

facts about it.

The rule is meant by an obligation claim.

That obligation claim embeds a logical negation.

The negand of the logical negation is an existential

quantification.

The existential quantification introduces a first variable.

The first variable ranges over the concept ‘barred driver’.

The existential quantification scopes over a second existential

quantification.

That second existential quantification introduces a second

variable.

The second variable ranges over the concept ‘rental’.

The second existential quantification scopes over an atomic

formulation.

The atomic formulation is based on the fact type ‘rental has

driver’.

The atomic formulation has a role binding.

The role binding is of the fact type role ‘rental’ of the fact

type.

The role binding binds to the second variable.

The atomic formulation has a second role binding.

The second role binding is of the fact type role ‘driver’ of the

fact type.

The second role binding binds to the first variable.

Note that designations like ‘rental’ and ‘driver’ are used

above to refer to concepts. The semantic formulations involve

the concepts themselves, so identifying the concept ‘driver’

by another designation (such as from another language) does

not change the formulation.

Open NLP based Refinement of Software Requirements

297

VI. SBVR Vocabulary and Rules

Semantic Business Vocabulary and Rules generates the

vocabulary and rules for a particular business domain. In our

research work it helps in identifying various object oriented

elements from natural language processed requirements

specification. Thus SBVR provides a suitable way to capture

the object oriented items from the requirement specification in

NL [22]. SBVR does not include quantifiers or logical

operators, which are symbols, but has the concepts of

quantification and conjunction. Variables are typed. Atomic

formulations are based on fact types whose roles are bound by

the atomic formulations to variables, constants or individual

concepts. In a software model SBVR vocabulary describes the

specific software domain and SBVR rules describe the

specific logic. The elements of the SBVR vocabulary are

concepts and fact types. The concepts represent an entity of a

specific domain. Object types, individual concept, verb

concept, etc., are the types of concepts. The common nouns

are referred to the noun concepts, the proper nouns are

considered as individual concepts, the auxiliary verbs and

action verbs are the verb concepts.

 The combination of noun concepts and verb concepts are

the fact types in SBVR Vocabulary. The fact type which is

represented in is-property-of relationship is considered as

characteristics fact type which is extracted as suggested in

[23]. Plural nouns (prefixed with s), articles (a, an, the) and

cardinal numbers (2 or two) are considered as Quantification.

Figure 2. Parse tree representation for SBVR Vocabulary

Extraction

 The associative fact types are identified by the binary fact

types in parts of speech (POS) tagging. “The belt conveys the

parts” is an example sentence taken to understand the binary

fact type. An association is there in the mentioned sentence

between the words belts and parts. In SBVR model,

association is mapped to associative fact types, aggregation is

considered as partitive fact types and generalization is

denoted as categorization fact types. SBVR elements are

extracted from the output of the Open NLP.

 SBVR includes model formulations for the following

modalities from Deontic and Alethic logics:

 1)Obligation

 2)Permission

 3)Logical necessity

 4)Logical possibility

 Distinguishing between guidance (rules that people break)

and structural rules (rules about meaning) is very important in

understanding business rules. Consider the following two

rules.

It is obligatory that each person on a bus has a ticket.

It is logically necessary that each person on a bus has a ticket.

 Based on the first rule, a person on a bus either has a ticket

or is breaking the rule. Based on the second rule, being on a

bus implies that there is a ticket.

VII. Model Design

In this paper the UML model is considered as the business

domain. In the UML class model, the noun concepts are class

names and their respective attribute names and object names

are denoted as individual concepts. Also operation names are

considered as action verbs and the fact types are referred to as

associations &generalizations.

 To generate the UML model SBVR rule has to be extracted

to analyze the specific software logic. The SBVR rule is based

on any one of the fact types of SBVR vocabulary. Definitional

rule and behavioral rule are the two types [24] of SBVR Rules.

The definitional rule defines the organizational setup whereas

behavioral rule describes the conduct of an entity. Semantic

formulation, logical formulation, quantification and model

formulation are processes to be performed to generate the

SBVR rules from the fact type. The SBVR rule is constructed

by applying the semantic formulation to each fact type.

