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Abstract: The feature of conditional communication in
membrane computing has been introduced in symbol objects
and arrays in [1, 8, 9, 19]. Hybridity and context free is a special
feature which has been applied on Hybrid P system [17]. In this
paper we study the nature of membrane computing with condi-
tional communication in Hybrid context free puzzle P system
and examine the power of the system by comparing the model
with certain array grammars generating languages.
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I. Introduction

The study of two-dimensional grammar models is an area of
investigation motivated by different problems in the frame
work of image analysis and picture processing [6]. Motivat-
ed by problems of tiling in the two-dimensional plane, one
such syntactic method called puzzle grammar system was
proposed by Nivat et al. and investigated in [12] for its prop-
erties by comparing with different array grammars. A sub-
class of puzzle grammar called context-free puzzle grammars
with rules of a specific nature was introduced by Subramani-
an et al. [18]. In the area of grammar system, Dassow et al.
[4] have introduced cooperating array grammar system ex-
tending the notion of cooperating distributed (string) gram-
mar system to arrays. The notion of a team CD grammar
system was introduced and investigated by removing the re-
striction that at each moment only one component is enabled
[3, 10, 11, 13]. Fernau [5] and Maurice ter Beek [11] stud-
ied hybrid (prescribed) team CD grammar system allowing
work to be done in teams while at the same time assuming
these teams to have different capabilities.

On the other hand, research on membrane computing was
initiated by Paun [14] introducing a new computability mod-
el called P system, which is a distributed, highly parallel
theoretical computing model based on the membrane struc-
ture and the behavior of the living cells. Among a variety
of applications of this model, the problem of handling array

languages using P system has been considered by Ceterchi et
al. introducing array rewriting P system [2] and thus linking
the two areas of membrane computing and picture grammars.
A kind of array P system with objects in the regions as ar-
rays and the productions as hybrid prescribed team of CD
grammar rules was introduced in [7], which allow work to
be done in team with the possibility of different teams hav-
ing different modes of derivation. A Hybrid P system was
introduced in [17] considering context-free puzzle grammar
rules instead of context-free or regular array rewriting rules.
Different classes of P systems with conditional communica-
tion have been introduced and studied for its computational
power [1, 8, 9 ,19].

In this paper a new computing model called Hybrid P sys-
tem with conditional communication is introduced by con-
sidering context-free puzzle grammar rules. Comparison is
done with the parallel array rewriting P system [21] and CD
grammar system [4]. As an application of our HP system,
we have generated certain floor designs.

II. Preliminaries

In this section, we recall some prerequisites necessary for
understanding the sequel.

A. Context-Free Puzzle Grammar (CFPG) [18]

A basic puzzle grammar (BPG) is a structure
G = (N,T, P, S) where N and T are finite sets of symbols;
N ∩ T = φ. Elements of N are called non-terminals and
elements of T , terminals. The start symbol or the axiom is
S ∈ N. The set P consists of rules of the forms as in Fig.A.

A context-free puzzle grammar (CFPG) is a structure
G = (N,T, P, S) where N,T, S are as above and P the
set of rules of the form A→ α where α is a finite, connected
array of one or more cells, each cell containing a nonterminal
or a terminal symbol, with a symbol in one of the cells of α
being circled. Derivations are done as in BPG.
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B. Hybrid Prescribed Team Context-free puzzle grammar
System [17]

A hybrid prescribed team CD grammar system [11] is a
construct
Γ = (N,T, P1, . . . , Pn, S, (Q1, f1), (Q2, f2), . . . , (Qm, fm))
where N,T, P1, . . . , Pn are defined as in the cooperating
array grammar system [4]. Q1, Q2, . . . Qm are teams over
N ∪ T , multiset of sets of productions P1, . . . , Pn and
f1, f2, . . . , fm are modes of derivation.

