
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 8 (2016) pp. 423–433
c⃝ MIR Labs, www.mirlabs.net/ijcisim/index.html

Multi-agent-based Two-dimensional Barcode
Decoding Robust against Non-uniform Geometric

Distortion
Kazuya Nakamura, Kohei Kamizuru, Hiroshi Kawasaki, and Satoshi Ono

Department of Information Science and Biomedical Engineering,
Graduate School of Science and Engineering, Kagoshima University

Kagoshima, Japan
k3420880@kadai.jp, {sc111015,kawasaki, ono}@ibe.kagoshima-u.ac.jp

Abstract: Two-dimensional (2D) codes are subject to distor-
tion when printed on non-rigid materials, such as papers and
clothes. Although general 2D code decoders correct uniform
distortion such as perspective distortion, it is difficult to correct
non-uniform and irregular distortion of the 2D code itself. To
overcome this problem, an agent-based approach is presented
here to reconstruct the 2D code. In this approach, auxiliary
lines are placed on a 2D code and used to recognize distortion.
First, 2D code area is identified through feature patterns com-
posed by the auxiliary lines, and Convolutional Neural Network
(CNN) is used to discriminate the patterns. Then, many agents
simultaneously trace the lines referring to the various image
features and the neighborhood agents. The feature weights are
optimized by Genetic Algorithm. The experimental results indi-
cate that agents successfully tracked auxiliary lines right up to
occluded area, and the proposed method could decode distort-
ed 2D codes. The performance of the proposed method against
distortion level and occlusion amount was also clarified.
Keywords: Two-dimensional barcode, Image rectification, Convo-
lutional neural network, Multi-agent system, Genetic algorithm

I. Introduction

Two-dimensional (2D) barcodes [?] are widely used to
quickly identify objects without physical contact because
their capacity is greater than that of single-dimensional bar-
codes. The rapid spread of 2D code decoder software on mo-
bile phones increased the application of 2D codes in fields
such as advertisement and authentication. 2D code is made
to be printed on a flat object. Although most 2D codes have
some functional module patterns to correct distortion, on-
ly uniform distortion such as projection transformation and
barrel-type distortion can be corrected. In other words, it is
difficult to correct irregular distortion of 2D codes, such as
that of a wrinkled cloth. A 2D code decoding technology
with a non-uniform distortion correction function could be
further applied in fields such as commercial distribution and
agricultural and medical industries [?, ?].
The authors have proposed a 2D code with colored auxiliary
lines and its decoding method [?, ?]. This 2D code can be
decoded even if distorted by compensating distortion.

The distortion is recognized by tracing the auxiliary lines;
then, the blocks formed by the recognized lines are rectified
to square-shaped. In addition, occluded areas are estimated
using the lines whose color pattern constitutes a de Bruijn
sequence [?]. Conversely, the 2D codes require color print-
ers to print the colored lines and color cameras to decode
them. Furthermore, the decoding method is affected from
changes in the lighting condition; thus monochrome lines are
preferred to colored ones.
However, it is difficult to apply the color auxiliary line-based
method [?, ?] to 2D codes with monochrome auxiliary lines.
This is because monochrome line identifications (IDs) cannot
be recognized locally, whereas a de-Bruijn-based color com-
bination of only three contiguous parallel lines allows rec-
ognizing line IDs. Therefore, belief propagation (BP) [?, ?],
the graphical optimization method used in [?], must be per-
formed based on the smoothness cost, not data cost. In addi-
tion, monochrome lines make it difficult to distinguish close
parallel lines when they are crossing or touching.
This paper proposes a 2D code with monochrome auxiliary
lines and its decoding method. 2D code with monochrome
lines are improved from previous When using monochrome
auxiliary lines, line tracking is necessary from regions where
line IDs can be recognized correctly such as the boundaries
of the 2D code and the areas close to toe finder pattern-
s. Therefore, the proposed method mainly performs multi-
agent-based line tracking to recognize module location with
eliminating influence of distortion and occlusion. In this
method, many agents placed on the 2D code boundaries s-
tart tracing auxiliary lines on the code. The agents deter-
mine their routes based on the reliability of their movement.
Recognized auxiliary lines enable to locating modules and
reading the binary codes from the 2D code image; thus, an
embedded message can be read.
The proposed decode method involves offline training pro-
cesses requiring different soft computing techniques Con-
volutional Neural Network (CNN) and Genetic Algorithm
(GA) [?]. CNN is adopted to generate a detector that search-
es for finder pattern, and GA is adopted to optimize feature
weights used to reliability calculation.
The experimental results indicate that the proposed CNN-
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based detector locates finder patterns even from distorted 2D
code images to determine agent initial positions. In addition,
according to reliability designed by GA, agents successfully
traced distorted auxiliary lines right up to occluded region-
s. Finally, the proposed method reconstructed 2D codes in-
volving sufficiently few errors that could be complemented
by error correction function of 2D code, indicating that the
proposed method could successfully decode the distorted 2D
codes.
The main contributions of this paper are as follows:

