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Abstract: Distribution logistics comprises all activities related
to the provision of finished products and merchandise to cus-
tomers. Defining strategies for optimising the distribution pro-
cedure becomes a crucial issue for logistics enterprises. Nor-
mally, finding optimal strategies for a given logistic distribu-
tion problem is not straightforward since the complexity and
time execution exponentially increases as the number of com-
ponents of the problem increases. An efficient way that over-
comes the complexity of finding optimal strategies within a rea-
sonable time concerns the use of approximation algorithms and
metaheuristics aiming to find good solutions in terms of qual-
ity and execution time. This article introduces a metaheuristic
approach to solve a variation of a logistic problem named Ve-
hicle Routing Problem (VRP). Concretely, we present a solution
for the Multi-Trip VRP with Time Windows and Heterogeneous
Fleet. We add constraints to the original VRP concerning the
time and the customer supply. Time constraints concerns the
time windows on each customer and time horizon within which
customers must be satisfied. In respect of the customer supply,
we consider a heterogeneous fleet where vehicles are allowed to
do multiple trips. We propose a solution for the problem using
a Local Search and the Simulated Annealing technique. A set of
benchmark scenarios widely used for the VRP is used in order
to evaluate the performance of our approach.
Keywords: Combinatorial Optimization, Vehicle Routing Prob-
lem, Metaheuristics, Simulating Annealing, Operational Research

I. Introduction

The need for finding optimal solutions on logistic and distri-
bution problems have motivated the study of a wide range of
Vehicle Routing Problems (VRP). The main problem regard-
ing logistic and distribution problems is the fact that com-
plexity in terms of the execution time for finding an optimal
solution exponentially increases as the number of compo-
nents (vehicules, customers, routes, etc.) increases. Then,
exact algorithms are not always suitable when the size of the

problem grows considerably. Instead, practical methodolo-
gies such as metaheuristics, not aimed to guarantee an op-
timal solution but sufficient for immediate goals, are used.
Metaheuristic approaches are then used when finding an op-
timal solution is impossible or impractical, speeding up the
process of finding satisfactory solutions. In this paper, we
make use of such metaheuristic approach for an extension of
a well-known Vehicle Routing Problem (VRP).
The goal of the VRP is to design a set of minimum-cost ve-
hicle routes delivering goods to a set of customers where ve-
hicle’s routes start and finish at certain central depot. Over
the last years, several approaches for solving the VRP and its
variations have been presented in the literature [1–4]. A more
recent review for two variations of the VRP problem is pre-
sented in [4] survey where publications regarding the vehicle
routing problem with time windows (VRPTW) and the ca-
pacity vehicle routing problem (CVRP) are presented. In this
article, we revisit the classic VRP problem and we introduce
a new variation on it by adding constraints over the routing
and on the distribution time in the system. We identify the
problem as Multi-Trip Vehicle Routing Problem with Time
Windows and Heterogeneous Fleet (MTVRP-TWHF). In this
problem, each customer has associated a time windows, that
specifies a period for receiving deliveries. The total routing
and scheduling cost include not only the total travel distance
and time cost, but also the cost of waiting time when vehi-
cles arrive out of the customer’s time window. The problem
also considers an heterogeneous fleet of vehicles, in which
both capacity and cost differs from one vehicle to another
one. The total time needed to complete these routes must not
exceed a defined time horizon constraint.
There are basically two approaches for solving this kind of
problems: exact and metaheuristics approaches, respectively.
Exact algorithms have the advantage of finding a global so-
lution for a given problem. However, and due to the nature
of this kind of problems, the scalability of this approach is
not straightforward and it is the main disadvantage since ve-
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hicule routing problems belong to the NP-Hard class. Works
on this direction for solving two variations of the vehicle
routing problem are presented in [5] and [6]. Metaheuristic
approaches [1] deal with the scalability problem by provid-
ing an approximate and sufficiently good solution even if this
solution is not an optimal one.
In this article, we present a metaheuristic procedure for solv-
ing the MTVRP-TWHF problem based on two popular op-
timization techniques: Local Search (LS) and the Simulated
Annealing (SA) techniques [7]. This work is a revised and a
expanded version of the conference article [8].
The structure of this article is organized as follows. In Sec-
tion II, we formalise the problem. Section III specifies our
methodology for finding an initial solution based on a local
search approach. Next, our algorithm based on Simulated
Annealing is introduced. Empirical results and discussions
are presented in Section IV that include a description of the
benchmark instance generation, algorithmic setting parame-
ters, and presentation and discussion about the results. Fi-
nally, conclusions and future work are presented in V.