For a team Qi, 1 ≤ i ≤ m,Qi = {Pij |1 ≤ j ≤ mi},
and two arrays D1 and D2 ∈ (N ∪ T )+ a direct derivation
step is defined by D1 `Qi

D2 if and only if there are array
productions pj ∈ Pij , 1 ≤ j ≤ mi, such that in D1 we can
find mk non-overlapping areas such that the sub-patterns of
D1 located at these areas coincide with the left-hand sides of
the array productions pj and yield D2 by replacing them by
the right-hand sides of the array productions pj .

An application of the team Qi to an array D1 therefore
means the following: from each set Pij , one array production
pj is chosen such that P1, . . . , Pm can be applied in a paral-
lel manner to D1 without disturbing each other. Note that
the array productions pj need not all be different although
coming from different sets within the team Qi. The deriva-
tion relations are defined by `∗Qi

, `=k
Qi

, `<k
Qi

, `>k
Qi

and `tQi

respectively. i.e, derivations ith team Qi of arbitrary, of ex-
actly k successive steps, of at most k steps, of atleast k steps
and of as many steps as possible, respectively; this maximal
derivation mode t is defined more precisely by: D1 `tQi

D2

if and only ifD1 `∗Qi
D2 and there is at least one component

Pi,j0 in the team Qi such that no array production in Pi,j0

can be applied to D2 anymore. Note that in the t-mode a
derivation with a team Qi can be blocked, although in every
Pi,j we can find an array production which is applicable to
the underlying array.

The language generated by Γ is

L(Γ) =

X ∈ T ∗∗/S f1
⇒
Q1

X1

f2
⇒
Q2

X2

⇒ . . .⇒
fm
⇒
Qm

Xm = X


A Hybrid context-free puzzle grammar system with
prescribed teams (PTHCFPGS)[17] is a construct

Γ = (N,T, P1, . . . , Pn, S, (Q1, f1), (Q2, f2), . . . , (Qm, fm))
where N, T, S and (Qi, fi), i = 1, 2, . . . , m are defined
as in the Hybrid prescribed team CD grammar system and
Pi, i = 1, 2, ..., n are non-empty finite sets of context-free
puzzle grammar rules over N ∪ T.

For a Hybrid Context-free puzzle grammar system with
prescribed teams Γ, the array language generated by Γ is

L(Γ) =

X ∈ T ∗∗/S f1
⇒
Q1

X1

f2
⇒
Q2

X2

⇒ . . .⇒
fm
⇒
Qm

Xm = X,m ≥ 1


The family of array languages generated by a

PTHCFPGS with at most n components is denoted
by PTHn(CFPGL), n ≥ 1.

C. Array-Rewriting P system [2]

The array-rewriting P system (of degree m ≥ 1) is a
construct

Π = (V, T,#, µ, F1, . . . , Fm, R1, . . . , Rm, io)

where V is the total alphabet, T ⊆ V is the terminal alpha-
bet, # is the blank symbol, µ is a membrane structure with m
membranes labeled in a one-to-one way with 1, 2, · · · ,m,
F1, · · · , Fm are finite sets of arrays over V associated with
the m regions of µ,R1, . . . , Rm are finite sets of array
rewriting rules over V associated with the m regions of
µ; the rules have attached targets here, out, in(in general,
here is omitted), hence they are of the form A → B(tar);
finally, io is the label of an elementary membrane of µ (the
output membrane). We emphasize the fact that in an array
P system we distinguish terminal and auxiliary symbols in
the Lindenmayer sense, that is, no condition is imposed on
the symbols appearing in the left hand side of rules. The
general case, when a set T is distinguished, we speak about
an extended P system, when V = T we have a nonextended
system. According to the form of its rules, an array P
system can be monotonic, context-free (CF ), #-context-free
(#CF ) or regular (REG). In the extended case, a rule is
called regular if it is of one of the following forms:

a b
a # → b c , # a → c b , → ,

# c

# c
→ , a → b

a b

where all a, b, c are non-blank symbols. In the non-extended
case, we use the notion of a regular rule in the restricted
sense; such a rule is of one of the forms:

a # → a b , # a → b a ,

# b a c
→ , →

a c # b
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where all a, b are non-blank symbols.

