
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 8 (2016) pp. 301-311 

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

Dynamic Publishers, Inc., USA 

 

Application of Aesthetic Differential Evolution in 

Identification of Noisy Sources in a Multi Noise 

Plant 
  

Tarun Kumar Sharma1 and Millie Pant2 
 

1 Amity University Rajasthan,  

NH 11 C, Kant Kalwar 303002, Jaipur, Rajasthan, India 

taruniitr1@gmail.com 

 
2 Department of Applied Science and Engineering, Saharanpur Campus, IIT Roorkee, 

Paper Mill Road, 247001, Saharanpur, India  

millidma@gmail.com 

 

 

Abstract: The applications of Differential Evolution (DE) and 

its variants narrate its success. DE is simple, efficient and 

powerful stochastic optimization algorithm to solve wide range of 

optimization problems. But sometimes it gets stuck into local 

optima that results in slow convergence. To overcome this issue, 

we have proposed a modified variant of DE called aesthetic DE 

algorithm (ADEA). In this proposed variant the mutation phase 

is modified to generate the new positions using the concept of 

reflection.  The position of global best individual is reflected i.e. 

mirror image to get new positions (solutions). This concept 

provides perturbation that in later stage helps in getting optimal 

positions. The proposed variant is tested on a set of 13 

benchmark functions consulted from literature. The simulated 

results are then compared with basic DE and state-of-art 

algorithms. Non-parametric statistical analysis is performed for 

the result comparisons. Further ADEA is investigated and also 

compared with DE and on a real time problem of identification of 

noisy sources in a multi noise plant. The experimental results 

show the efficacy of the proposal.    
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I. Introduction 

Differential Evolution (DE) introduced in 1995 by Storn & 

Price [1], is a simple, efficient and powerful stochastic 

optimization algorithm to solve wide range of optimization 

problems. The applications of Differential Evolution (DE) and 

its variants in versatile domains narrate its success. The 

efficiency of DE over its counterpart algorithm such as 

simulated annealing (SA), evolutionary programming (EP), 

controlled random search (CRS), genetic algorithm (GA) and 

particle swarm optimization (PSO) can be consulted from [2] – 

[4].   

Despite many positive features, DE also has certain drawbacks 

associated with it. It is susceptible to problems like slow and/ 

or premature convergence, is sometimes unable to locate 

global optima or gets stuck in local optima. Also, like most of 

the other population based evolutionary algorithm (EA) / 

Nature Inspired Algorithm (NIA), the performance of DE 

deteriorates with the increase in the size of the problem. These 

drawbacks of DE become more persistent in case of 

multimodal or noisy functions.  

Scaling factor (F) and Crossover rate (Cr) are the two control 

factors apart from population size in DE. Parameter tuning 

plays a vital role in the success of algorithm. Inappropriate 

parameter tuning or selection of strategy sometimes may limit 

to convergence speed or may trigger premature convergence 

escaping local minima.  The details are reasonably 

demonstrated with the values of F and Cr in [3] [5] and [4] [6].  

As there is no free lunch algorithm which can be equally 

applied to solve almost every kind of problem. The same is 

also true for DE.  DE looses its efficiency in terms of slow 

convergence while handling noisy problems. This study 

presents aesthetic differential evolution algorithm (ADEA) to 

enhance the efficiency and performance of the conventional 

DE to solve optimization problems. In the proposed variant of 

DE called ADEA, the new positions (decorative positions) are 

produced using the concept of mirror images. The concept is 

inspired from interior search algorithm. 

The mirror is placed near the most beautiful (global best) 

individual to accentuate their attractiveness. This idea 

facilitates in providing the displacement of optimal solutions 

(based on fitness value). The individual solution in the 

population is updated only when a better fitness value is 

achieved.   

This dynamic behavior assists in dealing with complex 

optimization problems. This mechanism helps in following 

optimal solutions.   

Here we would like to add that the preliminary version of this 

study has been presented in the 7th World Congress on Nature 

and Biologically Inspired Computing (NaBIC '15) [7]. In that 

study the proposed variant was applied to solve ten 

Computationally Expensive Optimization (CEO) problems. In 

this study, we have extended ADEA implementation in solving 

thirteen benchmark problems [4] and a real time application of 

detecting the locations of noisy equipments in multi noise 

plant [8].  

In general life the sound that creates or causes disturbance is 

termed as Noise. In any factory or industry the high level noise 
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can be very harmful to the employees. As investigated by 

Occupational Safety and Health Act (OSHA) of 1970, the high 

level noise not only causes physiological ailments in 

employees but also causes harmful environment in the 

neighborhood. Therefore it becomes essential to control the 

noise levels in any manufacturing plant or industry. This can 

be achieved by optimal allocation of noise equipments which 

is quite not easy to recognize the exact location. So, ADEA is 

applied to identify the locations. In the present study two cases 

are considered (1) plant with one equipment and (2) plant with 

two equipments. The detail of the problem is discussed in 

Section 5. 

