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Abstract: Investigation of punishment has shaken the 

positive role in the evolution of cooperation.  However, 

punishment is ubiquitous in nature, and more favored by 

certain modern societies in particular. To explore the 

underlying principle of such phenomenon, we study the 

evolution of cooperation in the context of punishments subject 

to social network. The results suggest that punishment has a 

great effect on the evolution of cooperation. In the network 

structured population, highly cooperation emerged even with 

ordinary punishment. As the number of social neighborhood 

increase, the cooperation will decrease. 

 

Keywords: PSO (particle swarm optimization); ISD (Iterated 
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I. Introduction 

Cooperation is a key force in evolution, exists in all 

scales of organization from unicellular organisms to 

complex modern human society [9, 27]. The emergence and 

stabilization of cooperative behavior has become a core 

problem in biology, economics, mathematics, computer 

science and sociology [20-22, 28]. Evolutionary game 

theory has proven to be one of the most fruitful approaches 

to investigate this problem, using evolutionary models 

based on so-called social dilemmas [29]. An enormous 

body of studies, however, have concentrated on the iterated 

snowdrift model (ISD) [7, 8], which was proposed by 

Axelrod in the early 1980s. Those works mainly focused on 

how to evolve cooperative behavior from a population of 

agents involved in this nonzero-sum game. Axelrod [20-23] 

applied evolution in order to determine whether it was 

possible to obtain successful strategies of mutual 

cooperation.  

  Early studies [33-36] of the ISD using the 

co-evolutionary approach consider only two choices, i.e., 

cooperation and defection for each player in the game. Over 

the years, various mechanisms have been proposed to help 

explain and understand cooperative phenomena. One of the 

possible mechanisms accounting for the promotion of 

cooperation is the consideration of spatial structure 

(reciprocity) [24]. The presence of structure [10-15] means 

that each individual does not interact with each other, but 

with a small subset of the population, which constitutes 

his/her neighborhood and is arranged according to an 

underlying network of relationships. This idea was very 

successfully introduced by Nowak and May in their seminal 

paper [30], they considered a spatial version of the 2*2 

game and showed that spatial structure enables both 

cooperators and defectors to persist indefinitely (see [23,24] 

for a review).  

  Punishment is often considered as a different strategy 

from pure cooperation or pure defection [5,13,14]. In this 

paper, we do not consider moralists (or punishers) to have a 

different strategy than other players. Players can be 

cooperators, defectors, loners (or non-participators) and 

only the cooperators can punish the defectors. In this paper, 

we extend this line of research by studying the effects of 

spatial reciprocity on the evolution of cooperation in the 

n-choice iterated snowdrift (ISD) game. Agents in the 

population are mapped into social network for competition. 

At each time step, the focal agent participates in a game 

instance with other agents drawn from its local 

neighborhood. An agent’s strategy, which is used to select 

an action, is defined by the number of choices and the 

payoff matrix. A bionic method, the PSO algorithm [26-29] 

with synchronous updating is used to evolve the strategies 

over time. In this paper, the behavior performances of 

players with different environmental factors in 

regular-connected network are first examined, such as the 

number of choices, the size of population et al. 

Comprehensive numerical simulations across a range of 

parameter settings by using PSO algorithm is to check 

whether cooperation can still be maintained in a 

regular-connected network, and the results are used for the 

comparison of the cases when the agents move in complex 

spatial structures. Secondly, the influence of the punishment 

is tested in this n-choice ISD game.  

  The rest of this paper is organized as follows. An 

overview of the core ISD problem and relevant historic 

related work is presented in Section II. A summary of the 

co-evolutionary model is given in Section III, along with a 

description of spatial structure used to evolve cooperation. 

Section IV explains the experimental procedure followed 
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for this study, and the results are analyzed. Section V 

concludes this paper by summarizing some of the major 

experimental findings. 

 

II. Background 
In this section we explain the conventional social 

dilemma games, the ISD game model. In these two 

well-known nonzero-sum games, two isolated players 

repeat choose one of the two actions: cooperate and defect. 

The dilemma for the players is that they will eventually 

receive low payoff from mutual defection whereas higher 

payoff can be obtained from mutual cooperation. The 

conventional social dilemma games are the foundation of 

the research for cooperation in the following extended 

models. 