• A 2D code with monochrome auxiliary lines, which
is robust against non-uniform, non-smooth, and non-
periodical distortion and occlusion while maintaining
the compatibility with the basic 2D code. The lines al-
so make the code detectable by a Center Surround Ex-
tremas (CenSurE) detector [?]. Finder patterns are not
necessarily available when 2D codes are highly distort-
ed.

• CNN-based finder pattern detection, which mainly aims
to recognize the 2D code’s pose and contour for agent
position initialization rather than detecting a 2D code
from a captured image.

• Metaheuristics-based feature weighting for line track-
ing agent design, which allows agents to track
monochrome auxiliary lines, to keep appropriate dis-
tance between neighboring agents, and to stop when
they cannot trace the line due to hard distortion or self-
occlusion of the 2D code.

II. Related work

A. Line tracking and multi-agent system

Auxiliary lines in a 2D code proposed in this paper are used
for recognizing distortion and occlusion that will be dis-
cussed in Sec. III. Line tracking is a widely used technique
in various fields such as autonomous robots [?, ?, ?], biomet-
rics [?], and augmented reality [?] and other computer vi-
sion tasks [?]. Miura et al. proposed a method to extract a
finger-vein pattern by an infrared camera, in which a tracking
point goes along avalley of intensity values in cross-sectional
view of grayscale image [?]. Wuest et al. proposed a method
for real-time tracking of 3D objects, in which 2D anisotropic
Gaussian mask is applied before tracking lines [?]. There are
other line trace methods such as eigenvalue calculation [?]
and a combination of RANSAC and Kalman filter [?].
There are also many line tracking methods by agents such
as [?, ?, ?]. Multi-agent approach has also been attempted
for multiple line tracking [?, ?]. For different types of tasks,
specific agent learning and cooperation methods have been
proposed; for instance, one method proposed in [?] changes
intensity value on agent trails to avoid repetitive line tracking
by other agents, resulting in indirect communication between
agents, the other proposed in [?] adopts a two-layer multi-
agent model where agents communicate directly. A general
multi-agent model that simultaneously learns knowledge for
line tracking task and cooperative behavior between agents
has not been established.

B. CNN-based feature learning

Recently, deep learning (DL), a kind of Neural Network (N-
N) with many layers, is attracting interest in various research
fields. After Hinton’s success in deep layer NN using re-
cursive unsupervised learning [?], various DL methods have
been proposed. In ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 [?], DL won the victory by more
than 10% accuracy over the second.
The essential advantage of DL is representation learning; it
can directly be applied to a target problem raw data rather
than its analyzed features, whereas conventional methods
give image processing to input image to extract features, and
convert them to form in accordance with learning machine’s
input. In particular, DL is appropriate to various tasks in im-
age processing field.
Convolutional Neural Network (CNN) is a type of DL spe-
cialized for image recognition, and originally has been de-
veloped for character recognition. CNN is classified as feed
forward NN that does not involve loop structure, and has an
advantage that pre-training is not necessary when big train-
ing data is available. CNN involves convolution and pooling
layers that alternate with each other. Mainly five techniques
are applied to these layers: local receptive field, tied weight,
feature maps, convolution, and pooling. Ciresan demonstrat-
ed that using plural CNNs in parallel successfully made more
outstanding performance than conventional methods in many
benchmarks such as MNIST [?] and medical image analy-
sis [?]. Now, CNN has been a de facto standard for represen-
tative learning in image processing field.

C. Previous work for distorted 2D code decoding

1) Methods for uniform distortion

Some studies have tried to develop a decoding method tol-
erant to perspective transformation [?, ?, ?, ?, ?, ?]. Chen
et al. has also proposed a preprocessing algorithm involv-
ing geometric rectification by affine transformation based on
finder and alignment pattern positions to cope with unsuit-
able shooting angle [?]. Ohbuchi et al. proposed a method
for decoding skewed or curved 1D and 2D codes by recur-
sive approximation the code boundaries [?]. Hohberger et al.
proposed a color 2D code tolerant to wave, shear, scaling and
perspective distortions [?].