The outline of the paper is as follows: brief overview of DE is 

presented in Section 2. ADEA, the proposed variant of DE is 

detailed in Section 3. Section 4 demonstrates the benchmark 

problems parameter settings and experimental results. Section 

5 presents the mathematical formulation for noise recognition 

in a multi noise plant.  Simulated results are presented in 

Section 6.  In Section 7, the conclusions drawn from the study 

are summarized. 

II. Differential Evolution (DE) Algorithm: An 

Overview 

Since last decades DE has shown a remarkable success when 

applied to solve real world optimization problems. However, 

like other its counterpart, DE sometimes gets struck in local 

optima that lead to slow convergence. In order to enhance its 

ability and performance number of DE variant have been 

proposed. In the next paragraph some of the recent 

modifications in the structure of basic DE are presented.  

A self adaptive variant of DE is given by Ghosh et al. [9] in 

2011. In that study authors introduced the controlling of 

scaling (F) and crossover (Cr) parameters at run time. In the 

same year Zou et al. [10] proposed a modified variant of DE 

where these parameters were dynamically adjusted with 

successive iterations. Authors also investigated its 

performance on assignment problem.  

Wang et al. [11] in 2012, presented a variant of DE in which 

the two antagonist (exploration and exploitation) are balanced 

while maintain the diversity of solutions. This variant is 

applied to solve binary coded optimizations problems. To 

show its performance a problem of multidimensional knapsack 

is solved.  In the same year Mohamed and Sabry [12] 

presented a new directed mutation rule. The variant is applied 

to solve constrained optimization problems.  

Zou et al. [13] in 2013, proposed modified DE that employs 

Gaussian and uniform distribution to adjust the values of 

controlling factors (F and Cr). In the same year, Wu et al. [14] 

a presented a variant of DE to improve global searching 

capability. In this self adaptive DE, the population is 

dynamically divided and control parameters (F & Cr) are also 

dynamically adjusted on run time. 

Ali et al. [15] in 2014 applied basic DE in enhancing the 

quality of watermarked image. Coelho et al. [16] proposed self 

adaptive DE that uses gamma distribution, Gaussian 

probability and chaotic sequence. 

Mohamed [17] in 2015 presented a new mutation rule 

(triangular mutation) in basic DE. This rule is based on convex 

combination vector of the triplet. A variant of DE that takes its 

inspiration from Shuffled frog leap algorithm in order to 

increase the convergence of basic DE is proposed by Xiang et 

al. [18]. A surrogate model of DE is introduced by Mallipeddi 

and Lee [19] to tune the control parameters (F & Cr).  

Zamuda and Brest in 2015 [20] proposed adaption and self 

adaption mechanism in DE to generate new control parameter 

values. Cai and Wang also in 2015 [21] embedded linkage 

learning technique in crossover phase to alleviate the 

drawback of linkage-blind in DE. Poonia et al. [7], presented a 

modified variant of DE, called ADEA in which the mutation 

operator is modified in order to improve the convergence rate.  

In 2016, Wang and Tang [22] proposed adaptive 

multi-population DE, where the size of the subpopulation is 

adjusted based on search criterion. This variant is applied in 

data mining process. Basu [23] proposed quasi-oppositional 

based learning DE to optimize reactive power dispatch 

problem. The concept is applied in both population 

initializations as well as for generation jumping. Yi et al. [24] 

introduced a novel variant of DE. They embedded pbest 

roulette wheel selection and retention mechanism to improvise 

the efficiency of DE.    

For more readings about the recent enhancements and 

applications of DE, readers may consult [25].  

Like other evolutionary algorithm, DE also starts with a 

population of NP candidate solution to explore the search 

space. After initialize the population, DE use repeated cycles 

of evolutionary operation such as mutation, crossover and 

selection to guides the population towards the vicinity of the 

global optimum. At the end of each generation, the algorithm 

aims to generate the new population by replacing points of 

current population according as their quality where quality of 

each vector is evaluated using a fitness function of the problem. 

Throughout the present work we have followed DE/rand/1/bin 

strategy which is a most common mutation strategy for DE and 

referred as the basic version of DE. The basic structure of DE 

is as follows:  

Basic DE  

a) Initialization  

Let 1, 2, 3, ,{ , , ,..., }G G G G G

i i i i D iX x x x x denotes the ith 

individual in population PG of size NP at any generation G.    

(1) 

D represents dimension of the problem in search space. 

A uniformly distributed population is generated randomly 

within the range of lower and upper bounds so that the search 

space can sufficiently cover as much as possible. 