VIII. SBVR -Rules Generation

With regard to the scope of our project the SBVR rules are

generated by the basic semantic formulations proposed in

SBVR version 1.0 (OMG, 2008).The semantic formulations

considered here are logical formulation, quantification and

modal formulation and are explained as follows. Figure 3

represents logical formulation.

AND Negation

OR

 Conjunction

NOT

 Disjunction

 Figure 3. Logical Formulation

 From the extracted vocabulary the required tokens are

identified to map the logical operators. Tokens such as not, no

 Secretariat

S

NNP VBZ VBN
TO VB

race to

Quantification

Noun

 Concepts

Verb

Concept

 is expected

Noun

Concepts

Verb

Concept

 NN

 tomorrow

Noun

Concepts

Logical

Formulation

Mohanan et al.

298

are considered as the logical operator negation (⌐). That, and

is denoted as conjunction(˄) similarly or is disjunction(˅)and

tokens like infer, imply, indicate, suggest are considered as the

logical operator implication(→).

Quantification mentions the scope of the concept and it is

applied in this work by mapping the tokens as given below:-

More than, greater than→atleast n quantification

Less than→atmost n quantification and

 Equal to, positive statement→n quantification

Figure 4.shows a sample quantification

 The modal formulation describes seriousness of a constraint.

In SBVR two modal formulations are there, one is possibility

formulation (PF) and the second is obligation formulation

(OBF). The structural requirement is represented by the PF

and the behavioral requirement is represented by the OBF.

The model verbs mapping to these formulations are as shown

below:-

Can, may - PF

Verb concept, should - OBF

Figure 5.shows modal formulation.

can,may

 PF

should,

must OBF

 Figure 5. Modal formulation

 Structured English Notation is the final step in rule

generation and it is performed as in SBVR 1.0 document,

Annex C (OMG, 2008). In this phase, notations are provided

for generated tokens. For example the noun concepts are

underlined e.g. Employee; the verb concepts are italicized e.g.

could be; the SBVR keywords are bolded e.g. at most; the

individual concepts are double underlined . Attributes are also

italicized but with different colour.

IX. Object Oriented Analysis of SBVR

The final step of the proposed work is the object oriented

analysis from the SBVR rule to extract the object oriented

elements such as classes, its attributes, objects, methods,

generalization, aggregation and associations. This extraction

procedure is as naratted in the following sentences. In the

SBVR rule the generic entity is represented by the noun

concept. On this basis the noun concept is mapped to classes.

Similarly the particular entity is obtained from the individual

concept so it is mapped to objects. The attributes of a class are

obtained by all the characteristics of the noun concepts

without action verb. The verb concepts (issue(), order()) are

mapped with methods. Association is extracted by the unary

relationship, binary relationship and multiplicity. In the

SBVR rule following are some relations:

Unary fact type → Unary relationship

Associative fact type→binary relationship

Quantification (noun concept)→ multiplicity.

In extracting the generalization the partitive fact type is

divided into subject-part and object part, where the

subject-part is main class and the object-part is sub class in

generalization. The categorization fact type in SBVR rule is

considered as aggregation. Similar to the generalization

extraction the categorization fact types are divided as subject

part and object part and are maintained as main class and sub

class respectively. SBVR rules describe the specific logic in

the software domain.

X. Experiment and result:

A simple case study is taken for the proposed work and it is

captured from the domain of a robot system. The following

problem statement is first processed with the openNLP which

is further processed by the SBVR process to identify object

oriented items.

 “An assembly unit consists of a user, a belt, a vision system,

a robot with two arms, and a tray for assembly. The user puts

two kinds of parts, dish and cup, onto the belt. The belt

conveys the parts towards the vision system. Whenever a part

enters the sensor zone, the vision system senses it and informs

the belt to stop immediately. The vision system then

recognizes the type of part and informs the robot, so that the

robot can pick it up from the belt. The robot picks up the part,

and the belt moves again. An assembly is complete when a

dish and cup are placed on the tray separately by the arms of

the robot”.

The problem statement is given as the input to our tool.

Initially the openNLP processes these statements and provides

the parts of speech. This output of the openNLP is shown in

figure 6.