2) 2D code with auxiliary lines

The authors also proposed decoding methods of distorted
2D code with colored auxiliary lines and colored finder pat-
terns as shown in Figure 1 [?, ?]. These methods recognize
auxiliary lines using dynamic programming or BP, allowing
knowing module locations with eliminating the influence of
distortion and occlusion. De Bruijn color sequence makes
possible to recognize line IDs only from three contiguous
parallel lines. However, coloring requires calibration and
good lighting condition, and there are some materials to be
printed that cannot be colored. In some applications, discol-
oring and fading due to aging or chalking by sunlight are not
negligible.
The authors attempted to make the auxiliary lines monochro-
matic and proposed an agent-based line tracing method [?].
This method uses 2D code with monochrome lines as shown
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(a) 2D code with colored lines
(b) Line recognition example.

Figure. 1: 2D code with colored auxiliary lines in previous
work [?]

(a) 2D code with monochrome lines (b) Line recognition error example.

Figure. 2: 2D code with monochrome auxiliary lines in pre-
vious work [?].

Figure. 3: 2D code with monochrome auxiliary lines and s-
moothed module edges proposed in this paper, which is com-
patible with QR code.

in Figure 2 (a). Agents trace the lines and their trajectories
are adopted as recognized auxiliary lines telling module lo-
cations. However, the dense auxiliary lines frequently causes
agent tracking failure as shown in Figure 2 (b). In addition,
this 2D code requires specific auxiliary patterns in a quiet
zone around the 2D code that helps to determine agent initial
position.

III. The Proposed method

A. Overview

In this paper, we propose a 2D code with monochrome auxil-
iary lines and a decoding method for the 2D code. The pro-
posed decoding method adopts multi-agent based approach
to recognize the auxiliary lines on the distorted 2D code. An
agent is assigned to each horizontal or vertical line from side
to side, and traces the line with calculating reliability for each

pixel.
The reason why we adopt agent-based approach is that an ef-
ficient line tracing algorithm is unknown to trace lines which
are highly distorted and orthogonally crossing with many
other lines. Furthermore, high distortion makes lines touch
each other and causes self-occlusion that hides parts of the
lines. Learning appropriate reliability of agent movement
with training images allows us to automatically design agent
behavior for line tracing. The reliability is calculated from
some features such as image features and other agents’ tra-
jectories, and its weight parameters are learned by Genetic
Algorithm (GA) [?]. The reason why GA is adopted is that
the objective function of feature weight optimization must
be multimodal because similar but different in detail features
are included.
Determining initial positions of agents is important in addi-
tion to designing agent behavior. The proposed method puts
agents on contour of 2D codes region except finder pattern-
s. Therefore, finder patterns must be detected from the esti-
mated 2D code region for determining agent initial position
rather than detecting 2D code. In general, the finder patterns
can be found by line scan; dark, bright, dark, bright and dark
patterns having a ratio of 1 : 1 : 3 : 1 : 1 is the key to detec-
t the patterns. However, when decoding distorted 2D codes,
the above ratio is frequently deflected. In addition, unlike the
previous work [?], finder patterns are not colored. Therefore,
the proposed method generates a detector for finder patterns
using CNN.
In this section, the proposed 2D code with auxiliary lines
and the process flow of the proposed decoding method is
shown in Sec. III-B and Sec. III-C, respectively. Then, the
details of the proposed decoding method are explained by di-
viding it into two parts: agent initial position determination
(Sec. III-D) and line tracking (Sec. III-F). The main con-
tributions of this paper, CNN-based finder pattern detection
and GA-based feature weighting for reliability calculation,
are discussed in Sec.III-E and Sec.III-G.

B. 2D code with monochrome auxiliary lines

Figure 3 shows an example 2D code proposed in this paper.
Monochrome auxiliary lines are placed on a QR code ba-
sically every two modules horizontally and vertically, con-
structing lattice form, whereas the previous work [?] places
lines on every module interval as shown in Figure 2(a). This
is because dense auxiliary lines easily get together and col-
lide with each other when a 2D code is distorted. On the oth-
er hand, too sparse auxiliary lines degrade the performance
of distortion correction. To balance this trade-off, adequate
auxiliary line interval is every two or three modules. Reduc-
ing the lines also increases processing speed.
To recognize monochrome lines, an edge detection process is
necessary but edges on module intervals disturb agents’ line
tracking. Therefore, in the proposed 2D code, the boundaries
between modules are smoothed by Gaussian filter.
The above modifications to base 2D code do not destroy
compatibility between the proposed and base 2D codes be-
cause general 2D code decoders sample a center pixel of each
module rather than the entire module region.
Although the auxiliary lines are added to mainly recognize
distortion and occlusion, the lines are also useful to locate 2D



Multi-agent-based Two-dimensional Barcode Decoding Robust against Non-uniform Geometric Distortion 426