The set of all arrays generated by a system Π is denoted
by AL(Π). The family of all array languages AL(Π) gen-
erated by systems Π as above with at most m membranes
and rules of type α ∈ {REG,CF,#CF} is denoted by
EAPm(α). If non-extended systems are considered, then we
write APm(α).

D. Array-Rewriting P System with Conditional Communi-
cation [8]

A (string) rewriting P system with conditional communica-
tion [1] is defined as

Π = (V, T,#, µ,M1, . . . ,Mm,

(R1, P1, F1), (R2, P2, F2), . . . , (Rm, Pm, Fm))

where V is the total alphabet, T ⊆ V is the terminal al-
phabet, # is the blank symbol, µ is a membrane structure
with m membranes injectively labeled by 1, 2, · · · ,m. Mi,
1 ≤ i ≤ m denote the finite languages over V representing
the strings initially present in the regions 1, 2, . . . ,m of the
system, Ri, 1 ≤ i ≤ m are the finite sets of context-free
rules over V (without target indications and priority relation-
s) present in the regions 1, 2, . . . ,m of the system, Pi and Fi

are the permitting and forbidding conditions associated with
the regions i, 1 ≤ i ≤ m which restrict the communication
of strings produced in the corresponding regions. The condi-
tions can be of the following forms:

empty: No restriction is imposed on strings, they either
exit in the current membrane or enter any of the directly inner
membranes freely; we denote an empty permitting condition
by (True, α), α ∈ {in, out} and an empty forbidding con-
dition by (False, notα), α ∈ {in, out}.

symbol checking: each Pi is a set of pairs (a, α),
α ∈ {in, out}, for a ∈ V and each Fi is a set of pairs
(b, notα), α ∈ {in, out} for b ∈ V ; a string w can go
to a lower membrane only if there is a pair (a, in) ∈ Pi

with a ∈ alph(w) and for each (b, notin) ∈ Fi we have
b /∈ alph(w); similarly for the string to go out of membrane
i, it is necessary to have a ∈ alph(w) for at least one pair
(a, out) ∈ Pi and b /∈ alph(w) for all (b, notout) ∈ Fi.

substrings checking: each Pi is a set of pairs (u, α), α ∈
{in, out}, for u ∈ V + and each Fi is a set of pairs
(v, notα), α ∈ {in, out} for v ∈ V + ; a string w can go
to a lower membrane only if there is a pair (u, in) ∈ Pi

with u ∈ Sub(w) and for each (v, notin) ∈ Fi we have
v /∈ Sub(w); similarly for the string to go out of membrane
i, it is necessary to have u ∈ Sub(w) for at least one pair
(u, out) ∈ Pi and v /∈ Sub(w) for all (v, notout) ∈ Fi.

Thus we have conditions of the type empty, symbol, subk
respectively, where k is the length of the longest string in
all Pi, Fi; when no upper bound is imposed we replace the
subscript by ∗ . A system is said to be non-extended if
V = T .

The transitions in the system are defined in the following
way. In each region, each string which can be rewritten by
a rule from that region is rewritten. The rule to be applied
and the symbol rewritten by it are non-deterministically cho-
sen. Each string obtained in this way is checked against the
conditions Pi, Fi in the respective regions. According to the

specified conditions the string will be immediately sent out
of the membrane or to an inner membrane if any exists; if it
fulfills both in and out conditions, then either it is sent out
of the membrane or to an inner membrane (non- determin-
istically choosing any of the available inner membranes). If
a string does not fulfill any condition, or it fulfills only in
conditions and there is no inner membrane, then the string
remains in the same region. A string which is rewritten and
a string which is sent to another membrane is consumed, no
copy of it is available in the next step in the same membrane.
If a string cannot be rewritten then it is directly checked a-
gainst the communication conditions, and as above, it leaves
the membrane or remains inside forever depending on the
result of this checking. That is rewriting has priority over
communication. As usual, a sequence of transitions forms a
computation and the result of a halting computation is the set
of strings over T sent out of the system during the computa-
tion. A computation which never halts gives no output.