II. Description of the problem

The system is composed by a set of vehicles and customers
with specific associated demands. Two types of costs con-
cerning vehicles are considered: fixed cost and variable cost
which depends on the distances between customers. Each
vehicle can cover one or more routes. The route of a vehicle
is as follows. It starts from a depot, next it assists a set of
customers satisfying their demands, and it return to the ini-
tial depot once customer’s demand all along the route were
satisfied. Once a vehicle finishes its route it can, eventually,
start another one. Each customer must be assigned to one
and only one vehicle caring for not exceeding the vehicle ca-
pacity.
Normally, the problem is described in graph terms where
nodes represent the customers and arcs represent routes be-
tween them. Two kind of entities can be identified in the
system: customers and depots. Let Nv be the number of
customers in the system. Each customer v has an associated
demand dv , which must be satisfied by any vehicle within
a specific time window [tmin

v , tmax
v ]. The service time is the

time required for serving a customer v, we denote it by sv .
We simplify the problem assuming that there are only one
depot in the system which is denoted by vdep. Let Nu be the
number of vehicles in the system. Two parameters are asso-
ciated to each vehicle u, its capacity, denoted by qu, and its
fixed cost, denoted by fu. Each vehicle u has a travel cost
and a travel time for traveling from the customer vi to the
customer vj , which are denoted as cu(vi, vj) and tu(vi, vj),
respectively. A route r is a circuit in the graph which starts
and finishes at the depot satisfying a set of customer’s de-
mands all along the route. We denote a route r by a sequence
of nodes, for instance r = {vdep, vi, vj , . . . , vdep}. With-
out loss of generality, we arbitrary enumerate the customers
within a route r from 1 to Nr (r = {v1, . . . , vNr

}), where
Nr is the number of customer in r. We define two auxiliary
functions associated to the routes: the demand required over
a route d(·) and the time required to cover a route using the

vehicle u tu(·):

d(r) =
∑
v∈r

dv, tu(r) =

Nr−1∑
i=1

tu(vi, vi+1) + svi+1.

Note that, by definition v1 = vNr = vdep. In order to avoid
trivial cases we assume that Nr > 1.
Let au(v) be the arrival time of the vehicle u to the cus-
tomer v. A temporal global constraint called time horizon
T hor represents the planning period. All routes must be cov-
ered satisfying the customer’s demands in a time lower than
T hor.
We consider a solution of the problem as a set of pairs (route,
vehicle). We define the cost function for a specific solution
using information about the routing costs and penalization
terms. Given a solution S, we start defining the penalization
terms. We define the overtime penalization when the solution
exceeds the time horizon:

T (S) = max
{
0,

∑
(r,u)∈S

tu(r)− T hor
}
. (1)

We define the overload penalization for the solution S as fol-
lows:

Q(S) =
∑

(r,u)∈S

max{0, d(r)− qu}. (2)

Given a route r covered by u and two consecutive customers
vi−1 and vi in r, we define wu(r, vi) as

wu(r, vi) =


0, if au(vi) ∈ [ξtmin

vi , tmax
vi ],

tmin
vi − (au(vi−1) + svi−1 + tu(vi−1, vi)),

if au(vi) < ξtmin
vi

,
au(vi−1) + svi−1

+ tu(vi−1, vi)− tmax
vi ,

if au(vi) ≥ tmax
vi ,

where ξ is a real parameter in (0, 1] that brings some flex-
ibility allowing vehicles to arrive before tmin without con-
sidering this as a constraint violation (ξ < 1). In the case
that ξ = 1, any vehicle arriving to customer vi out of the
time window [tmin

vi , tmax
vi ] will be considered as a time win-

dow constraint violation and the objective function will be
penalized. Thus, the time windows violation within the route
r using the vehicle u is given by

wu(r, ·) =
Nr−1∑
i=1

wu(r, vi). (3)

Therefore, we define the time windows penalization parame-
ter as

W (S) =
∑

(r,u)∈S

wu(r, ·). (4)