Captured 
image

2D code localization
using CenSurE 

Finder pattern 
detection

Contour 
extraction

feature
extraction

Edge
extraction

Agent-based
line tracking

Extracted 2D 
code image

Agents’ initial 
position

Line recognition 
result

Edge images Feature maps

Reconstruct 2D code

Reconstructed 
2D code

Decode

http://www...Decoded 
information

CNN
training

Feature weight 
optimization

Weight
configuration

CNN

Offline training

Figure. 4: Process flow of the proposed method.

codes from the entire captured images; many same-size rect-
angles compose a characteristic pattern, which is easily dis-
tinguished from background. The proposed method locates
2D codes by adopting a CenSurE detector [?], which uses a
simplified bi-level kernel as a center-surround filter. This fil-
ter works considerably well for locating the 2D code because
of the code’s latticed lines [?]. Finder patterns are not neces-
sarily available when 2D codes are highly distorted because
the bright and dark module with ratio of 1 : 1 : 3 : 1 : 1 gets
easily deviated.
In addition, by simplifying CNN-based finder pattern detec-
tor from ternary to binary classification, the 2D code pro-
posed in this paper successfully eliminates pentagon-like
auxiliary patterns on quiet zone that was not negligible for
agent initialization in the previous work [?].

C. Process flow of the proposed decode method

Figure 4 shows the process flow of the proposed method. At
first, the proposed method finds 2D code using CenSurE de-
tector, and detects finder patterns using another detector auto-
matically designed by CNN, as described in Sec. III-E. Then,
the proposed method restores the distorted 2D code by rec-
ognizing these auxiliary lines, and assigning IDs to detected
lines as described in Sec. III-F. Finally, the proposed method
reconstructs 2D codes, which is performed by and sampling

(a) Contour detection. (b) Edges in vertical
direction.

(c) Edges in horizontal
direction.

(d) Estimated start positions.

Figure. 5: Estimation of agents’ start positions.

four center pixels of four modules in each block formed by
recognized auxiliary lines, and decodes the 2D code.
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Figure. 6: CNN structure for finder pattern detection. Figure. 7: Example of blob detection

Table 1: Details of CNN network structure.
layer type kernel size image resolution #nodes
input grayscale – 80× 80 1
1st convolution 5× 5 76× 76 32
2nd max pooling 2× 2 38× 38 32
3rd convolution 5× 5 34× 34 32
4th max pooling 2× 2 17× 17 32
5th fully connected – – 100

output label 2 – –

D. Agents’ initial position determination

In the proposed method, estimating appropriate agents’ start
positions is important because it affects the entire line recog-
nition result. The proposed method estimates the initial posi-
tions on the contour by recognizing finder patterns and mod-
ules located on the boundary of 2D code. To begin, a contour
of 2D code except the finder patterns is extracted, as shown
in Figure 5(a). The method to find finder patters is discussed
in Sec. III-E. Then, the proposed method applies opening
(a morphological image process) filter with kernels having a
strong directivity to obtain vertical and horizontal edge com-
ponents as shown in Figs 5(b) and 5(c). Finally, starting posi-
tions are determined according to intersection points between
the contour and edge components as shown in Figure 5(d).

E. CNN-based finder pattern detection

In the proposed method, finder patterns of 2D code are recog-
nized agent initialization. When determining the start points
of agent-based tracking, the boundary of 2D code is neces-
sary and the detected finder patterns are also used to extract
the boundary. To detect finder patterns, a CNN-Based detec-
tor is proposed in this paper.
We regard this problem as a binary classification problem,
and this CNN-based detector assigns one of two kinds of la-
bels, “a finder pattern”, and “others”, to a target pixel. Fig-
ure 6 shows the structure of the CNN-based detector. This
involves five layers: input, convolution, max pooling, con-
volution, max pooling and fully-connected layers. Table 1
shows the details of the network. In convolution layers, Rec-
tified Linear Units function is used, which allows CNN to be
trained faster. In the fully-connected layer, Dropout method
is used to avoid overfitting. This selects some edges random-
ly and sets their weight to be zero; only remaining edges are
trained.
Basically, the proposed method applies the CNN-based de-

(a) Finder pattern (b) Other modules

Figure. 8: Examples of training images. Red marks denote
the target pixels, which are actually not included in the train-
ing data images.