A. Conventional Social Dilemma Games  

In conventional social dilemma games, each player has 

two choices: cooperation and defection. A player would 

receive payoff as the payoff matrix set when his opponent 

makes his choice in games [1-6]. A reward (R) is given 

when both players choose to cooperate, whereas punishment 

(P) will be given if both of them choose to defect. In the 

situation where one player defects and the other player 

cooperates, the one who defects is awarded a tempting 

reward (T) but the one who cooperates will be given the 

sucker’s punishment (S). Accordingly, the SD game relaxes 

some of these constraints by (1) allowing players to obtain 

some immediate benefits from their cooperative acts and (2) 

sharing the cost of cooperation between cooperators. 

Therefore, the SD game has T>R>S>P. 

The Snowdrift game is a viable and biologically 

interesting alternative. It occurs whenever not only the 

recipient but also the cooperator draws some benefit from 

the act of cooperation [7-10]. For example, foraging yeast 

cells secrete an enzyme to lies their environment. The 

resulting food resource is vital for the survival of the cells, 

but it also represents a common resource that is prone to 

exploitation by cheaters avoiding the costly production of 

the enzyme. If a cell cannot exploit food resources provided 

by others it is better off producing the vital but costly 

enzyme despite the risk of being exploited by others. 

Further information on the Snowdrift game is provided in 

a separate interactive tutorial on effects of population 

structures in the Prisoner's Dilemma as compared to the 

Snowdrift game. In addition, another tutorial on a variant, 

the Continuous Snowdrift game, is also available. The latter 

provides an intriguing theoretical explanation for the 

evolutionary origin of cooperators and defectors 

 

Table 1.Payoff matrix of snowdrift dilemma game 

B   

A 

Cooperate Defect 

Cooperate b-c/2 b-c 

Defect b 0 

 

Table 1 illustrates the SD game in terms of costs and 

benefits to the players. A cooperative act results in a benefit 

b to the opposing player and a cost c to the cooperator, 

where b>c>0. Under this situation, if the opponent 

cooperates, a player gets the reward R=(b-c/2) if he/she also 

cooperates, but can get T=b by defecting. If the opponent 

defects, a player gets the payoff S=b-c for being 

cooperative and P=0 for being defect. As the definition of 

SD game, the cooperation is a mixed evolutionarily stable 

equilibrium behaviour. To normalize the range of cost and 

benefit, we define 𝑟𝑆𝐷 = 𝑐/(2𝑏 − 𝑐)  as cost-to-benefit 

ratio. 

B. Multiplayer Social Dilemma Games 

 In the n-player SD game, the payoff of a cooperator is 

dependent examined by Zheng et al. [20]. If there is only 

one cooperator in the group, the payoff is b−c. If two 

cooperators exist, then the payoff is b − c/2. With three 

cooperators, the payoff becomes b − c/3, and so on. On the 

other hand, if exists at least one cooperator, the free riding 

defector(s) will receive a payoff b without doing anything. 

However, if there is not any cooperator, the payoff is 0. 

Accordingly, the utility can be summarized as equation (1). 

∏ 𝑛 = {

𝑏 −
𝑐

𝑖
,    𝑓𝑜𝑟 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑏,    𝑓𝑜𝑟 𝑑𝑒𝑓𝑒𝑐𝑡𝑜𝑟𝑠  𝑤ℎ𝑒𝑛 𝑖 > 0
0,    𝑓𝑜𝑟 𝑑𝑒𝑓𝑒𝑐𝑡𝑜𝑟𝑠  𝑤ℎ𝑒𝑛 𝑖 = 0.

      

(1) 

 

III．The Model 

A. n-Player evolutionary social game with multi-level 

choices  

There are two behavioral types, cooperators and 

defectors in previous models. Contributors incur a cost c 

to produce a total benefit b that is shared equally among 

group members. Defectors incur no costs and produce no 

benefits. Now add a third type, “Loners” or 

“Nonparticipant” (L), the members of which live on a 

small but fixed income σ. And the “punishers” (CP) , as 

the forth type, who not only contribute to the 

commonwealth of the group but also punish the defectors, 

reducing each defectors payoff by γ  at a cost 

β.Combined with the previous type cooperator (C) and 

defector (D), four roles (added with two new types) 

construct a multi-level game model. The payoff matrix for 

the multi-level ISD game model shown in Table 2. 