The language generated by the above system is de-
noted by L(Π). The family of all languages L(Π)
generated by the system Pi of degree at most m ≥ 1
with permitting conditions of type α and forbidding
conditions of type β is denoted by [E]LSPm(rw, α, β),
α, β ∈ {empty, symbol} ∪ {subk, k ≥ 2}. If the degree of
the systems is not bounded, then the subscript m is replaced
by ∗.

An extended array-rewriting P system (of degree m ≥ 1)
with conditional communication [8] is a construct
Π = (V, T,#, µ,M1, . . . ,Mm,

(R1, P1, F1), (R2, P2, F2), . . . , (Rm, Pm, Fm), i0)

where V is the total alphabet, T ⊆ V is the terminal al-
phabet, # is the blank symbol, µ is a membrane struc-
ture with m membranes injectively labeled by 1, 2, . . . ,m.
Mi, 1 ≤ i ≤ m, denote the finite sets of arrays over V , repre-
senting the arrays initially present in the regions 1, 2, . . . ,m
of the system, Ri, 1 ≤ i ≤ m are the finite sets of array-
rewriting rules over V ( without target indications and priori-
ty relations) present in the regions 1, 2, . . . ,m of the system,
Pi and Fi are the permitting and forbidding conditions asso-
ciated with the regions i, 1 ≤ i ≤ m. The conditions can be
in the forms empty, symbols checking or subarray checking,
which are defined analogous to the corresponding forms in
the string case. The difference is that the objects are arrays.
Thus we have the conditions of the types empty, symbols,
subarr in all Pi, Fi and i0 specifies the output membrane.

The transitions in an array-rewriting P system with con-
ditional communication are analogous to the string case. But
the result of a halting computation is as defined for array-
rewriting P systems.

The set of all arrays computed by an array-rewriting
P system Π with conditional communication is de-
noted by [E]AL(Π) with E being omitted when the
system is non-extended. The family of array lan-
guages generated by systems as above is denoted by
[E]ALPm(arw, α, β), α, β ∈ {empty, symbol, subarr}.
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III. Hybrid P System with Conditional Com-
munication

We now introduce a new kind of rewriting P system, called
Hybrid P system with conditional communication, in which
rewriting of arrays is in team mode and communication is
conditional as in [1].

A. Definition

A Hybrid P System of degree m(m ≥ 1) with conditional
communication is a construct
π = (V, T,#, µ,M1, . . . ,Mm,

(R1, P1, F1), (R2, P2, F2), . . . , (Rm, Pm, Fm), i0)

where V is the total alphabet, T ⊆ V is the terminal al-
phabet, # is the blank symbol, µ is a membrane struc-
ture with m membranes labeled in a one-to-one way with
1, 2, . . . ,m;M1,M2, . . . ,Mm are finite sets of arrays over V
initially associated with the m regions of µ;R1, R2, . . . , Rm

are finite sets of prescribed teams of context - free puzzle
grammar rules with the derivation modes associated with the
m regions of µ, Pi and Fi are the permitting and forbidding
conditions associated with the regions i, 1 ≤ i ≤ m. The
conditions can be in the forms empty, symbols checking or
subarray checking, which are defined analogous to the cor-
responding forms in II.D. and io specifies the output mem-
brane.

A computation in Hybrid P system with conditional com-
munication is defined in the same way as in an array rewriting
P system with conditional communication with successful
computations being the halting ones; each array, from each
region of the system, which can be rewritten is rewritten by
a team of rules associated with that membrane, in a specific
derivation mode. The array obtained by rewriting is placed
in the region indicated by the conditions associated with the
rules used. The set of all arrays generated by Hybrid P sys-
tem with conditional communication is denoted by HP (Π).

The family of languages generated by Hybrid P system
with conditional communication is denoted by HPm(α, β).
Here degree m is the total number of membranes in the w-
hole system, where α, β ∈ {empty, symbol, subarr} are
the conditional communications.