The system has associated a cost function C(S), defined as

C(S) =
∑
u∈U

fu
∑

vi∈adj(vdep)

xu(v
dep, vi)

+
∑
u∈U

Nv∑
i 6=j

cu(vi, vj)xu(vi, vj)

+λ1T (S) + λ2Q(S) + λ3W (S),

(5)
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where adj(vdep) represent the list of adjacent customers
of the depot, xu(vi, vj) is a binary function that indicates
whether the vehicle u covers the arc (vi, vj) (in which
casexu(vi, vj) = 1, otherwise xu(vi, vj) = 0), and λ1, λ2
and λ3 are control parameters in [0, 1]. The control param-
eters, also called penalized terms in [9], are updated each h
iterations of the searching algorithm. We follow [9] for defin-
ing the arbitrary parameter h and updated rule of λ1, λ2 and
λ3.
The final solution S (a set of pairs of routes and vehicles)
should be a feasible solution, that is, the vehicles covering
the routes in the solution must not violate the time window,
vehicle capacities and time horizon constraints. Besides, the
solution must be locally optimal and must also satisfy the fol-
lowing rules: each route starts and finishes at the depot vdep.
Each customer must be visited only once by a unique vehi-
cle. Given a vehicle u assigned to the route r, the whole route
demand must not exceed the capacity qu. All customer’s de-
mands must be satisfied. Customers must be satisfied before
the time horizon T hor. Table 1 presents the nomenclature
used in this article, the table includes the main variables in-
volved in the system. Figure 1 illustrates an example of a fea-
sible solution with the particular case that one vehicle does
not belongs to the solution while another one participates in
more than one.

v1

v2

v3

v4
v5

v6v7

v8

v9

v10

vdep

u2

u1

u4

u1

Figure. 1: Routing example. There are a set of four vehicles
{u1, u2, u3, u4} and a set of customers {v1, . . . , v10}. The
figure shows a feasiblesolution. Notice that, it would be pos-
sible that some vehicles do notparticipate in any route. In the
figure, the vehicle u3 does not participate of the solution. In-
addition, a vehicle can be able to cover more than one route.
For instance, vehicle u1 cover two routes.

III. Methodology

Our approach for solving this optimisation problem is based
on the Simulated Annealing (SA) technique and in an ad-hoc
local search procedure. The SA algorithm is a stochastic ver-
sion of the gradient descent method and is normally used
for solving both combinatorial and continuous optimization
problems. It has been used for solving the Traveling Sales-
man Problem, as well as for optimising continuous functions
in a multidimensional space [7]. The technique is mainly
useful when the goal is finding a global extremum that is

Table 1: Table summarises the main notation used in this
article.

Notation Definition Notation Definition
v customer Thor time horizon
u vehicle fu cost of u
S proposal solution r route
Nu vehicles in the system Nu customer over r
vdep deposit sv service time of v
qu capacity of u dv demand of v

[tmin
v , tmax

v ] time windows of v T (S) time of S
tr time of route r au(v) arrival time of u to v

tu(vi, vj) time of u to travel cu(vi, vj) cost of u to travel
from vi to vj from vi to vj

hidden among several local extrema. The procedure has a
parameter called temperature (F ) arising from a thermody-
namics analogy. Besides, there is a constant called the Boltz-
mann’s constant that relates temperature with the energy of
the current system state.
The algorithm follows an iterative strategy: given the cur-
rent solution Scurr, the energy (cost function) of the system
C(Scurr) is computed by means of the expression (5). A new
solution Snew is selected with a probability

p = min{exp (−(C(Snew)− C(Scurr))/kF ), 1}, (6)