Let the lower and upper bounds of search space are lmin = {l1, 

l2, ..., lD} and umax = {u1, u2, ..., uD} respectively. 

 jth component of the ith individual can be initialized according 

to the following equation: 

0

, min , max min[0,1] ( )j i j i j j jx l rand u l   


(2) 

where randi,j [0, 1] is uniformly distributed random which 

limits in 0 and 1 range. 
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b) Mutation 

Mutation is the second phase after initialization. In this phase 

mutant (perturbed) vector (Vi,
G) corresponding to each target 

vector (Xi,
G) is generated using the following scheme:  

)( ,3,2,1, GrGrGrGi XXFXV                                     (3) 

where r1, r2, r3 are mutually exclusive random numbers 

choosen from [1, NP] and all are different from base vector i. F, 

the amplification lies between 0 & 1. 

c) Crossover 

Crossover phase is activated just after the mutation phase that 

helps in enhancing population diversity. Crossover operator is 

applied on each pair of target vector 

1, 2, 3, ,{ , , ,..., }G G G G G

i i i i D iX x x x x  and its corresponding 

perturbed vector 1, 2, 3, ,{ , , ,..., }G G G G G

i i i i D iV v v v v  to 

introduce trial vectors 1, 2, 3, ,{ , , ,..., }G G G G G

i i i i D iU u u u u . The 

binomial crossover is performed to produce trail vectors. 





 


otherwisex

jjCrrandifv
u

Gij

randjiGij

Gij
,,

,,,

,,

]1,0[

              

(4) 

jrand is randomly chosen index from 1 to D.  Crossover rate, the 

other controlling positive parameter of DE (Cr) [0, 1] is set 

by the user or may be adaptive. If randi,j [0,1] ≥ Cr, then the 

components come from the target vector; otherwise, it is taken 

from mutant vector. 

d) Selection 

The final phase of DE is Selection, where the population for 

the next generation is selected on greedy mechanism is given 

as: 





 


OtherwiseX

xfUfifU
X

Gi

GiGiGi

i,G
,

,,,

1

)()(
                             (5) 

III. Proposed ADEA 

ADEA, a new variant of DE is proposed. Enhancing the 

convergence ability of DE is the basic aim behind this study.  

In the proposed variant the mutation phase of DE is modified. 

In this variant new positions are produced using the concept of 

reflection introduced in Interior Search Algorithm (ISA) [26]. 

The position of global best individual is reflected i.e. mirror 

image. This concept provides perturbation that in later stage 

helps in getting optimal positions (solutions). If better fitness 

value is achieved then the individual solution in the population 

is updated. This process assists in getting optimal solutions.    

ADEA proceed in similar fashion of basic DE. Each solution is 

estimated using fitness function i.e. objective function. An 

individual having the minimum value (xgbest) is identified. 

Then to perform local search a random walk is performed to 

slightly change the position of xgbest (Fig. 1 & 2(a)) using 

equation (6). This process enhances exploitation in DE. 

 
NP

k
gbest

k
gbest rxx 1

                                                    (6) 

where rNP represents uniformly distributed random number 

and  λ  is scale factor, which depends on the size of search 

region and set as: 

λ = 0.01 * (u – l)                                                               (7) 

 

Random solutions in the search space (x); Random Walk (      );  

         gBest (   );  Optimum Value (     ) 

Figure 1. Randomly generated population with global best 

(Red mark), optimal (green mark) and blue arrows presents 

possible random walk 

Secondly, a parameter α (ranges between 0 and 1) is 

introduced to give equal consideration to two antagonists 

(exploration and exploitation) in the mutation phase. In 

mutation process of ADEA a mirror is placed randomly 

between each individual and gbest. The idea is demonstrated 

in Fig 2(b). The position of the mirror for ith individual in kth 

iteration is given as:    

k

Ggbest

k

Gi

k

Gim xrxrx ,5

1

,5,, )1(  
                                    (8) 

where r5 is a random number between 0 and 1. 

The reflected image of the individual by mirror is given as: 

1
,,,, 2  k
Gi

k
Gim

k
Gi xxv                                                           (9) 

The local search is performed when the reflected image (Fig. 

2(b)) is near the gbest otherwise global search is performed; 

this helps in exploration and exploitation. If the reflected 

images fall outside the fixed bounds then they are adjusted 

using equation (10).  
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(b) 

Figure 2. (a) Random Walk and (b) Mirror Searching process 

in ADEA (Adapted from [18]). 

If α ≥ 0.5 (r6) the mutants are generated using original 

mutation process given in equation (3) otherwise the mutant 

vectors generated using mirror images are taken forward for 

crossover.  

The pseudo code of ADEA is detailed in Fig. 3. 

Aesthetic Differential Evolution Algorithm 

Initialize the population of solutions using equation (2). 

while stopping criterion not satisfied 

Evaluate the fitness function and find global best )( k
gbestx , 

where k is iteration. 

for i = 1 to NP 

      if xgbest  

   
NP

k
Ggbest

k
Ggbest rxx 1

,,  

      if r5 ≤ α 

 k
Ggbest

k
Gi

k
Gim xrxrx ,5

1
,6,, )1(   

 1
,,,, 2  k
Gi

k
Gim

k
Gi xxv  

      else 

          )( ,3,2,1, GrGrGr
k
Gi xxFxv   

     end if 

     Check the boundaries. 