Figure 6. Generated Pos Tagger

Quantification

atleast n

at most n

exactly n

>

<

=

Figure 4. Quantification

Modal Formulation

Open NLP based Refinement of Software Requirements

299

 This tagger is further processed by the SBVR to identify

object oriented items from the generated vocabulary.

Figure 7. Extracted Vocabulary for UML model

 The SBVR rules describe the specific logic in software

domain. This rule is generated from the output of the

previous phase. Figure 8 shows the rule extracted result.

 Figure 8. SBVR Extraction

XI. Conclusion

 This research work is carried out for providing a robust

solution to reduce the ambiguity in natural language and to

extract object oriented information from the user requirements.

This is a neoteric approach which largely supports machine

processing. An open natural language processing tool is

implemented to analyze and to parse the SRS which provides

the essential parts of speech (POS). After obtaining the

required and relative information in the form of POS tags.

With the support of Semantic Business Vocabulary and Rules

relevant vocabulary and rules are formed. This provides an

automatic method to capture the object oriented elements in

requirements specification. The automatic extraction of object

oriented items from the natural language processed user

requirements is a novel concept. Software designers can

further refine the gathered information and can develop solid

object oriented models.

References

[1] Hector G. Perez-Gonzalez, “Automatically Generating

Object Models from Natural Language Analysis”, 17th

annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, ACM

New York, USA, pp.86 – 87,2002

[2] Oliveira, A., Seco N. and Gomes P.A CBR Approach to Text

to Class Diagram Translation. TCBR Workshop at the 8th

European Conference on Case-Based Reasoning,

Turkey.[12],2006.

[3] Harmain, H. M., Gaizauskas R. CM-Builder: A Natural

Language-Based CASE Tool for Object- Oriented Analysis.

Automated Software Engineering. 10(2), pp.157-181, 2003.

[4] Perez-Gonzalez, H. G., Kalita, J.K..GOOAL: A Graphic

Object Oriented Analysis Laboratory. 17th annual ACM

SIGPLAN conference on Object-oriented programming,

systems, languages, and applications (OOPSLA '02),

NY,USA, pp.38-39, 2002.

[5] Anandha G.S., Uma G.V.Automatic Construction of Object

Oriented Design Models [UML Diagrams] from Natural

Language Requirements Specification. PRICAI 2006:

Trends in Artificial Intelligence, LNCS 4099, pp.1155-1159,

2006.

[6] Bajwa I.S., Samad A., MumtazS.Object Oriented Software

modeling Using NLP based Knowledge Extraction.

European Journal of Scientific Research, 35(01), pp. 22-33,

2009.

[7] Li, K., Dewar, R.G., Pooley, R.J. Object-Oriented Analysis

Using Natural Language Processing, Linguistic Analysis,

pp. 75-76, 2005.

[8] Mich, L. "Ambiguity Identification and Resolution in

Software Development: a Linguistic Approach to improve

the Quality of Systems" in Proc. Of 17th IEEE Workshop on

Empirical Studies of Software Maintenance, Florence, Italy.

pp. 75-76, 2001.

[9] Feuto, P.B.; Cardey, S.; Greenfield, P; “Domain Specific

Language Based on the SBVR Standard for Expressing

Business Rules” Enterprise Distributed Object Computing

Conference Workshops (EDOCW), 17th IEEE International,

pp. 31 - 38, 2013.

[10] Fernandez, P.M. & Garcia-Serrano, A.M.The role of

knowledge-based technology in language applications

development. Expert Systems with Applications 19, pp.

31-44, 2000.

[11] S. Kok and P. Domingos, “Learning the structure of Markov

logic networks’, In Proc. Of ICML-05, Bonn, Germany,

ACM Pres, pp. 441–448, 2005.

[12] P. C. R. Lane and J. B. Henderson, “Incremental syntactic

parsing of natural language corpora with simple synchrony

networks,” IEEE Transactions on Knowledge and Data

Engineering, vol. 13, no. 2, pp. 219-231, 2001.

[13] Imran S. Bajwa, Mark G. Lee, BehzadBordbar, “SBVR

Business Rules Generation from Natural Language

Specification”, Artificial Intelligence for Business Agility

-Spring Symposium (SS-11-03), pp. 2-8, 2011.