where k is the Boltzmann’s constant. The probability brings
the capacity to jump from a local optimum to another part of
the searching space, and to explore the searching space until
reaching a better local optimum.
Each h iterations of our algorithm, the cost function is up-
dated according to the information about the last h solutions.
The update rule of the cost function was done according
to [9]. The penalized terms of the cost function λ1, λ2 and λ3
were updated as follows: we check whether the last h solu-
tions were feasible in respect to the time horizon violation or
not (T(S), see (1)). If so, then we update λ1 as λ1 = 0.5λ1.
In a similar way, if the last h solutions were feasible with re-
spect the vehicle capacity violation (Q(S), see (2)), then we
update λ2 = 0.5λ2. If the last h solutions were all feasible in
respect the time windows violation (W(S), see (4)), then we
update λ3 = 0.5λ3. If all the last h solutions were unfeasible
in respect of time horizon, capacity, and time windows, the
update rule is given by λ1 = 2λ1, λ2 = 2λ2 and λ3 = 2λ3,
respectively.
The rest of this section is laid out as follows: subsection III-A
describes the procedure for selecting an initial solution based
on a well-known heuristic called Solomon Insertion Heuris-
tic [2]. Subsection III-B, we describe how to apply SA and
local search technique for obtaining a good solution for our
problem.

A. Finding an Initial Solution

In combinatorial optimization problems, the starting points
of the algorithm can impact in the final solution. Therefore
we define an initial solution using a well-known insertion
heuristic named the Solomon Insertion Heuristic [2]. How-
ever, the approach does not strictly depends on this initial
heuristic, in the sense that it would be possible to consider
also another strategy. The algorithm starts by selecting a ran-
dom customer vnew and a vehicle u with the least fixed cost
fu. At each step, the algorithm inserts a non-visited cus-
tomer in the current route until the vehicle capacity is com-



Multi-Trip Vehicle Routing Problem with Time Windows and Heterogeneous Fleet 358

pleted. We define the selection of a non-visited customer by
prioritizing those customers that are far from the depot over
those closer to it. The selection of a customer is done as fol-
lows. Given a partially completed route composed by a set of
customers r = {vdep, . . . , vNr

} where vdep = vNr
, the algo-

rithm looks for a non-assigned customer vnew, to be inserted
between two consecutively customers vi and vi+1, that mini-
mizes the insertion cost cinsu (vi, v

new). This cost is computed
as follows. Firstly, we compute an auxiliary function c

′

u(·):

c
′

u(vi, v
new) = (1− α)(av

new

u (vi+1)− au(vi+1))

+α(dist(vi, v
new) + dist(vnew, vi+1)− dist(vi, vi+1)),

(7)

where α is a constant in [0, 1], dist(·) is some arbitrary dis-
tance function, and av

new

u (vi+1) denotes the arrival time to
node vi+1 when the customer vnew was inserted before it. In
our empirical results, the euclidean distance is used.
Then, vnew is selected based on the insertion cost given by

cinsu (vi, v
new) = dist(vdep, vnew)− c

′

u(vi, v
new). (8)

The selection process is repeated until the capacity of the
assigned vehicle is completed. Once the first route is cre-
ated and in case there are still non-assigned customers, it is
necessary to create a new route rnew in order to cover de-
mands for all non-visited customers. The first customer to
be assigned to rnew is the one whose time window finishes
earlier. Each time a new route is created, a vehicle must also
be selected. The algorithm proceed as follows: first it checks
whether some of the previously considered vehicle is able to
cover the new route. This check is always done from lowest
to highest cost. If so, then selected vehicle is assigned to the
new route. Otherwise, the algorithm selects the next lowest
fixed cost vehicle from the set of unused vehicles. If there
are not unused vehicles, then the selection is a random vehi-
cle from the set of considered vehicles, probably generating
a non feasible solution. This procedure provides an initial so-
lution to start from which is not necessary a feasible solution
as explained before.

B. Description of our Algorithm

Once the algorithm has an initial solution S(0) to start from,
the following step is to improve this solution by applying
the Local Search and Simulated Annealing techniques. The
algorithm starts from an initial solution with an initial tem-
perature F . At each iteration, we replace the current solution
by a random nearby solution Snew, chosen with a probability
p given by the expression (6). The temperature F decreases
at each iteration until some arbitrary value Fz is reached. An
important issue to consider in this type of procedures is re-
lated to the mechanism for exploring the neighborhood for a
particular solution S.
By reorganizing the customers and routes, a nearby solution
Snew is achieved. We use three movements that consist in
some customer reorganization or by changing the assigned
vehicle to some particular route. Specifically, the operations
are:

• Moves within a route: Given a specific route r, we se-
lect a set of consecutive customers and revert the or-

der in which they are visited. For instance, the cus-
tomers (v2, v3, v4) are selected from the original route
{v1, v2, v3, v4, v5}, then the operation inverts the order
in which they are visited. The example is illustrated in
the figure 2.