Perform Crossover 

Selection 

end for 

end while 

Figure 3. Pseudo-code of ADEA 

 

Method Best result Average result 

Fuzzy systems 0.24 0.30 

Genetic algorithms 0.17 0.28 

Neural Networks 0.20 0.27 

Table 1. Comparison of results. 

IV. Benchmark Problems and Experimental 

Settings 

In order to investigate the efficiency of the proposal a test bed 

of thirteen single objective benchmark problems is consulted 

from literature [4]. The details of the experimental settings are 

as follows: 

 Numerical experiments are performed on PC with Celeron 

(R) Dual Core CPU T3100@1.90GHz and 2 GB RAM under 

Microsoft Windows XP Professional (2002). The 

implementation of ADEA is done on Deb C++. 

 DE Parameters 

The population size is fixed to 100. Scaling (F) and crossover 

rate (Cr) are fixed as 0.5 and 0.9 respectively and dimension 

(D) of the problems is taken as 30. Maximum numbers of 

function evaluations (NFE) are fixed to 105. For all the 

experiments 25 independent runs are performed. rand (), 

defined in C++ is used to generate random numbers.  

Following conditions adapted from [27] are used to handle the 

boundary constraints: 












iiigbesti

iiigbesti

i
uxifxrur

lxifxrlr
xf

,88

,77

)1(

)1(
)(



(10) 

where r7 and r8 are random numbers between 0 and 1. xgbest is 

global best solution. 

 Simulation Strategy 

In order to evaluate the performance of the ADEA, the 

statistical results in terms of best, worst function value, median, 

mean and standard deviation (Std. Dev.) are evaluated.  

Algorithm taken for performance comparisons  

─ DE/rand/1/bin (F = 0.9, Cr = 0.9) [2] 

─ DE/rand/1/bin (F = 0.5, Cr = 0.9) [4] 

─ DE/best/1/bin (F = 0.6, Cr = 0.3) [28] 

─ jDE [4] 

─ AuDE [29] 

The fact for choosing the above mentioned state-of-art 

algorithms for result comparison is that these versions keep 

intact the original mutation operator of basic DE. 

V. Theoretical background of Noise Problem  

In this study a model to optimize noise control for the m-noise 

plant is consulted from [8]. Figure 4 presents m-noise plant 

with m number of equipments. To evaluate the impact of noise 

in the environment an n-point monitoring system is installed 

around the boundary line of the plant. Let [xj(act), yj(act), xj(act)] 

and SWLj(act)be the actual Cartesian coordinate and sound 

power level with  respect to the jth noise source. The sound 

pressure level (SPL), as given by distance decay formula, at 

any point i radiated from the jth noise source with a variable 

noise reduction is: 

}10log{*10 1

10/
 

M
j

SPL

i
ijSPL  

11)log(*20),,(  ijijjjij RfrRSWLSPL                (11) 

10*)(4.7),,(

2




frR
frR

ij

ijj   

where Rij is the distance between ith point to jth noise source. ø 

and fr is the humidity in the air and sound frequency 

respectively. ),,( frRij  , is the air sound absorption at 20o C. 
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Figure 4. .Location of Equipments (EQ) in Multi Noise Plant 

 

In order to minimize the noise influence in the plant the 

objective function is given as the total variation of sound level 

at trail receiving points with respect to the targeted actual 

noise level. The objective function is defined as: 

Minimize 

2
1

11111

)(

...;...;...;...;...(

 



 



N
i iacti

mmactactmmm

SPLSPL

SWLSWLSPLSPLzzyyxxf

(12) 

Case Study and experimental settings 

To verify the efficiency and reliability of the proposed 

algorithm two cases have been considered. The plant area is 

considered as 20 (mtr) x 15 (mtr) (mtr is meters) on x and y 

axis with two kind of N – point monitoring system i.e. N = 18 

and 36. The coordinates of both the monitoring system are 

illustrated in Table 1 & 2. 

The cases are described as follows: 

Case – I: Plant with single equipment (M = 1) 

The corresponding Cartesian coordinates and sound power 

level of equipment (EQ – 1) is taken as: 

 EQ – 1: Cartesian coordinates are (5.0, 7.5, 2.0) and SWL = 

105.00 db(A).  

The boundary conditions are: 

0.0 (mtr) ≤ x ≤ 20.0 (mtr); 0.0 (mtr) ≤ y ≤15.0 (mtr); 0.0 (mtr) 

≤ z ≤ 3.0 (mtr); 80 0 db(A) ≤ SWL ≤120.0 db(A); 

Case – II: Plant with single equipment (M = 2) 

The corresponding Cartesian coordinates and sound power 

level of equipment (EQ – 1) is taken as: 

 EQ – 1: Cartesian coordinates are (5.0, 7.5, 2.0) and SWL1 = 

105.00 db(A). 

 EQ – 2: Cartesian coordinates are (18.0, 7.5, 3.0) and SWL2 

= 102.00 db(A). 