B. Example

Consider the HP system with conditional communication
HP3(subarr, subarr)
Π1 = ({S,X, Y, b}, {a},#, [1[2[3]3]2]1, S, φ, φ,

(R1, P1, F1), (R2, P2, F2), (R3, P3, F3), 3)

where R1 = {Q1, t},

P1 =

{(
# #
# X

, in

)
,

(
# X
# #

, in

)
,

(
# #
b X

, in

)
,

(
b X
Y #

, in

)}
,

F1 =

{(
# Y
# X

,notin

)
,

(
# X
# Y

, notin

)
,

(
Y #
b X

, notin

)
,

(
b X
# #

, notin

)}
,

R2 = {Q2, ∗},

P2 =

{(
X b
# #

, in

)
,

(
b b
b #

, in

)
,

(
# #
b X

, in

)
,

(
# b
# Y

, in

)}
,

F2 =

{(
# b
# #

, α

)
,

(
# #
# b

, α

)
,

(
# #
# Y

, α

)
,

(
# #
Y #

, α

)}
,

α ∈ {notin, notout},

R3 = {Q3, t},

P3 =

{(
b b
b #

, in

)
,

(
b b
# b

, in

)
,

(
b #
b #

, in

)
,

(
b b
# #

, in

)}
,

F3 =

{(
b b
b b

, notin

)}
,

Q1 = {J1}, Q2 = {J2, J3, J4}, Q3 = {J5, J6},

- X X

X

l l
l
l

l
l

b b

b

b

b

b

X X
Y

{

{

{

{

{

} }

}

}

}

}

, ,

,,

,

,

J2 =

J1 =

{ SJ1 =

X

X

-

-

J3 =

J5 =

-

-

-

J4 = Y

Y

Y

J6 = .

L(Π1) = L1. Initially, the axiom array S is in the skin
region and the other regions do not have objects. The rule
J1 in the teamQ1 is applied with the derivation mode t yields

X b X
Y

. The generated array can leave the membrane,

since
(

# Y
# X

,notin

)
,

(
# X
# Y

, notin

)
,

(
Y #
b X

, notin

)
,

(
b X
# #

, notin

)
do not exist in the

array due to the forbidding conditions and it is sent to
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the region 2. In region 2, the rule R2 is applied in ∗ mode.
After checking the conditions the generated array is sent to
the inner region 3. In region 3, the rule R3 is applied in t
mode, then the array of solid rectangle shape is obtained.
After checking the conditions the system halts in region 3.

b b b b b b b
b
b
b

F ig. 1 Token T with arm length 3

The picture language L1 consists of token T with all three
arms of equal length as in Fig. 1.

C. Theorem

The class of array languages HP3(subarr, subarr) inter-
sects the class of HP4(CFPL)[16].

This is a consequence of Example III.B. and we note that
the language can be generated by the Hybrid P system with
context-free puzzle grammar.

D. Theorem

HP3(symbol, subarr) - RAL 6= φ, where RAL denotes
the class of all regular array languages.

Proof
The language L1 consisting of arrays in the shape of token

T with equal arms are generated by Hybrid P system with
conditional communication with context-free puzzle gram-
mar rules. But a regular array grammar cannot generate L1

as the rewriting in a regular array grammar, when it reaches
the junction in a T shaped array can either proceed horizon-
tally (left or right) or vertically (down) and thus will fail to
produce the third arm [15].

E. Theorem

FIN ⊂ HP1(empty, symbol) where FIN denotes the
finite array languages, which consist of only finite number
of arrays.

Proof
If L is a finite array language over V , then

L = A1, A2, . . . , An. This language is generated by
the system HP1(empty, symbol).

For Π2 = (V, V,#,M1, (R1, P1, F1), 1), where

M1 = L = {A1, A2, . . . , An},
P1 = {True, out}, F1 = {a, notin} for some
a ∈ Ai, 1 ≤ i ≤ n.

Consider the non-extended system,

Π2 = ({a}, {a},#, [1]1,

{
a a
a a

}
, (R1, P1, F1), 1)

where R1 = {Q1, ∗}, P1 = {True, out}, F1 = {a, notin},

Q1 = {J1, J2, J3},

J1 = {a→ a

a
a

a

a

an n

n

} , } ,J2 = {a→ a

} .J3 = {a→ a

a a a a
a a a a
a a a a
a a a a

Fig. 2 A solid square

L(π2) = L2. L2 is the set of all solid squares of size ≥ 2 as
in Fig. 2 .