• Moves between routes: These moves are based on cus-
tomer exchange between specific routes [10], there are
three kinds:

– Move one customer: random selection of two
routes ri and rj . Then, a random customer v from
ri is selected, removed of ri and inserted at the end
of the customer list visited by rj . Figure 3 shows
an example of moving one customer from one
route to another one. In this example, given two
routes r1 = {v1, v2, v3} and r2 = {v4, v5, v6},
the customer v4 from r2 is inserted at the end of
the route r1.

– Move two customers: random selection of two
routes ri and rj and two consecutive customers
from ri. Then, both customers are removed from
ri and inserted in rj in the same order than in the
original route. Figure 4 shows an example of this
operation. In the figure there are two routes r1 =
{v1, v2, v3, v4, v5, v6} and r2 = {v7, v8, v9}, the
customers v5 and v6 from r1 are inserted in the
same order in the route r2.

– Exchange of customers: random selection of two
routes ri and rj , and customers vi and vj from
ri and rj respectively. Then, both customers are
exchanged between the routes. Figure 5 shows an
example of exchanging between two customers in
two routes. Given two routes r1 = {v1, v2, v3, v4}
and r2 = {v5, v6, v7} the customer v4 from r1 is
exchanged with the customer v5 of the route r2.

• Assignation moves: this operation consists in changing
a vehicle assigned to a given route r with another avail-
able vehicle.

Furthermore, we define two operations (for special purposes)
for controlling the constraint violation on a route r. The op-
erations are:

• Divide overloaded route: it is applied when at least one
route of the current solution has violated the capacity
constraint of the assigned vehicle. Then, in this oper-
ation we select an overflowed route rov, and next we
remove the customer with greater demand in rov. We
insert the removed customer in the less loaded route in
the current solution.

• Overflow in planning: the operation is applied if it exists
at least one route which finishes its trip beyond the spec-
ified time horizon. The operation selects the overflowed
route rov, picks the last visited customer and inserts it in
another non-overflowed route (random selected) which
ends its trip before the specified time horizon.

During the execution of the algorithm, at each step a move-
ment operation is selected using uniformly distribution. If S
is a feasible solution, moves are selected based on a uniform
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v1

v2

v3

v4

v5

vdep

v1

v2

v3

v4

v5

vdep

Figure. 2: Example of moves within a route. Given an orig-
inal route with {v1, v2, v3, v4, v5} illustrated in the figure at
the top, the customers {v2, v3, v4} are selected from the orig-
inal route and then it is inverted its order. So the new route is
{v1, v4, v3, v2, v5}.

distribution except those for special purpose which are not
considered in this case. On the other hand, if S is unfeasible,
moves for special purpose are prioritized over the others in
order to force solutions to remains in the feasible space of
solutions. Hence, if some of the vehicles are overloaded then
the movement divide overloaded route is prioritized, as well
as the assignation move that would help to avoid constraint
violation. In the case that some of the routes in the solution S
finishes the trip beyond the specified time horizon, we apply
the overflow in planning operation. Algorithm 1 summarizes
the heuristic procedure for finding a solution of our problem.
The algorithm has the following input parameters: number
of transitions for each temperature Iter, an initial tempera-
ture F (0), a cooling schedule ρ in [0, 1], the stop condition
Fz , control of the penality adjustment h, and the output is a
set of pairs (route, vehicle).

IV. Results and Discussions

In this section we present the empirical results obtained for a
set of benchmark instances. Ideally, the best way for compar-
ing our approach is to find instances for the same problem but
solved with a different methodology in such a way to be able
to compare our results with the ones obtained with another
methodology. However, we were unable to carry out this
comparison since, to the best of our knowledge, we could not

v1

v2

v3

v4

v5

v6

vdep

r1

r2

v1

v2

v3

v4

v5

v6

vdep

r1

r2

Figure. 3: Example of moving one customer. Given two
routes r1 = {v1, v2, v3} and r2 = {v4, v5, v6} illustrated in
the figure at the top. The customer v4 from r2 is inserted at
the end of the route r1.

Algorithm 1: Local Search and Simulated Annealing
based algorithm applied to the MTVRP-TWHF.