The boundary conditions for EQ – I & II are: 

0.0 (mtr) ≤ x1 ≤ 20.0 (mtr); 0.0 (mtr) ≤ y1 ≤15.0 (mtr);0.0 (mtr) 

≤ z1 ≤ 3.0 (mtr);80 0 db(A) ≤ SWL1 ≤120.0 db(A); 

0.0 (mtr) ≤ x2 ≤ 20.0 (mtr); 0.0 (mtr) ≤ y2 ≤15.0 (mtr);0.0 (mtr) 

≤ z2 ≤ 3.0 (mtr);80 0 db(A) ≤ SWL2 ≤120.0 db(A);

 

 

 

 

 

 

M.P* x y z M.P x y z M.P x y z 

R1 0.0 0.0 1 R7 8.0 0.0 1 R13 16.0 0.0 1.0 

R2 0.0 7.5 1 R8 8.0 7.5 1 R14 16.0 7.5 1.0 

R3 0.0 15.0 1 R9 8.0 15.0 1 R15 16.0 15.0 1.0 

R4 4.0 0.0 1 R10 12.0 0.0 1 R16 20.0 0.0 1.0 

R5 4.0 7.5 1 R11 12.0 7.5 1 R17 20.0 7.5 1.0 

R6 4.0 15.0 1 R12 12.0 15.0 1 R18 20.0 15.0 1.0 

Table 1. Cartesian coordinates of 18 point monitoring system 

 

 

 

 

EQ—1 

EQ— n 

EQ—3 EQ— m 

EQ—2 

[x(1)act, y(1)act, z(1)act] [x(2)act, y(2)act, z(2)act] 

[x(3)act, y(3)act, z(3)act] [x(m)act, y(m)act, z(m)act] 

[x(n)act, y(n)act, z(n)act] 

20 mtr 

15 mtr 
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M.P x y z M.P x y z M.P x y z 

R1 0.0 0.0 1.0 R13 8.0 0.0 1.0 R25 16.0 0.0 1.0 

R2 0.0 3.0 1.0 R14 8.0 3.0 1.0 R26 16.0 3.0 1.0 

R3 0.0 6.0 1.0 R15 8.0 6.0 1.0 R27 16.0 6.0 1.0 

R4 0.0 9.0 1.0 R16 8.0 9.0 1.0 R28 16.0 9.0 1.0 

R5 0.0 12.0 1.0 R17 8.0 12.0 1.0 R29 16.0 12.0 1.0 

R6 0.0 15.0 1.0 R18 8.0 15.0 1.0 R30 16.0 15.0 1.0 

R7 4.0 0.0 1.0 R19 12.0 0.0 1.0 R31 20.0 0.0 1.0 

R8 4.0 3.0 1.0 R20 12.0 3.0 1.0 R32 20.0 3.0 1.0 

R9 4.0 6.0 1.0 R21 12.0 6.0 1.0 R33 20.0 6.0 1.0 

R10 4.0 9.0 1.0 R22 12.0 9.0 1.0 R34 20.0 9.0 1.0 

R11 4.0 12.0 1.0 R23 12.0 12.0 1.0 R35 20.0 12.0 1.0 

R12 4.0 15.0 1.0 R24 12.0 15.0 1.0 R36 20.0 15.0 1.0 

Table 2. Cartesian coordinates of 36 point monitoring system 

 

VI. Result Discussion 

A. Benchmark Problems 

The compiled results of thirteen benchmark problems in terms 

of mean and standard deviation (Std.) of ADEA and the 

state-of-art algorithms taken for comparison are presented in 

Table 3 and 4.  

In Table 3 the results of ADEA are compared with DE having 

different control parameters and mutation strategy. Table 4 

illustrates the result comparison of ADEA with jDE and AuDE. 

Best results are highlighted (bold) in both the Tables.     

It can be clearly observed from the Tables 3 and 4 that ADEA 

performed consistently well for all the thirteen problems, 

especially in case of P2, P3, P4, P5, P7, P8 and P11 where as in 

case of P1, P6, P9, P10, P12, P13 it can be analyzed that the 

proposed ADEA present a competitive performance with 

respect to the other state-of-art algorithms taken for 

comparison. 

Further to test the efficiency of the proposal, non-parametric 

test suggested in [31] & [32] is also performed. Post-hoc test is 

performed using Bonferroni–Dunn test [33] to detect the 

significant difference for the ADEA algorithm.  

Bonferroni–Dunn’s graph is depicted in Fig. 5 to study the 

significant difference between ADEA and the consulted 

state-of-art algorithms, for all the benchmark problems. 

A horizontal line at α = 0.05 and α = 0.10 is drawn to show two 

levels of significance.  Critical difference (CD) is computed 

using equation (13): 

N

kk
QCD

6

)1( 
                                                                       (13) 

where Qα indicates the critical value for a multiple 

non-parametric comparison with a control [34]; k and N 

presents the number of algorithms and the problems taken for 

comparisons respectively. The ranking and critical difference 

calculated through Freidman’s and Bonnferroni-dunn’s 

procedure is presented in Table 5. 