F. Theorem

HP1(symbol, subarr) ⊂ HP2(symbol, subarr)

Proof
The proper inclusion can be seen as follows. The Hy-

brid P system with conditional communication rules with
two membranes generates L shaped array.
Π3 = ({S,U p, Rp, d}, {d},#, [1[2]2]1, S, φ,

(R1, P1, F1), (R2, P2, F2), 2) where

R1 = {Q1, ∗}, P1 = {(U p, Rp), in},

F1 =

{(
# U p

# Rp , notin

)
,

(
# #
U p Rp , notin

)
,

(
# U p

Rp d
, notin

)}
,

R2 = {Q2, t}, P2 = φ, F2 =

{(
d d
d d

, notin

)}
,

Q1 = {J1, J2, J3}, Q2 = {J4, J5},

J1 = { J2 = {

J3 = { J4 = {

J5 = {

S U p

U p

U p U p

Rp

Rp

Rp

Rp

l
l

l
l l
d

d

d

d

d

-

-

-

-

-

}

}

}

}

}

,

,

,

,

.

L(Π3) = L3. The picture language L3 consists of token L
with equal arms as in Fig. 3. But this language L3 cannot be
generated by a HP1(symbol, subarr) in just a single mem-
brane, as the rules of the Hybrid context-free puzzle grammar
cannot maintain equal growth between vertical and horizon-
tal arms.

d
d
d
d d d d

F ig. 3 Token L with equal arms
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G. Theorem

HP3(symbol, subarr) - S/PAL(R : R) 6= φ, where
S/PAL(R : R) denotes the class of all Sequential or
Parallel regular array languages.

Proof
Consider the Hybrid context-free P system with condi-

tional communication in the class ofHP3(symbol, subarr).

Π4 = ({A,B,C, x}, {x},#, [1[2[3]3]2]1,

 A
x C
B

 , φ, φ,

(R1, P1, F1), (R2, P2, F2), (R3, P3, F3), 3), where

R1 = {Q1, ∗}, P1 = {(A,B), in},

F1 =

{(
x A
x #

, notin

)
,

(
A x
# x

, notin

)
,

(
x B
x #

, notin

)
,

(
B x
# x

, notin

)}
,

R2 = {Q2, ∗}, P2 = {(A,B), in},

F2 =

{(
# B
# x

, α

)
,

(
B #
x #

, α

)
,

(
# A
# #

, α

)
,

(
A #
# #

, α

)}
,

α ∈ {notin, notout},
R3 = {Q3, t}, P3 = {x, in},

F3 =

{(
x x
x x

, α

)
, α ∈ {notin, notout}

}
,

Q1 = {J1, J2}, Q2 = {J3, J4}, Q3 = {J5, J6},

J1 = { C J2 = { C

J3 = { A J4 = { B

J5 = { A J6 = { B

���

���
���

���

��� ���

x

x

x

x

x x

-

-

-

-

- -

C } , x } ,
A

A

B

B

}

} }

}
,

,

,

.

Π4 generates a language L4 consisting of arrays in the
shape of H with the horizontal line in the middle of the ver-
tical ones as in Fig. 4. But a parallel regular array gram-
mar cannot generate L4 , since in a parallel regular array
grammar, a sentential form array contains at most one non-
terminal symbol, which means that the number of rows above
and below the middle line of x’s are not equal[18].

x x
x x
x x x x
x x
x x

Fig. 4 Array describing the pattern H

H. Theorem

(i) CD3(REG, f) - HPm(α, β) 6= φ, for all m ≥ 1.

(ii) HP3(symbol, subarr) - CDn(REG, f) 6= φ, for all
n ≥ 1.

(iii) HPm(α, β) and CDn(REG, f) are incomparable for
m,n ≥ 3.

Proof

(i) Consider the Cooperating array grammar system [4] in
the class of CD3(REG, f).