Table 2 is the payoff matrix of two players with 

multiple levels of choices, if more than two players in the 

group, the payoff matrix need to be adjusted to the 

equation in section II.  

 

   Table 2. Multi-level ISD Game Model 
    A 

B D L C CP 

D 0 b b 𝑏 − 𝛽 

L σ σ σ σ 

C 𝑏 − 𝑐 𝑏 − 𝑐 𝑏 − 𝑐/2 𝑏 − 𝑐/2 

CP 𝑏 − 𝑐 − 𝛾 𝑏 − 𝑐 𝑏 − 𝑐/2 𝑏 − 𝑐/2 

 

B. Network for interactions 

For the cooperation in the industry-university-institute, 

social connections are important. Organizations or humans 
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want to cooperate with someone who has close 

relationship and willing to cooperate. In spatial 

evolutionary environment, the players (or agents) of a 

population are distributed on a regular grid and interact with 

other players in its neighbourhood. In our model, the 

players are mapped to network nodes (vertices) and the 

edges (or links) which dictate the interaction topology. Each 

agent participates in an interactive game with other agent 

drawn from its local neighborhood. The regular-network is 

two-dimensional and agents are connected by the edges. 

The social network structure is considered in this section, 

and we define the distance d between agents as a 

measurement of the intimacy. All the individuals in the 

group are randomly distributed in a grid and the intimacy of 

them is also randomly defined based on the distance d.  

A social network is a social structure made up of a set 

of social actors (such as individuals or organizations), sets 

of dyadic ties, and other social interactions between actors. 

The social network perspective provides a set of methods 

for analyzing the structure of whole social entities as well 

as a variety of theories explaining the patterns observed in 

these structures. The study of these structures uses social 

network analysis to identify local and global patterns, locate 

influential entities, and examine network dynamics. 

A small-world network is a special type of social network 

[11-16] in which most nodes are not neighbours of one 

another, but most nodes can be reached from every other 

node by a small number of hops or steps. Specifically, a 

small-world network is defined to be a network where the 

typical distance L between two randomly chosen nodes (the 

number of steps required) grows proportionally to the 

logarithm of the number of nodes N in the network. The 

Watts–Strogatz model is a random graph generation model 

that produces graphs with small-world properties, including 

short average path lengths and high clustering. Figure 1 

shows an example of small-world model by using 

Watts-Strogatz method. This method is also used in our 

paper. 

 

C. Simulation of the model  

Particle swarm optimization (PSO) is a computational 

method that optimizes a problem by iteratively trying to 

improve a candidate solution with regard to a given 

measure of quality [17-20]. It solves a problem by having a 

population of candidate solutions, here dubbed particles, 

and moving these particles around in the search-space 

according to simple mathematical formulae over the 

particle's position and velocity. Each particle's movement is 

influenced by its local best known position but, is also 

guided toward the best known positions in the search-space, 

which are updated as better positions are found by other 

particles. This is expected to move the swarm toward the 

best solutions.  

The PSO technique was introduced by Kennedy and 

Eberhart [26]. Inspired by the flocking behaviour of birds, 

PSO has been applied successfully to function the 

optimization, game learning, data clustering, and image 

analysis and neural networks training [24, 25]. PSO 

involves “flying” a swarm (or population) of n-dimensional 

particles, and through a problem space, each possible 

solution to the optimization problem need to search a single 

optimum or multiple optima [27-30]. Each particle has its 

own velocity, a memory of the best position it has obtained 

thus far (referred to as its personal best position), and 

knowledge of the best solution found by other particles 

(referred to as the global best solution). 

In the PSO algorithm, each particle adjusts its position in 

a direction toward its own personal best position in a 

direction toward its own personal best position and the 

global best position.  