1 i← 0; F ← F (0);
2 Compute an initial solution S(0) using Subsection III-A;
3 Scurr ← S(0);
4 while (F ≥ Fz) do
5 while (i <= Iter) do
6 Select a random nearby solution Snew using

Subsection III-B;
7 if (i is a multiple of h) then
8 Control λ1, λ2 and λ3 following III;

9 if (C(Snew) ≤ C(Scurr)) then
10 Scurr ← Snew;

11 else
12 Compute p using expression (6);
13 if (rand(0, 1) < p) then
14 Scurr ← Snew;

15 i← i+ 1;

16 Decrease temperature: F ← ρF ;
17 i← 0;

18 Return Scurr;

find a resolution for the same problem by means of a different
approach. In this way, we were forced to generate our own
benchmark dataset instances and to find a way to compare
our results over those instances. In the remains of this sec-
tion, we explain the procedure for generating the benchmark
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v1

v2
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v4

v5

v6

v7

v8

v9

vdep

r1

r2

v1

v2

v3

v4

v5

v6

v7

v8

v9

vdep

r1

r2

Figure. 4: Example of moving two customers. Given two
routes r1 = {v1, v2, v3, v4, v5, v6} and r2 = {v7, v8, v9} il-
lustrated in the figure at the top. The customers v5 and v6
from r1 are inserted in the same order in the route r2.

instances. Next, how our algorithm was set up by calibrating
its parameters. Finally, we present our algorithm’s results.

A. Description of Benchmark Instance

As it was already mentioned above, the lack of existing
works for the problem presented in this paper has restrained
us to compare our results with existing ones for the same
problem. In this way, we were forced to define a strategy
for generating the set of instances and to have references val-
ues for comparing our results. Therefore, what we have done
was to use a set of instances proposed by Golden et al. [11]
and Taillard [12] and reference results from Gendreau [9] and
Tarantilis [13] over these instances, were taken as reference
values. The proposed instances were originally defined for
a particular VRP where neither time windows nor time hori-
zon restrictions were taken into account. In this way, it was
necessary for us to adapt these instance to our problem by
including both time windows and time horizon restrictions.
Next, we explain how these instances were adapted to our
problem. A total of 30 instances involving 20, 50, 75 and 100
customers were selected. An instance correspond to a partic-
ular configuration scenario. To define an instance we should
specify the capacity of each vehicle, the fixed cost of them,

v1

v2 v3

v4

v5

v6

v7

vdep

r1

r2

v1

v2 v3

v4

v5

v6

v7

vdep

r1

r2

Figure. 5: Example of exchanging of customers. Given two
routes r1 = {v1, v2, v3, v4} and r2 = {v5, v6, v7} illustrated
in the figure at the top. The customer v4 from r1 is exchanged
with the customer v5 of the route r2.

client’s demand, time windows for each customer as well as
the T hor. The Tables 2 and 3 show the number of nodes and
number of vehicles (respectively) defined in each instanceBi

for all i from 1 to 10. The number of nodes and vehicles of
the instances Bi

tw1 and Bi
tw2 is the same that the number in

Bi.
In the following we present how we generated the bench-
mark instances. Time window restrictions were added in
the following way: for each benchmark instance Bi, two in-
stances Bi

tw1 and Bi
tw2, each one with different time win-

dow, were created. The instance Bi defines the same time
window for each customer. The instance Bi

tw1 defines two
time windows wtw1 = [t0, tk] and wtw2 = [tl, T

hor] assign-
ing wtw1 to a subset of customers and wtw2 to the rest. The
values chosen for tk and tl were:

tk =
1

3
T hor and tl =

2

3
Thor.

The instance Bi
tw2 defines three time windows wtw1

and wtw2 defined as above and wtw3 = [th, tp], where th
and tp were chosen as

th =
1

4
T hor and tp =

3

4
Thor.

The set of customers is divided in three equals subsets
where we have assigned to each of them the time win-
dows wtw1, wtw2 and wtw3.
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B. Parameter Calibration