tector to keypoints that are centers of blobs extracted from a
photographed 2D code. The target of the above blob detec-
tion is ellipse-shaped blobs involving partially defected ones.
This is because the patterns and modules might have a deficit
in a part of their boundary or their vertical and horizontal as-
pect ratios might change due to distortion. The above blob
detection allows us to obtain many rectangles as shown in
Figure 7. The extracted blob set involves modules, finder
patterns, and other rectangle-like shapes caused by distor-
tion. To apply the CNN-based detector, a rectangle image
window of SW × SW pixels is trimmed so that a target key-
point corresponds to the center of the region and the region
involves about 7× 7 modules, as shown in Figure 8.
Training image dataset is generated from photographed 2D
code images. Finder patterns in the training images are col-
ored only for preparing ground truth, allowing us to easi-
ly annotate the training data; the images are translated into
grayscale image after annotation. The training data is multi-
plied by rotating and laterally reversing the captured images.
When applying the trained CNN-detector, the proposed
method applies Laplacian filter to obtain an edge image of
input, and then extracts keypoints corresponding to centers
of extracted blobs. Then, the CNN-based detector is applied
for each keypoint. After assigning labels to the all keypoints,
blobs are clustered into two kinds of areas, allowing the pro-
posed method to obtain finder patterns.
At the same time, the proposed method can obtain average
size of blobs whose center is assigned a label corresponding
to “others”, which is used as an estimated block size SB in
the following processes including line trace by agents.

F. Agent-based auxiliary line detection

In the proposed method, many agents simultaneously track
all auxiliary lines on a photographed 2D code image. The
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Figure. 9: Agent’s line tracking algorithm.

procedure how to detect auxiliary lines is as follows.
[Step 1] Initialization:

Extracting 2D code contour and set agents at starting points
which are intersections of auxiliary lines on the contour as
shown in Figure 10(a). Each agent has its own ID corre-
sponding to the target auxiliary line ID. For each auxiliary
line, two agents are assigned; they start tracking from either
side of the 2D code contour. The starting position of one
agent corresponds to the others destination position. Using
two agents for each line enables avoiding bad influence from
occluded region; it is expected that one occluded region on
a line can be estimated correctly by being tracked by two
agents.
Details of estimating starting points are described in III-D.

[Step 2] Searching for candidate area of next position:
For each agent at each iteration, candidate area of next posi-
tion is determined and reliability is calculated for each pixel
in the area. The candidate area is a fan-shaped region whose
radius is 1

3 × SB and whose central angle is 90 degree as
shown in Figure 10(b). Considering the distance to its con-
tiguous agents, areas whose distance to the trajectory of the
contiguous agent is 1.5×SB are removed from the candidate
area. This is because subsequent agents who move to the
same direction should not leave each other more than SB in
the orthogonal direction to their trajectory. In addition, areas
in which angle between agent inertia direction and a vector
from its start to destination positions exceeds 90 degrees are
prohibited to move.

[Step 3] Reliability calculation:
Reliability is calculated for each pixel in the moving desti-
nation candidate region for each agent. The reliability rep-
resents how likely a target pixel is on an auxiliary line, as
described in III-G. The pixel with the highest value of relia-
bility in the candidate region is the moving destination can-
didate pixel as shown in Figure 10(c).

[Step 4] Agent movement:
At each iteration, only the agent that has the moving desti-
nation candidate pixel with the highest reliability moves to
its candidate pixel as shown in Figure 10(d). This allows
agents with lower reliability to refer trajectories of other a-
gents’ with higher reliability.

[Step 5] Checking stop condition:
The stop condition of this algorithm is that all agent pairs

(a) At step 1. (b) At step 2.

(c) At step 3. (d) At step 4.

Figure. 10: Agent movement.

pass each other on their target line. Each agent stops when it
meets another agent tracking the same line from the opposite
side of the 2D code. If the condition is not satisfied, then go
back to Step 2.

G. Reliability calculation

As described in Sec. III-F, agents move toward its goal po-
sition according to reliability. A reliability value R(a, p) of
agent a at pixel p is defined as follows:

R(a, p) =

K∑
i=1

wiEi (1)

where Ei is subfunction related to i-th feature, and wi is a
weight parameter, and K (= 26) is the total number of kinds
of features. Features used in the proposed method are mainly
classified into two types: image-based features and agent-
related features.
Reliability subfunctions E1 to E18 based on image features
refer five types of input images:

• a source image IS ,

• its edge image IE obtained by applying Laplacian edge
detection and closing (a morphological image process)
filters,

• directional edge images I
(v)
ED and I

(h)
ED obtained by ap-

plying Laplacian filter and closing with strong direc-
tionality,

• Local Binary Pattern (LBP) feature map IL for an image
obtained by applying Laplacian filter, and

• directional edge images I
(v)
LD and I

(h)
LD obtained by ap-

plying closing with strong directionality to IL.