Bonferroni-Dunn’s test notifies us of the subsequent 

significant differences with: 

 ADEA as control algorithm: 

At α = 0.05 

ADEA is better than DE – 1, DE – 2, DE – 3, jDE and the 
performance of ADEA is at par with jDE and AuDE. 

At α = 0.10 

ADEA is better than DE – 1, DE – 2, DE – 3, jDE and AuDE. 
 
 
 
 

F 
(DE – 1) 

rand/1/bin (0.9,0.9) 

(DE – 2) 

rand/1/bin (0.5,0.9) 

(DE – 3)  

best/1/bin (0.6,0.3) 
ADEA 

 
Mean Std Mean Std Mean Std Mean Std 

P1 1.19E+00 8.96E-01 1.35E-71 1.84E-71 0.00E+00 0.00E+00 1.93E-77 4.01E-78 

P2 4.10E+03 1.93E+03 4.95E-12 6.41E-12 4.94E+01 2.76E+01 3.45E-12 5.38E-12 

P3 6.73E-02 1.82E-02 2.25E-03 4.84E-04 2.12E-03 6.42E-04 2.62E-04 3.76E-04 

P4 2.44E+03 1.92E+03 1.28E+01 9.16E+00 2.06E+01 3.65E+00 6.13E-01 1.76E+00 

P5 6.32E-01 3.79E-01 3.11E-15 0.00E+00 7.51E-15 2.08E-15 5.97E-17 0.00E+00 

P6 8.31E-01 1.38E-01 5.92E-04 2.01E-03 2.17E-03 3.96E-03 1.87E-04 4.51E-04 

P7 1.27E+02 3.72E+01 1.22E+01 4.11E+00 9.39E+00 3.23E+00 2.17E-02 3.34E-01 

P8 5.79E+03 1.40E+03 7.16E+02 7.96E+02 1.99E+02 1.20E+02 2.56E-05 1.94E-07 

P9 1.57E+00 2.41E-01 1.82E-01 3.66E-02 1.96E-01 1.96E-02 8.61E-01 2.03E-02 

P10 7.04E+06 3.17E+07 2.71E+02 1.42E+02 2.14E+02 1.27E+02 2.18E+02 4.28E+01 

P11 2.12E+00 7.44E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

P12 2.29E-01 2.89E-01 4.15E-03 2.03E-02 1.57E-32 4.86E-40 3.83E-29 9.42E-37 

P13 1.35E+00 1.42E+00 4.40E-04 2.15E-03 1.35E-32 2.60E-40 1.41E-32 1.98E-40 

Table 3. Compiled comparative results of 13 benchmark problems (P) on different strategies of DE and ADEA for 30 dimensions 
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F 
jDE AuDE ADEA 

Mean Std Mean Std Mean Std 

P1 3.07E-74 7.57E-74 3.51E-84 5.92E-84 1.93E-77 4.01E-78 

P2 9.39E-04 9.74E-04 1.14E-09 1.10E-09 3.45E-12 5.38E-12 

P3 2.98E-03 8.14E-04 1.43E-03 4.49E-04 2.62E-04 3.76E-04 

P4 1.49E+00 3.27E+00 9.57E-01 1.70E+00 6.13E-01 1.76E+00 

P5 3.11E-15 0.00E+00 3.11E-15 0.00E+00 5.97E-17 0.00E+00 

P6 0.00E+00 0.00E+00 8.87E-04 3.03E-03 1.87E-04 4.51E-04 

P7 3.98E-02 1.95E-01 2.20E+01 2.08E+00 2.17E-02 3.34E-01 

P8 3.82E-04 7.28E-12 1.10E+02 1.35E+02 2.56E-05 1.94E-07 

P9 1.96E-01 1.96E-02 1.80E-01 3.99E-02 8.61E-01 2.03E-02 

P10 2.17E+02 8.19E+01 2.74E+02 5.54E+01 2.18E+02 4.28E+01 

P11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

P12 1.57E-32 4.86E-40 1.57E-32 4.86E-40 3.83E-29 9.42E-37 

P13 1.35E-32 2.60E-40 1.35E-32 2.60E-40 1.41E-32 1.98E-40 

Table 4. Compiled comparative results of 13 benchmark problems (P) for 30 dimensions 

 

Algorithm Mean Rank 

DE – 1  5.15 

DE – 2  3.23 

DE – 3   2.77 

jDE 2.38 

AuDE  2.46 

ADEA 1.77 

CD for α = 0 .05 2.746 

CD for α = 0 .10 2.214 

Table 5 Ranking and critical difference calculated through Friedman’s and Bonnferroni-Dunn’s Procedure. 

 

 
 

Figure 5. .Bonferroni-Dunn’s graphic corresponding to error 

 

 

B. Noise identification in Multi Noise Plant 

Two cases are taken to validate the efficiency of ADEA, the 

proposed algorithm. The experimental results for DE with 

different control parameter values in terms of fitness value 

(best, worst & average), location and accuracy are illustrated 

in Table 6 – Table 9. The result comparison between DE, GA 

and ADEA is presented in Table 10. In Table 10 the average 

result obtained by DE with F = 0.5 & Cr =0.9 are taken for 

comparison.  