As described in Algorithm 1, there are a set of input parame-
ters concerning the Simulating Annealing algorithm. In order
to evaluate a solution we have to take into account, not only
the quality in terms of the cost, but also the execution time
taken for the algorithm to achieve it. A high computational
time can be prohibitive in several applications where achiev-
ing a reasonably solution in a short period of time, is manda-
tory. On the other hand, an algorithm that finds an optimal
solution in terms of the execution time, may not be a cost
optimal solution. Therefore, a good balance of both quality
and execution time is needed. In the case of our algorithm,
the quality in terms of cost and execution time are strictly
bounded to the set of input parameters and the calibration
of them is crucial to obtain “good” solutions. In this way,
we have done multiple runs by combining different input pa-
rameters in order to obtain a set of them that provide bal-
anced time-accuracy solutions. The input parameters are the
number of transitions Iter, the cooling schedule ρ, the initial
temperature F (0), the stop condition Fz , and the frequency
or updating control h. The following sets were chosen for
each of them: Iter = {1, 5}, ρ = {0.99, 0.999, 0.9999}
and F = {10, 100, 1000}, Fz = {0.01, 0.001}, and a ran-
dom set of instances were selected in order to run the pa-
rameter calibration process. The penalized terms of the cost
function λ1, λ2 and λ3 were updated following [9]. The fre-
quency of penalized terms update was set to h = 5.
Executions were done by permuting each of these parameters
and evaluating both cost and time spent. After finishing this
process we obtained the best configuration of parameters for
the algorithm that gives balanced solutions in terms of cost
and execution time. Respective values are F = 10, Iter =
1, ρ = 0.9999, and Fz = 0.01.

C. Empirical Results

Results of our algorithm were compared using the GAP
measure with the set of reference values obtained by [9, 13].
Being CVi the comparative value for instance i and being zi
the solution obtained by the algorithm, then

GAP (zi) =
zi − CVi
CVi

. (9)

For each benchmark instance, 10 independent runs of the al-
gorithm were performed. We call Initial GAP to the worst
and average values obtained by the initial solution. In the
same way, we call Final GAP to the average and worst GAP
value of the solution obtained by the SA method. The re-
sults are summarized in Table 4. Table 4 shows the name
of the instance i, GAP between the reference value CVi ob-
tained by [9, 13] over the VRPHF, Initial Gap, Final Gap,
and the execution time (in seconds) that takes to reach the
final solution. The computer used to simulate the algorithm
has 2 gigabytes of RAM and a AMD Athlon 64 x 2 Dual-
Core Processor TK-57, 1.90 GHz processor. The algorithm
was implemented in C#.
To evaluate the effectiveness of our algorithm in a practical
scenario, we have adapted a widely used set of instances de-
fined for the VRPHF problem [11]. In this way, we cannot
make a directly comparison between our results and those
obtained by [9, 13], since their results were obtained for a

Table 2: Number of nodes for each benchmark instance.

Number of nodes Benchmark instances
20 B1, B2

50 B3, B7, B8

75 B4, B5, B9

100 B6, B10

Table 3: Number of vehicles for each benchmark instance.

Number of vehicles Benchmark instances
3 B1, B2, B3, B7, B8, B10

4 B4

6 B5, B6, B9

Table 4: Empirical results reached for the MTVRP-TWHF
using Simulating Annealing for several benchmark instances.

Instance Initial GAP Final GAP Time
ID Average Worst Case Average Worst Case (sec)
B1 47.1 57.5 21.3 24.6 34