Γ1 = ({S,A,Ap}, {a}, P1, P2, P3,#), where

P1 = {S#→ AS, S#→ AA,Ap → A},

P2 =

 A a
→

# Ap

, P3 = {Ap → a}

a a a . . . a
a a a . . . a
... . . .
a a a . . . a
a a a . . . a

F ig. 5 Rectangle of size n×m
L(Γ1) is the set of all solid rectangles of size n × m with
n,m ≥ 2 as in Fig. 5, which is a regular array lan-
guage generated by CD3(REG, f). But L does not belong
to HPm(α, β) for any n ≥ 1.

(ii) Consider the Hybrid P system with conditional com-
munication in the class of HP3(symbol, subarr).

Π5 = ({S,X, Y, Z, e}, {e},#, [1[2[3]3]2]1, S, φ, φ,

(R1, P1, F1), (R2, P2, F2), (R3, P3, F3), 3), where

R1 = {Q1, t}, P1 = {(X,Y, Z), in},

F1 =

{(
e Z
# #

, notin

)
,

(
X Z
# #

, notin

)
,

(
Y Z
# #

, notin

)
,

(
# #
X Y

, notin

)}
,

R2 = {Q2, ∗}, P2 = {(X,Y, Z, α), α ∈ {in, out},

F2 =

{(
e Z
# #

, α

)
,

(
# Z
# Z

,α

)
,

(
X Z
# #

, α

)
,

(
X Y
e e

, α

)
,

α ∈ {notin}} ,



Hybrid P System with Conditional Communication 332

R3 = {Q3, t}, P3 = {e, in},

F3 =

{(
e e
e #

, α

)
,

(
e e
# e

, α

)
,

(
e #
e e

, α

)
,

(
# e
e e

, α

)
,

α ∈ {notin}} ,

J1 = { S→����

����

��������

����

����
����e

e

ee

e

e

eZ

Z Z

Y

Y

X

X

} ,

J2 = { X→

X

} ,

} , } ,

} ,} ,

} ,

J3 = { Y→ J4 = { Z→

J5 = { X→ J6 = {Y→

J7 = { Z→ } .

e e e e
e e e e
e e e e
e e e e

F ig. 6 Solid square

L(Π5) = L5. L5 is the set of all solid squares of size n ≥ 2
over a single symbol ′e′ as in Fig. 6. Such arrays cannot be
generated by a co-operating regular array grammar system of
at most n components in the mode f , f ∈ F [15].

Statement (iii) is a consequence of statement (i) and (ii)

I. Theorem

(i) HP4(empty, symbol) ∩ CD2(BPG, t) 6= φ.

(ii) The family HP3(symbol, subarr) contains languages
that cannot be described by any CD2(BPG, t).

Proof

(i) Consider the Hybrid P system with conditional commu-
nication

Π6 = ({A,B,C,D,Ap, Bp, e}, {e},#,
[1[2[3[4]4]3]2]1, S, φ, φ, φ, (R1, P1, F1),
(R2, P2, F2), (R3, P3, F3), (R4, P4, F4), 4)

where R1 = {Q1, t}, P1 = {(A,B), in},

F1 =

{(
A A
A #

, notin

)
,

(
e A
# #

, notin

)
,

(
B e
# #

, notin

)
,

(
# B
B B

,notin

)}
,

R2 = {Q2, ∗}, P2 = {(A′
, B

′
), in},

F2 =

{(
e #
e #

, α

)
,

(
A

′
#

e #
, α

)
,

(
B

′
#

e #
, α

)
,

(
# e
# e

, α

)}
,

α ∈ {notin, notout},
R3 = {Q3, ∗}, P3 = {(C,D), in},

F3 =

{(
# C
e e

, α

)
,

(
# e
C D

,α

)
,

(
e #
C D

,α

)
,

(
D #
e e

, α

)}
,

α ∈ {notin, notout},
R4 = {Q4, t}, P4 = {e, in},

F4 =

{(
e e
e e

)
, notin

}
,

Q1 = {J1}, Q2 = {J2, J3}, Q3 = {J4, J5},

Q4 = {J6, J7},

J1 = { S→ A J2 = { A→ A

J3 = { B→

J4 = { Ap→

n n
n
n n
n

nn
nn nnn

e e

e

e e

e

ee

ee

eee

},

} ,B } , , A→

Ap

Ap

Bp

B , B→

C } ,, Ap→

J5 ={ Bp→ , Bp→ D

} ,

} ,

J6 = { C→ C , C→

J7 = { D→ D , D→ }.