Case I: M = 1 (N = 18 & 36) 

 Results in terms of fitness value 

From Table 6, when N = 18, it can be observed that the 

average fitness values obtained by DE at different control 

parameters values are 0.04910, 0.03540, and 0.20900 where 

as the average fitness achieved by ADEA is 0.03427 which is 

significantly better than DE. Further the best fitness value 

obtained by ADEA is also comparatively better than DE. 

From Table 10, that illustrates the result comparison between 

DE, GA and ADEA, it can be analyzed that the results 

achieved by ADEA are significantly better than both the 

algorithm.  

Similarly in case of N = 36, ADEA obtained minimum average 

fitness value as well the best fitness value in comparison to DE 

and GA. 

CD for α = 0 .05 

CD for α = 0 .10 
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 Location and accuracy 

Using 18 point monitoring system the average location (Loc) 

and Sound pressure level (SWL in db(A)) obtained by GA and 

DE are [(4.926, 7.485,    2.123),105.189 db(A)] and 

[(4.998,7.484,2.00),105.00 db(A)] respectively where as 

average location (Loc) and Sound pressure level (SWL in 

db(A)) obtained by ADEA is  (4.99950,48390,1.99907), 

105.000 db(A)] which is much close to actual location. Similar 

case can be seen for 36 point monitoring system in Table 10. 

Accuracy of the location is also analyzed and reported in Table 

7. Δr and ΔSWL represents the distance from actual location 

and difference from actual SWL respectively. The result 

demonstrates efficiency of ADEA in comparison to GA and 

DE.  

Case I: M = 2 (N = 18 & 36) 

 Results in terms of fitness value 

The simulated results are illustrated in Table 8 and 9. Table 10 

reports the comparative results for GA, DE and ADEA. In this 

case also, similar to previous one experiment is performed on 

DE with various combinations of control parameter values. 

DE with F = 0.5 & Cr = 0.9 control parameter values is carried 

for result comparisons as best results are obtained at this 

combination. 

From Table 10, in case of both 18 and 36 monitoring points the 

results obtained by ADEA are significantly better than GA and 

DE in terms of average location as well as sound pressure 

level. 

 Location and accuracy 

In this case also, location of Equipment 1 (EQ – 1) and 

Equipment 2 (EQ – 2) and sound pressure level obtained using 

ADEA is improved than GA and DE for 18 as well as 36 

monitoring points. The results are closer to the actual ones. 

 

 

N Parameters DE 

ADEA 

  

Cr = 0.5, Cr = 0.9 Cr = 0.9, 

F = 0.5 F = 0.5 F = 0.8 

18 Fitness Best 0.01390 0.00376 0.11800 0.00302 

 

 

Worst 0.05610 0.04120 0.32000 0.04092 

Avg 0.04910 0.03540 0.20900 0.03427 

Std. Dev. 0.01640 0.01080 0.07930 0.07260 

Loc(x,y,z) 

4.99500 4.99800 5.02400 4.99950 

7.45700 7.48400 7.46500 7.48390 

1.99000 2.00000 1.94300 1.99907 

SWL db(A) 104.99300 105.00000 104.97600 105.000 

36 Fitness Best 0.01380 0.01110 0.11300 0.01109 

 

 

Worst 0.05740 0.04750 0.32900 0.04796 

Avg 0.03110 0.02710 0.19800 0.02699 

Std. Dev. 0.01760 0.01130 0.10700 0.01041 

Loc(x,y,z) 

4.99200 5.00000 4.99500 5.00000 

7.49200 7.49800 7.51500 7.50000 

2.01100 2.00100 1.57000 2.00000 

SWL db(A) 104.99500 104.99800 105.02300 105.0000 

Table 6 Experimental results for M=1, N=18 & 36 in terms of fitness value (Best, Worst, Average – Avg.), Standard Deviation 

(Std. Dev.) and average location (x, y,z,), SWL). 

 

 

MP Accuracy GA DE ADEA 

18 
 Δr 0.6132 0.339 0.025 

ΔSWL db(A)  0.05 0.025 0.009 

36 
 Δr 0.2425 0.203 0.015 

ΔSWL db(A)  0.219 0.004 0.003 

Table 7 Results in terms of accuracy with respect to various monitoring system for M = 1 
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N Parameters DE 

ADEA 

  

Cr = 0.5, Cr = 0.9 Cr = 0.9 

F = 0.5 F = 0.5 F = 0.8 

18 Fitness Best 2.44600 0.14900 9.33700 0.14200 

 

 

Worst 7.92000 0.58200 13.52100 0.61733 

Avg 4.53400 0.34500 12.22600 0.33871 

SD 4.10200 0.12200 3.88900 0.10418 

Loc(x1,y1,z1) 

5.39100 5.00900 5.04400 5.0001 

7.54500 7.58200 7.03600 7.5100 

1.69900 1.88800 1.80000 1.9022 

SWL1 db(A) 105.27100 104.99700 105.66100 105.0010 

Loc(x2,y2,z2) 