Btw1
1 48 50.8 22.1 23.8 35

Btw2
1 47.9 52.4 44.4 49.9 37
B2 23.8 27.6 13.9 16.6 32

Btw1
2 155334.7 175400 14.3 16.3 39

Btw2
2 157199 166557 21.1 22.7 33
B3 7277.4 76770.9 1.8 5.1 139

Btw1
3 762 779 5.4 9.4 130

Btw2
3 2942.1 3136 7.1 9.1 124
B4 18338 19135 3.8 9.4 265

Btw1
4 43491.5 43915.6 14.4 16.8 255

Btw2
4 648409.4 715872.2 9.5 13.6 248
B5 158847.1 165021.8 5.0 13.4 251

Btw1
5 1179376 1271993.7 36.4 40 252

Btw2
5 269683.1 272924.4 9.5 13.8 257
B6 75.5 81.0 7.5 10.3 489

Btw1
6 58.9 62.7 15.3 18.1 419

Btw2
6 90575.1 93170.2 12.3 14.1 437

Btw1
7 73 80.4 5.8 8.4 176

Btw1
7 57.1 65.2 10.7 12.2 149

Btw2
7 58 62.3 8.5 11.5 149
B8 57.5 71.8 4.8 15 190

Btw1
8 2009614.7 2168118.1 10.1 14.3 131

Btw2
8 2631736.7 2873025.5 14.4 22.5 126
B9 197714.4 202380.5 22.1 24.2 211

Btw1
9 1355381.8 1502515.1 33.4 36.0 194

Btw2
9 427733.4 432048.3 34.1 39.9 207

B10 62.3 68.2 15.5 20 482

Btw1
10 2667581.1 2678442 20.1 25.1 424

Btw2
10 261982.2 262449 23.4 26.7 391

less restrictive problem. Nevertheless, and since reference
values were obtained for a problem with less constraints than
the MTVRP-TWHF, we can use these values as lower bound
for those obtained in our empirical results. Using the GAP
measure we can assess how far from these lower bounds our
results are. According to the results in Table 4, we can re-
mark the effectiveness of the Algorithm 1 for improving the
initial solution described in Subsection III-A. This can be
seen by comparing the average from Initial GAP and Final
GAP columns. In all cases, the algorithm is improving the
first initial solution. Regarding the Final GAP results, a pri-
ori, is not straightforward to determine whether the solution
is qualitatively good or not since we do not know where the
optimum value for MTVRP-TWHF for the current solution
is. However, we can evaluate the quality of the solution in
terms of cost by looking at the comparative value CVi for
each instance i. Let zopt be the global optimal solution for
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the MTVRP-TWHF, and let zi be the local solution found us-
ing our approach. We assume that the following expression
always holds

CVi <= zopt <= zi, (10)

then, the narrower the interval [CVi, zi] is, the closer to the
optimum value the solution is. Thus, those results having
small GAP when comparing them with the reference value
are likely to be next to the optimal value zopt and therefore,
likely to be a good solution in terms of cost.
Figure 6 illustrates the relationship among the values on the
expression (10). Regarding the execution times, we can see
that even for big instances (100 customers) the algorithm ob-
tains execution times with an average time of 440 seconds
which is a reasonable time value for instances of that size.
For small instances (20 customers), the algorithm obtains
GAPs of the order of 13% and 14% with an average time
of 35 seconds.

zVRPHF
opt CVi zMTVRP−TWHF

opt
zi

Real gap

Range for zi

Figure. 6: Relationship between the reached values of the
VRPHF optimal value and the optimum value of the problem
analysed in this article. The horizontal line represents the
time. The diagram shows the relationship among the values
on the expression (10).

V. Conclusions and Future Works

The Vehicle Routing Problem (VRP) and its variations prob-
ably are the most significant problems in the history of Op-
erations Research (OR) area. Over the last 60 years many
works studying those problems have been introduced in the
community. In this article, we revisited the VRP introduc-
ing new challenges. We called this new variation of VRP as
Multi-Trip Vehicle Routing Problem with Time Windows and
Heterogeneous Fleet (MTVRP-TWHF). We added new con-
straints to the original problem, which concern to the delivery
time and the routing in the system. We introduced a hybrid
algorithm that mixes concepts of Simulating Annealing and
Local Search techniques for solving it. In order to evaluate
the performance of our approach, we generated a benchmark
dataset based on instances widely used in the OR commu-
nity. According to the early empirical results, our algorithm
presents a promising performance. Finally, and considering
the fact that no benchmark solutions exist for the presented
problem, this paper provides a benchmark dataset which may
be used for future references.
As a future work, we plans to test our algorithm with a new
benchmark instances with a larger number of nodes. In addi-
tion, some adaptations can be made to the algorithm. Particu-
larly, there is a variation of the Simulated Annealing in which

the algorithm parameters that control the temperature sched-
ule is dynamically adjusted during the execution of the algo-
rithm. This makes the algorithm more efficient and less sen-
sitive to user defined parameters than the original SA. A sec-
ond variation of the Simulated Annealing is known as Sim-
ulated Annealing with threshold accepting. Besides, we are
interesting in comparing the reached performance by our ap-
proach with other metaheuristic techniques for solving com-
binatorial problems. The approach presented in this paper
is clearly useful in industry. As a consequence, we plan to
verify our algorithm using real benchmark problems.
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