Bp

L(Π6) = L6. The language L6 consists of arrays of
the form in Fig. 7, where the array represents hollow
rectangle of ′e′. This language also can be generated by
CD2(BPG, t).
Consider the Cooperating Basic puzzle grammar system

Γ2 = ({S,A,B,C,D}, {e}, S, P1, P2) where

P1 = { S→ A ���

��� ���
���������
���

���
��� ���

e

e e

eee

e

e

e
e, A→ A , A→ B , B→ B ,

B→ C , C→
DD

, D→ , D→ E },

P2 = { E→ E , E→ } .
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e e e e e
e e
e e e e e

F ig. 7 A hollow rectangle of e′s

The language generated consists of array of the form in
Fig. 7 where the array represents hollow rectangles of ′e′ps.

(ii) Consider the Cooperating basic puzzle grammar system
[15] in the class of CD2(BPG, t).

Γ3 = ({S,A,B,C,D}, {e}, S, P1, P2)

where
P1 = { S→ A

B→

l l

l l
l l
l l

le e

e e

e e

e e

e

, A→ A , A→ B , B→ B ,

} ,

} .

, C→
CC

, C→ D

P2 = { D→ D

A→ A

, D→

e e e e
e e
e e
e e e e

F ig. 8 hollow square

The language generated by Γ3 consists of arrays of the form
in Fig. 8 where the array represents hollow square of ′e′ps.

This statement (ii) is a consequence of the fact that, in a
CD2(BPG, t), growth in a square array can take place only
at the borders as in Fig. 8. But in a HP3(symbol, subarr)
such a growth can take place even in the interior as in
Fig. 6.

J. Application to Floor design Pattern Generation [20, 22]

As an application of Hybrid context-free puzzle P system
with conditional communication model, we consider the
problem of generating the language Lf of picture arrays
describing certain floor designs.

Define Πf = (V, a,#, [1[2[3]3]2]1, S, φ, φ,

(R1, P1, F1), (R2, P2, F2), (R3, P3, F3), 3)

where V = {X,Y, Z,W,X ′
, Y

′
, Z

′
,W

′
, c, d},

R1 = {Q1, t}, P1 = {(X,Y, Z,W ), in}, F1 = {S, notin},

R2 = {Q2, ∗}, P2 = {(X ′
, Y

′
, Z

′
,W

′
), in},

F2 = {X,Y, Z,W, notin},

R3 = {Q3, t}, P3 = {(c, d), in},

F3 = {(X ′
, Y

′
, Z

′
,W

′
), notin}.

Q1 = {J1}, Q2 = {J2, J3}, Q3 = {J4, J5},

n

n
n
n
n

n
n

n
n

a

J1 = { S→

X Y

Y

Z

Z

W

c

c

cc

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

} ,

} ,

} ,

} ,

J2 = { X→

X p

, Y→

Y p

J3 = { Z→

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

Z p

, W→

W p

J4 = { X p→ , Z p→

J5 = { Y p→ , W p→ } .'

&

$

%

> >

>>

> >

>>

> >

>>

> >

>>

> >

>

>

>

Fig. 9 The floor design pattern generated by Πf

The HP3(symbol, subarr) system generates the language
Lf consisting of arrays over (c, d), with ′c′ replaced by >
and ′d′ by a blank square. The language Lf describing floor
design pattern is shown in Fig. 9.

IV. Conclusion

In this paper, the features of P system with conditional com-
munication are considered with HP system and a new class
of P system called Hybrid P system with conditional com-
munication is introduced. Further it is studied for its gener-
ating power and used for pattern generation. Also the new
system is compared with other pattern generating systems.
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