18.31100 18.00000 18.57200 18.0000 

7.88900 7.58500 6.03200 7.5001 

2.22300 2.91300 1.00000 2.7103 

SWL2 db(A) 101.74700 102.00000 100.25600 102.0000 

36 Fitness Best 1.26600 0.11900 7.45100 0.11891 

 

 

Worst 7.82080 0.41900 12.38600 0.39908 

Avg 3.23220 0.25200 9.35000 0.24954 

SD 3.12010 0.35000 4.72200 0.34092 

Loc(x1,y1,z1) 

5.18100 5.02700 4.99300 5.0111 

7.51500 7.49700 7.45400 7.5010 

1.79800 1.96200 1.98400 1.9992 

SWL1 db(A) 105.07200 105.02300 104.95000 105.000 

Loc(x2,y2,z2) 

18.03100 18.00000 18.25700 18.000 

7.61300 7.55200 7.64000 7.5133 

2.63400 2.97500 1.34500 2.4603 

SWL2 db(A) 101.55200 101.99800 100.20000 102.0001 

Table 8 Experimental results for M=2, N=18 & 36 in terms of fitness value (Best, Worst, Average – Avg.), Standard Deviation 

(Std. Dev.) and average location (x, y,z,), SWL). 

 

 

 

 

 

 

MP Accuracy GA DE ADEA 

18 

 Δr1 0.1961 0.6175 0.5732 

 Δr2 1.0712 0.1216 0.0836 

ΔSWL1 db(A)  0.463 0.024 0.019 

 ΔSWL2 db(A)  1.227 0.032 0.022 

36 

 Δr1 0.4817 0.0467 0.0361 

 Δr2 0.3849 0.0576 0.0493 

ΔSWL1 db(A)  0.106 0.023 0.019 

 ΔSWL2 db(A)  0.486 0.002 0.0019 

Table 9 Results in terms of accuracy with respect to various monitoring system for M = 2 
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Plant Item Algorithm N = 18 N = 36 

M = 1 

Fitness Value 

GA 0.4620 0.0989 

DE 0.0354 0.0271 

ADEA 0.03427 0.02699 

Loc (x,y,z) & SWL db(A) 

GA 
(4.926, 7.485,2.123,  

105.189) 

(5.009, 7.426,1.985, 

105.05) 

DE 
(4.998, 7.484, 

2.00, 105.00) 

(5.00, 7.498,2.001, 

104.998) 

ADEA 
(4.99950, 48390, 1.99907, 

105.000) 

(5.00000, 7.50000, 2.00000, 

105.0000) 

M = 2 

Fitness Value 

GA 0.89800 0.59800 

DE 0.34500 0.25200 

ADEA 0.33871 0.24954 

Loc (x1,y1,z1) & SWL1 db(A) 

GA 
(4.814, 7.123, 

1.451, 104.541) 

(4.951, 7.462, 

2.012, 104.818) 

DE 
(5.009, 7.582,1.888, 

104.997) 

(5.027, 7.497, 

1.962, 105.023) 

ADEA 
(5.0001, 7.5100, 1.9022, 

105.0010) 

(5.0111, 7.5010,1.9992, 

105.000) 

Loc (x2,y2,z2) & SWL2 db(A) 

GA 
(17.250, 7.601, 2.012, 

101.5433) 
(17.978, 7.709,2.994, 102.273) 

DE 
(18.000,7.585,  2.913, 

101.9980) 

(18.00, 7.552, 

2.975, 101.998) 

ADEA 
(18.0000, 7.5001, 2.7103, 

102.000) 

(18.000, 7.5133,2.4603, 

102.0001) 

Table 10 Comparative experimental results for M=1, N=18 & 36 in terms of fitness value (Best, Worst, Average – Avg.), 

Standard Deviation (Std. Dev.) and average location (x, y,z,), SWL). 

 

 

VII. Conclusions and Future Scope 

An improvement in mutation process of basic DE is 

introduced in this study with an intension of accelerating the 

convergence rate. The concept of reflection is used to produce 

new decorative positions. This phenomenon is taken from 

Interior search algorithm. The mirror is placed near the most 

beautiful (global best) individual to accentuate their 

attractiveness. This new variant is named as aesthetic 

differential evolution algorithm (ADEA). ADEA is 

implemented on thirteen benchmark problems discussed in 

CEC 2006. Non-parametric test are performed to evaluate the 

significance of the proposal. Further to investigate the efficacy 

of the proposal a case study of identification of noise in multi 

plant is solved. In first case single equipment with 18 and 36 

monitoring point is considered where as in second case two 

equipments with 18 and 36 monitoring point is considered. 

The proposal is consistently able to reach the optimal solutions 

in terms of best fitness value, average value as well as in 

identifying locations with better sound level pressure. The 

computed statistical results indicate significant difference in 

terms of performance of the proposal with respect to 

state-of-art algorithms.  

In future ADEA will be implemented on constrained 

optimization real world problems. 
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