[14] Arora C, Sabetzadeh M, Briand L, Zimmer F,“Automated

Checking of Conformance to Requirements Templates using

Natural Language Processing”, IEEE Transactions on

Software Engineering.DOI 10.1109/TSE.2015.2428709

[15] Falessi D, Cantone G, CanforaG,“Empirical Principles and

an Industrial Case Study in Retrieving Equivalent

Requirements via Natural Language Processing

Techniques”, Software Engineering, IEEE Transactions on

Vol:39, No:1, pp. 18 - 44, 2013.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cardey%2C%20S..QT.&newsearch=true

Mohanan et al.

300

[16] Nan Zhou and XiaohuaZhou,“Automatic Acquisition of

Linguistic Patterns for Conceptual Modeling”, Course INFO

629:Conceptsin Artificial Intelligence,DrexelUniversity.Fall

2004 .

[17] Ambriola V and GervasiV,“On the Systematic Analysis of

Natural Language Requirements with CIRCE” Automated

Software Engineering, Vol. 13, No.1, pp. 107-167, 2006.

[18] Priyanka More and RashmiPhalnikar. Article:Published by

Foundation of Computer Science, New York, USA.

Generating UML Diagrams from Natural Language

Specifications. International Journal of Applied Information

Systems 1(8), pp. 19-23, 2012.

[19] Deeptimahanti D K, Babar M A, “An Automated Tool for

Generating UML Models from Natural Language

Requirements”, 24th IEEE/ACM International Conference

on Automated Software Engineering ASE '09. pp. 680 – 682,

2009.

[20] Dinarelli M, Moschitti A, Riccardi G,“Discriminative

Reranking for Spoken Language Understanding”, Audio,

Speech, and Language Processing, IEEE Transactions on

Vol: 20, No:2,pp. 526 – 539, 2012.

[21] K. Toutanova and C. D. Manning,“Enriching the Knowledge

Sources Used in a Maximum Entropy Part-of-Speech

Tagger”, In Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large

Corpora, pp. 63-70, 2000.

[22] Imran SarwarBajwa, M AsifNaeem, On Specifying

Requirements using a Semantically Controlled

Representation In: 16th International Conference on

Applications of Natural Languages to Information Systems.

Alicante, Spain: Springer Verlag (NLDB 2011) pp.217-220.

[23] OMG, “Semantics of Business vocabulary and

Rules”,(SBVR) Standard v.1.0. Object Management Group,

Available: http://www.omg.org/spec/SBVR/1.0.(2008).

[24] Kleiner, M., Albert P., BézivinJ.Parsing SBVRBased

Controlled Languages. Model Driven Engineering

Languages and Systems, pp. 122-136, 2009.

 [25] Semantic Formulations in SBVR.Don Baisley,Unisys

 Corporation, 2005.

 [26] Steven Bird, Ewan Klein, and Edward Loper. Natural

 Language Processing with Python. O’Reilly Media, 2009.

 [27] James Clarke, Vivek Srikumar, Mark Sammons, and Dan

 Roth. 2012. An NLP Curator (or: How I learned to stop

 worrying and love NLP pipelines). In LREC 2012.

 [28] David Ferrucci and Adam Lally. UIMA: An

 architectural approach to unstructured information

 processing in the corporate research environment. Natural

 Language Engineering, 10,pp. 327–348, 2004.

Author Biographies

 Mr.Murali Mohanan is an Associate

Professor in Department of Computer Science at

Model Engineering College Thrikkakara.Kochi.

India and at present Research Scholar in

Department of Computer Science, CUSAT,Kochi.

M.Tech degree holder in Computer and

Information Sciences from Cochin University of

Science and Technology.

Dr. Philip Samuel is an Associate Professor in Information

Technology at Cochin University of Science and Technology,

Kochi.He holds a Ph.D degree in Computer Science &

Engineering from Indian Institute of Technology, Kharagpur

and M.Tech degree in Computer and Information Sciences

from Cochin University of Science and Technology. He has

several research publications in international conferences and

journals. His research interests includes Artificial

Intelligence,Distributed Computing, UML Modelling and

Design and Software Engineering.