Agents moving horizontally refer I
(h)
ED and I

(h)
LD that have

the horizontal direction, whereas ones moving vertically re-
fer I(v)ED and I

(v)
ED that have the vertical direction. Figure 11

shows examples of these images, and Table 2 shows a list of
subfunctions using image features.
Subfunctions E19 to E26 based on agent behavior are classi-
fied into three types: based on its own behavior (C1), neigh-
bor’s behavior (C2), and population’s behavior (C3). Table 3
shows a list of the subfunctions based on agent behavior. In
the second types of the subfunctions, the value of the sub-
function is averaged over those of two neighbor agents if
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(a) Source image IS (b) Edge image IE (c) Directional edge
image I

(v)
ED

(c) Edge image by LBP
IL

(c) Directional edge
image by LBP I

(v)
LD

Figure. 11: Example edge images for reliability calculation.

Table 2: Reliability subfunctions based on image features.
No feature image

E1, E2, E7,
E10, E11 Intensity on source or edge image

IE , IS , IED ,
IL, ILD

E3, E4 Corner detection result (Eigen value, Harris) IS
E5 Distance from blob center IS
E6 Distance from edge IE
E8 Distance from center of estimated auxiliary line IE
E9 Number of blobs detected nearby IS

E12, . . ., E18 Feature detector (FAST, STAR, SIFT, SURF,
MSER, FAST pyramid, FAST dynamic)

IS

there are two contiguous neighbors that move to the same
direction.

H. Weight parameter learning by GA

The weight w = {w1, w2, . . . , wK} is optimized by GA to
select and prioritize appropriate features for the auxiliary line
tracking. The optimization function to be minimized in this
problem is calculated from the actual result of auxiliary line
tracking as follows:

f(w) =
∑

|xT − xa| (2)

where xT and xa are intersection point coordinates of
ground truth and estimated by agent a with w, respective-
ly.
When calculating a fitness function of an individual (poten-
tial solution), leave-one-out cross validation is performed for
a training dataset, and a mean value of f(w) for test data is
adopted as its fitness value.

IV. Experiments

A. Setup

This section demonstrates the effectiveness of the proposed
2D code and its decoding method for distortion. First, two of
the main contributions of the proposed method, CNN-based
finder pattern detection and agent-based auxiliary line track-
ing, were demonstrated with three test images shown in Fig-

Table 3: Reliability subfunctions based on agents’ behavior
No feature type
E19 Angle difference to its own trajectory C1

E20 Distance from neighbor agent d18 C2

E21 Angle difference to trajectory of neighbors C2

E22 Reliability of neighbors C2

E23 Ratio of white pixels at directed edge C3

E24 Angle difference to other agents walking in
the same direction

C3

E25 Angle difference to other agents walking in
orthogonal direction

C3

E26 Number of passed agents C3

ure 12, whereas 2D code detection from a captured image
was not evaluated here because the proposed method uses
CenSurE detector as with the previous work [?,?]. Then, the
performance of the proposed method against the degree of
distortion and self-occlusion was clarified with 30 test im-
ages.
The three test images shown in Figure 12 have following
properties: In test image 1, all auxiliary lines were not oc-
cluded; however, some modules collapsed by distortion and
there are shadowed areas. Test image 2 involves a self-
occluded area at the center of the code where auxiliary lines
cannot be viewed. There is also an area where modules are
highly distorted in the upper middle part of the test image 2.
Test image 3 involves two self-occluded area that may cause
serious line recognition failure because it is difficult to track
lines in visible area caught by occluded areas.

1) Parameter configurations

Configurations of two kinds of offline training, CNN-based
detector learning and GA-based feature weight learning,
were as follows.
Training a CNN-based detector for finder patterns was per-
formed with the training data described below; 50 distorted
2D code images were photographed with varying exposure
angles, generating 250 distorted 2D code images. Then, ro-
tation and mirroring were applied to the photographed im-
ages to multiply training data. Blob detection is performed
for each image and SW × SW size image is extracted for
each detected blob where SW = 80 pixels. Finally, 130,000
training images were available for training.
Agents for line tracking are trained by optimizing weight
vector w. A training dataset involving four images was used
in this experiment, and the averaged value of f(w) to the
test image in four folds of leave-one-out cross validation was
adopted as a fitness of an individual. In GA, design vari-
ables (feature weights wi) were represented as real values,
and real-coded ensemble crossover (REX), uniform muta-
tion, and Just Generation Gap (JGG) were adopted. Other
control parameters in GA were configured as follows. Pop-
ulation size and maximum number of generations were set
to be 200 and 10,000, respectively. Crossover and mutation
ratio were 90% and 5%, respectively. The number of off-
springs, which is a control parameter in REX, was set to 30.
All images in training and test datasets were captured by L-
ynx acA1300-30gc and Fujinon DF6HA-1B with the resolu-
tion of 1, 278× 958. 2D codes were printed with the size of
16 [cm], and the photographing distance was set to about 40
[cm].
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(a) Tested image 1. (b) Tested image 2. (c) Tested image 3.