In general, the neighborhood best position is calculated 

as  

 𝑃𝑔𝑑
𝑘+1 ∈ {𝑁𝐸𝑖|𝑓(𝑃𝑔𝑑

𝑘 ) = max {𝑓(𝑥), ∀𝑥 ∈ 𝑁𝐸𝑖}} (2) 

with the neighbourhood defined as  

𝑁𝐸𝑖 = {𝑃𝑔𝑑
𝑘 (𝑖 −

𝑙

2
) , … , 𝑃𝑔𝑑

𝑘 (𝑖 − 1), 𝑃𝑔𝑑
𝑘 (𝑖), 𝑃𝑔𝑑

𝑘 (𝑖 +

1), … , 𝑃𝑔𝑑
𝑘 (𝑖 +

𝑙

2
)}                  (3) 

The velocity of the particle is calculated using: 

𝑉𝑖𝑑
𝑘+1 = 𝜔𝑉𝑖𝑑

𝑘 + 𝑐1𝑟𝑎𝑛𝑑(0,1)(𝑃𝑖𝑑
𝑘 − 𝑋𝑖𝑑

𝑘 ) +

𝑐2𝑟𝑎𝑛𝑑(0,1)(𝑃𝑔𝑑
𝑘 − 𝑋𝑖𝑑

𝑘 )                                          

(4) 

We simulate the model by the following procedure 

shown in Figure 2: 

Figure 1. Example of small-world model. 
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Let

N be the number of players in a prisoner’s dilemma game;

L be the number of levels in a payoff matrix;

PNum be the size of particle swarm;

S be the spatial structure of the IPD game;

k and K be the current generation and maximum number of iterations, respectively;

    and     be the position and velocity of the ith particle at iteration k on the specific d-dimension, respectively;

    be the dth dimensional maximum velocity of ith particle and its neighborhoods;

fitness(i) be the fitness function of the ith particle;

     be the dth dimensional global best position of the ith particle and its neighborhoods ;

     be the dth dimensional history best position of the ith particle so far during k iteration;

Step 1(Initialization): For each particle i and dimension d 

     Step 1.1: Initialize N, L, PNum, K, .

     Step 1.2: Initialize     with an integer between -1 and 1 according to the payoff matrix randomly.

     Step 1.3: Initialize     with a real number between            and          randomly.

     Step 1.4: Calculate fitness(i).

     Step1.5: Initialize        with a copy of      .

     Step 1.6: Initialize       with the best     among the PNum particles.

Step 2: Repeat until k>K.

     Step 2.1: Determine N, L, PNum of the game.

     Step 2.2: Random choose N players and for each player in the game do

         Step 2.2.1: Compare performance against current personal best position, if need to update then use Eq.(9).

         Step 2.2.2: Compare performance against neighborhoods’ best position, if need to update then use Eq.(10).

         Step 2.2.3: Update velocity according to Eq.(3).

         Step 2.2.4: Update position according to Eq.(4).

         Step 2.2.5: Update fitness(i).

     Step 2.3: Choose other N players from PNum population and play game.

Step 3: Output the fitness, position of each player in the population.

k

idx k

idv
d

siv max

k

sigdp

k

idp

k

idx
k

idv d

siv max

d

siv max

k

idp k

idx
k

sigdp
k

idp

 
 

IV. Results 
In the model we have analyzed, the effect of network 

structure to the evolution in most of the simulations. In the 

original model where punishment was not considered [21], 

an extended study concerning all the relevant parameters 

(including the distance between each node) of the 

corresponding model was presented. In this part, the effects 

of network structure to the evolution of cooperation are 

presented. Table 3 shows the symbols will be used in this  

 

 

 

 

paper. 

Table 3. List of symbols used in the model 
Symbol  Definition 

PNum Population size 

N Group size 

c Cost of helping 

b Benefits 

r Cost-to-benefit ratio (0 ≤ r ≤ 1) 

𝛽 Cost of being punished 

𝛾 Cost of punishing (𝛾 < 𝛽) 

x 𝛾 = 𝑥 ∗ 𝑐 

y 𝛽 = 𝑦 ∗ 𝑐 

 

In order to keep the uniform distribution of choices 

during the initialization process, each choice is set to 

players with the same probability. For each iteration, 

players are chosen for the game, and the average payoff is 

calculated between players as fitness to choose strategy. 

Figure 3 shows the proportion of four roles of the player 

with b=4, c=1.  

A. Levels of cooperation with punishment under 

small-world network 

In this set of experiments, we compare equilibrium 

proportions of cooperators with punishment for n-ISD game 

as a function of the cost-to-benefit ratio 𝑐/𝑏 ∈ [0 … 1]. The 

punishment of x=0.1 and the cost of punishment y=0.1 are 

fixed, by varying 𝑐/𝑏 for comparison.  