Figure. 12: Examples of tested images and enlargements around self-occluded areas.

(a) step 1 (b) step 2 (c) step 3

(d) step 4 (e) step 5 (f) step 6

Figure. 13: Contour-based rectification method based on [?].

2) Compared method: contour-based rectification method

For comparative study, we implement a contour-based rectifi-
cation method based on the idea of [?], which aims to decode
2D codes printed on cylinder or other uniformly curved sur-
face. To reconstruct a 2D code, this contour-based method
first extracts contour of 2D code involving finder pattern-
s (Figure 13(a)), then divides the 2D code into 4 × 4 grids
(Figure 13(e)), and finally rectifies each block to a square
(Figure 13(f)). The grid is constructed by finding corners
(Figure 13(b)), dividing each side into four segments having
equal length (Figure 13(c)), and linearly interpolating inner
grid points (Figure 13(d)).

B. Results on agent position initialization involving finder
pattern detection

To determine initial agent position, the proposed method ex-
tracts a contour of a 2D code except finder patterns using the
CNN-based detector. Therefore, we first demonstrate inter-
mediate node output examples of the trained CNN, and then
show the recognition result of finder patterns and agent initial
positions in the three test images.
Figure 14 shows output examples of two nodes in each lay-
er. Images shown in Figure 14(a) and (c) are produced by
the same node in each layer. Similarly, images shown in
Figure 14(b) and (d) are also the output produced by the
same nodes. In addition, examples shown in Figure 14(a)
and (b) are outputs for the same finder pattern image, and
examples shown in Figure 14(c) and (d) are for the same im-
age involving modules and auxiliary lines. These interme-

i) Input layer ii) 1st layer iii) 2nd layer iv) 3rd layer v) 4th layer
(a) Output image example 1.

i) Input layer ii) 1st layer iii) 2nd layer iv) 3rd layer v) 4th layer
(b) Output image example 2.

i) Input layer ii) 1st layer iii) 2nd layer iv) 3rd layer v) 4th layer
(c) Output image example 3.

i) Input layer ii) 1st layer iii) 2nd layer iv) 3rd layer v) 4th layer
(d) Output image example 4.

Figure. 14: Example output images in each CNN layers.

diate output images show that the trained CNN successfully
produced features to distinguish edges of finder patterns and
other modules; edges of finder patterns remained in deeper
layer while edges of other modules and auxiliary lines were
destroyed.
Figure 15 shows the example result of finder pattern de-
tection using trained CNN-based detector; red circles show
blobs recognized as finder patterns. Those examples showed
that finder patterns were successfully found by the trained
CNN.
Figures (a), (b) (c), and (d) in 17, 18, and 19 show agent
initial positions and trajectories; blue circles show the agent
initial positions. Those figures demonstrate that the proposed
method successfully determined initial positions of all agents
in the tested three images.
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(a) Top to bottom (b) Bottom to top (c) Right to left (d) Left to right (e) Line recognition result

Figure. 17: Agent trajectories and extracted auxiliary lines in tested image 1.

(a) Top to bottom (b) Bottom to top (c) Right to left (d) Left to right (e) Line recognition result

Figure. 18: Agent trajectories and extracted auxiliary lines in tested image 2.

(a) Top to bottom (b) Bottom to top (c) Right to left (d) Left to right (e) Line recognition result

Figure. 19: Agent trajectories and extracted auxiliary lines in tested image 3.

(a) Tested iamge 1 (b) Tested image 2 (c) Tested image 3

Figure. 15: Example results of finder pattern search by CNN.

C. Results on auxiliary line recognition by agents

The proposed method reconstructs distorted 2D codes by rec-
ognizing auxiliary lines and locating all modules. As de-
scribed in Sec. III-F, III-G, and III-H, agents move based on
reliability that is calculated with optimized feature weights.
Then, this section shows the optimized feature weight by GA
and demonstrates agent trajectories.
Figure 16 shows the feature weights optimized by GA for re-
liability calculation. Basically, there is a tendency that image
features were prioritized than agent-related features. In de-
tail, features that directly contribute to find lines such as E7

and E8 were viewed as important.
Figures 17, 18, and 19 show the example agent trajectories
with the optimized weights and recognized auxiliary lines.
In these figures, red lines show agent trajectories that cor-
rectly coincided to the actual auxiliary lines, and green lines

Figure. 16: Optimized feature weights by GA.

show the trajectories that were not match the actual lines.
These figures shows that agents tracing in flatter area were
prioritized, and agents in highly distorted area slowed down
or stopped. Figures 18 and 19 demonstrated that the agents
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(a) Tested image 1 (b) Tested image 2 (c) Tested image 3

Figure. 20: Reconstructed 2D code by the proposed method.

(a) Tested image 1 (b) Tested image 2 (c) Tested image 3

Figure. 21: Error modules by the proposed method.

(a) Tested image 1 (b) Tested image 2 (c) Tested image 3

Figure. 22: Rectification result by the previous method.

(a) Tested image 1 (b) Tested image 2 (c) Tested image 3

Figure. 23: Reconstructed 2D code by the previous method.

(a) Tested image 1 (b) Tested image 2 (c) Tested image 3

Figure. 24: Error modules by the previous method.

stopped around the occluded regions; although, on the oc-
cluded area, the agents went wrong way, they could success-
fully trace auxiliary lines right up to the occluded area.

D. 2D code reconstruction results

Finally, we demonstrate the reconstructed 2D codes by the
proposed method, and compare the results with contour-
based rectification method. In addition, the performance of

the proposed method against distortion level and occlusion
amount is shown.
Figures 20 and 21 show the reconstruction results of the 2D
codes by the proposed method and their error module dis-
tribution. In Figure 21, red and pink modules indicate error
modules wrongly judged as bright and dark one, respective-
ly. The number of error modules in the tested images 1, 2
and 3 were 7, 37, and 27, respectively. Figures 21(b) and
(c) showed that modules on the occluded areas were difficult
to sample correctly. However, all the reconstruction result-
s shown in Figure 20 were successfully decoded by gener-
al QR code decoders thanks to error correction function of
Reed-Solomon code.
Figures 22, 23, and 24 show rectification results, recon-
structed 2D codes, and error distributions of the contour-
based rectification method. Although the contour-based rec-
tification method rectified the distorted 2D codes to square-
shaped, modules were not placed on the right position due to
non-uniform and non-local distortion, resulting in failure of
sampling grid construction. The all reconstructed 2D codes
shown in Figure 23 were not decoded by the general decoder-
s.
Figure 25 shows the distributions of the success and failure
images by the proposed method; markers show the decode
result in which a circle means success and x-mark means
failure. Distortion level is defined by root mean square er-
ror (RMSE) of distorted 2D code depth against its approxi-
mated plane in 3D space. The depth images were captured
by a projector-camera system involving EPSON ELP710 and
Point Grey Flea3 with FUJIFILM DF6HA-1B and projecting
time-varying structured light [?] 1 . Occlusion amount is de-
fined as the number of modules that were counted manually.
Figure 25 demonstrates that 20 of the tested 30 images of
distorted 2D codes were successfully decoded by the pro-
posed method. The proposed method failed to decode the
2D codes when either distortion or occlusion become hard
at a certain level; harder distortion made it more difficult to
trace auxiliary lines that were sharply bent or shaded darkly,
and large occlusion hided many modules that could not be
complemented by error correction function of QR code.
Processing time of the proposed method was 1.66 [s] on av-
erage2, whereas that of previous work [?] was 3.16 [s]. This
implies that the processing speed of the proposed method
was raised by 1.9 times as high as the previous work by re-
ducing the number of auxiliary lines, which determines the
number of agents. Because the implemented system was not
parallelized at all, the practical speed would be achieved by
parallel implementation or conversion into hardware.

V. Conclusion

Proposed in this paper is a decoding method for distorted
2D codes with monochrome auxiliary lines. The proposed
method comprises three key ideas:

1Note that 3D information is used only for calculating distortion level.
The proposed method only uses 2D image information and does not require
any 3D scan device.

2The implemented system was run on a PC/AT compatible machine with
Intel Core i7 870 (2.93GHz) and 16GB RAM. This processing time does not
involve the time to find a 2D code from a captured image.



433 Nakamura et al.

Figure. 25: Distribution of decode results.

• 2D code with relatively sparse lines and smoothed mod-
ule boundaries,

• finder pattern recognition by CNN, and

• agent-based auxiliary line detection.

Experimental results have shown that the proposed CNN-
based pattern detector successfully found finder patterns that
guides agent initial position correctly, and the agents opti-
mized by GA successfully tracked the auxiliary lines until
they face occluded region. However, it was difficult to trace
the lines that were highly distorted or occluded.
In future, we attempt to let agents use several different weight
parameter configurations for reliability calculation in accor-
dance with estimated distortion level. In addition, effective
use of alignment patterns is also important to improve robust-
ness against distortion.
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