ISD Game; 

Figure 2. Procedure of the PSO algorithm  

Snowdrift Game; 

Figure 3. Proportion of each role in ISD game. 
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 Compared with our previous research [21], the punishment 

can promote the mutualisms of the population, and the 

proportion of cooperators (include moralists) even reach the 

completely dominated state with small c/b ratio in ISD 

game (see Figure 3 and Figure 4). The frequency of 

cooperation is promoted with the increment of punishment 

intensity. Combining with these observations, it is clear that 

punishment is effective in promoting cooperation for a 

small cost-to-benefit ratio. 

B. Levels of cooperation with different punishment 

In this set of experiments, the affection of punishment is 

tested carefully, Figure 5 compares the punishment to the 

group cooperation and four parameters are tested. From 

these curves, we find the higher punishment, the more 

cooperation. The levels of cooperation are also affected by 

the cost-to-benefit ratio. As the increase of the value of c/b, 

the average cooperation is decreasing too. However, the 

decrease of cooperation ratio is also very serious when 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
Figure 4. Proportion of four roles with different c/b, (a) c/b=0.8;(b) c/b=0.7;(c) c/b=0.5;(d) c/b=0.3;(e) c/b=0.1. 
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c/b>0.5, the same as Figure 5 shows.  

Conversely, compared with the case without punishment 

mechanism, defection is better promoted by punishment    

(see Figure 5). The centralized punishment pattern allows 

the punishment of cooperators to be more competent. 

Punishment is always favored as the exploitation and the 

centralized punishment of cooperators.   

 
 

 

 

Figure 6 shows the proportion of four kind individuals 

during the iteration when punishment x/b=0.5, from the 

figures, it is clear that punishment has played an important 

role in the high level of cooperative behavior achieved 

previously. The value of cost-to-benefit c/b from 0 to 1, for 

each c/b, the iteration is 200 times. Compared with our 

previous studies [21], the proportion of moralist and 

cooperator become large when certain punishment exists. 

C. Levels of cooperation with different cost of punishment 

Figure 7 shows the average cooperation under different 

parameters of the cost of punishment. The cost of 

punishment to the defectors is paid by moralists. From the 

curves of this figure, we can find as the cost increased, the 

average cooperation decreased. This mainly because if 

moralists find the cost of punishment is too heavy to 

cooperation, they would choose to be the defectors.  

 
 

 

 

 

 

 

 

 

Compared with Figure 5, the average cooperation 

decreases quickly when c/b increases, and almost no 

cooperation if c/b=1. The reasons why the cost of 

punishment can decrease the cooperation so quickly need to 

be explored. In complex project cooperation, the profits are 

occupied by the system. All the cooperators want to find the 

“free-riders” in the system, however, if the cost of the 

finding process too heavy, no more moralists will exist. The 

“free-riders” find no one will punish them, more and more 

individuals will choose defection.  

Figure 8 shows the proportion of four kind individuals 

during the iteration when cost-of-punishment y/b=0.3, from 

the figures, it is clear that cost-of-punishment has played an 

important role in the high level of cooperative behavior 

achieved previously. The value of cost-to-benefit c/b from 0 

to 1, for each c/b, the iteration is 200 times. Compared with 

our previous studies [21], the proportion of moralist and 

cooperator become large when certain cost-of-punishment 

exists. 

D. Levels of cooperation with multi-player iterated 

interactions 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

From previous section, we find the punishment can 

evolve cooperation. It is well-known that the number of 
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Figure 7. Average cooperation ratio under different cost of 

punishment and cost-to-benefit ratio. 

 

Figure 5. Average cooperation ratio under different 

punishment and cost-to-benefit ratio. 

 

Figure 6. The proportion of four kind individuals during 

the iteration in iterated ISD game when punishment 

x/b=0.5. The x axis shows the proportion of four roles 

(i.e. defector, loner, cooperator, punisher) and the y axis 

shows the time. Colors correspond to the roles of four 

participators. The value of cost-to-benefit c/b from 0 to 

1. For each c/b, the iteration is 200 times. 

Figure 8. The proportion of four kind individuals during 

the iteration in iterated ISD game when cost of 

punishment y/b=0.3. The x axis shows the proportion of 

four roles (i.e. defector, loner, cooperator, punisher) and 

the y axis shows the time. Colors correspond to the roles 

of four participators. The value of cost-to-benefit c/b 

from 0 to 1. For each c/b, the iteration is 200 times. 
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group size will affect the evolution of cooperation. To 

probe further on this issue, we repeated the simulation 

experiments across different group sizes ranging from 3 to 6, 

fix the punishment-to-benefit x/b=0.5 and the 

cost-of-punishment  y/b=0.05.  

Figure 9 shows the average cooperation ratios during the 

evolution; while Figure 10 shows the average cooperation 

ratio with different cost-to-benefit ratio c/b from 0 to 1. 

From these curves, we would find the cooperation will 

decrease as the number of group increased. This may 

because more individuals in the group, more debuts about 

each other exist. Players in the large group need to spend 

more time to make decisions about the action. In small 

group, the average cooperation can almost reach 100%, 

however, in large group, the average cooperation cannot 

reach 100% no matter how the punishment being. 

When in the network structured population, it is more 

clear that the full cooperation state can emerges in the 

punishment mechanism even the punishment x/b or the 

cost-of-punishment y/b is not very high. The simulation 

results also uncovered an interesting phenomenon regarding 

the intimacy of individuals: the punishment can more 

evolve the cooperation than the cost-of-punishment. As the 

agents in the population would not willing to pay more.  

 

 

 

 

 

 
 

 

V. Conclusion and Discussion 

The effects of punishment on the evolution of 

cooperation in multi-player evolutionary games: the spatial 

n-ISD game, are the main topic of our paper. Systematic 

computational experiments across a range of cost-to-benefit 

ratios and group sizes clearly showed that the punishment in 

spatial populations can promote higher levels of 

cooperation. Our model demonstrates, for a relatively small 

cost-to-benefit ratio c/b or for a relatively small group, that 

punishment x/b is effective in promoting cooperation. When 

in the network structured population, it is more clear that  

 

 

the full cooperation state can emerges in the punishment 

mechanism even the punishment is not very high.  

Compared with previous research, the network structure 

did some good effect to the cooperation of ISD game. In 

addition, the full cooperation state can emerge in the spatial 

punishment environment, while the full cooperation state 

can hardly appear when no mechanism carried out.  

The punishment can promote the mutualisms of the 

population, and the proportion of cooperators (include 

moralists) even reach the completely dominated state with 

small c/b ratio in ISD game (see Figure 7 and Figure 8). 

The frequency of cooperation is promoted with the 

increment of punishment intensity. Combining with these 

observations that, it is clear that punishment is effective in 

(a1) 

(a2) 

(a3) (a4) 

Figure 9. The distribution of the cooperation ratios in the network structures of ISD game with punishment x=0.5. 

Different group sizes are used for testing, (a1) n=3; (a2) n=4; (a3) n=5; (a4) n=6. 

Figure 10. The average cooperation ratios in network structure of ISD game with different group size and p/b=0.5 

for each 200 iterations. 
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promoting cooperation for a small cost-to-benefit ratio (see 

Figure 4-8). In addition, another interesting finding is that 

punishment x/b seems more effective than 

cost-of-punishment y/b although the difference is not very 

clear.  

For multi-player participate in the project, individuals 

need to carefully make decisions for each interaction. For 

large group size, the time for decision is longer than with 

small group size. So the cooperation in large group size is 

lower than in the small group size. 

Furthermore, we explore the reasons of why punishing is 

effective to cooperation. Humans and other animals show, 

in the short run, amplified awareness and respond promptly 

with a drive towards self-regulation [52]. In this specific 

case, this drive is exerted with a more circumstantial 

adaptation to an environment occupied by willing 

cooperators. The Industry-university-institute cooperation, 

the punishment can give the organization or individual a 

long run negative effect. Finally, once you get the 

punishment no matter from whom, you may have a bad 

reputation for the following interactions. 

While we have tested a broad range of conditions in our 

simulation experiments, there is always further scope for 

more investigations. The next step would be to extend our 

model to consider more about the punishment mechanism 

and the mobility of the network structure. 
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