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Abstract: In real-world applications, images and videos are
often acquired and displayed in color. To assess the quali-
ty of these images, most of the methods have been develope-
d in a grayscale level without considering the color informa-
tion. Among the methods that remain less explored in color,
one can find reduced reference image quality assessment (R-
RIQA) methods and especially those based on natural scenes
statistics (NSS). Motivated by the close relationship that lies
between inter/intra-color components perception and statistic-
s, this paper proposes a new framework to study the impact
of color information on RRIQA methods and more specifically
the NSS based ones. For this purpose, the inquiry investigates
how each information (luminance, chrominance) influences the
quality assessment process. Then, it also considers whether the
combination of these components can improve the quality pre-
diction scores. The deployment of this framework is closely re-
lated to the choice of quality methods and perceptual color s-
paces. Thus, four of the most influential RRIQA based NSS
methods have been intuitively extended to color. Furthermore,
YCbCr and CIELAB color spaces are selected thanks to their
usefulness to separate chrominance and luminance information.
On an experimental level, these methods are implemented on
TID2013 benchmark, which offers a wide range of color speci-
fied distortion types. The obtained results showcase how color
information can improve quality scores.

Keywords: Reduced reference measure, natural image statistics,
image quality assessment, color spaces

I. Introduction

In the last years, the research carried out by various laborato-
ries in image quality assessment have conducted their metrics
on grayscales level [1–3]. However, the human visual sys-
tem perceives images in color. Therefore, this paper intends
to show the need for all information in color image quality
assessment, including color information.

In this area, one can distinguish three categories of mea-
sures: full reference (FR) [4] measures compare the distorted
image with its reference version. These measures are be-
lieved to be the most accurate and robust, but, the reference
image is not always available in all practical situations. No
reference (NR) [5–11] measures are computed directly from
the degraded image. These measures often require, but not
always, a prior knowledge about the distortion in the im-
age to be evaluated. Whereas RR measures, need only a de-
scription about the reference image, and generally no a prior
knowledge. Thus, they are more suited to a specific situation.
Reduced-reference (RR) measures compare a description of
the distorted image and the same description of the reference
version, where a description is a set of relevant features ex-
tracted from both images. The performance of quality mea-
sure and its general-purpose depend on the amount of the
available information. Therefore, they can be designed for
general-purpose. The implementation of these measures can
involve images distortion modeling [12, 13], human visual
system modeling [14, 15] or natural scene statistics (NSS)
modeling [16, 17].

Most of these measures were designed primarily to assess
the quality of the image on the grayscale level, while the hu-
man eye perceives the world scenes in color. In literature,
there are few RRIQA methods that have developed appro-
priate metrics for color images [18–20], and especially those
based on NSS. Decherchi et al. [21] use two-layer architec-
ture in order to predict the quality score. The first layer iden-
tifies the distortion, the second layer predicts the visual qual-
ity according to this specific distortion. Both luminance and
chrominance information are applied for extracting descrip-
tors to feed the predictor. Despite its good performance, this
method has an inconvenient of the features vector size. An-
other work from Redi et al. [22] uses descriptors from HSV
and YCbCr color spaces. The hue and the luminance chan-
nels are used in the HSV and YCbCr color spaces, respec-
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Figure. 1: The deployment of the proposed framework using three sorts of measures.

tively. A computational intelligence paradigm is also applied
with two layers. As the method of Decherchi et al., the first
layer is based on neural classification to identify the kind of
distortion while the second layer quantifies the quality pre-
diction using neural regression machine. This approach has
the same weakness as Decherchi’s one.

There is another color based RRIQA method developed
by He et al. [23]. The extracted features using a color fractal
structure model, are mapped to visual quality using the sup-
port vector regression. Their method demonstrates good per-
formances on the LIVE Benchmark, but, it has only imple-
mented on RGB color space and so the perceptual aspect has
not been taken into account. Despite there appropriateness to
color images, these RRIQA methods do not take in consider-
ation statistical properties of color components which present
a perceptually relevant tool for real-world images quality. In
a preliminary work [24], the introducing of the color infor-
mation into RRIQA process increases the quality scores in
certain cases compared to grayscale level.
Recently, Ghadiyaram et al. [25] conducted an investiga-
tion to determinate how the chrominance information can
improve the blind image quality prediction. According to
their results, they offered a model called FRIQUEE (Fea-
ture maps based Referenceless Image Quality Evaluation En-
gine) to consolidate the process of the prediction with the
chrominance information. Nonetheless, they are interested
only in LIVE benchmark, which lacks a wide range of col-
or specified distortions. In addition, despite its relevance,
this method is NR which is out of the scope of our study.
In this way, this paper aims to find how chrominance, lumi-
nance or the combination of both of them can enhance the
RRIQA process. To respond to this question, and since all
NSS reduced reference color image quality assessment pro-
cesses [26–31] do not benefit from color information four of
the most relevant natural scenes statistics RRIQA methods

are employed. As these methods have been implemented in
grayscale level, the first step consists of using their extension
to color. For this extension, two color spaces (CIELAB, Y-
CbCr) are investigated. The choice of these spaces depends
especially on the separation of the three channels into two
categories (Chrominance channels, and luminance channel).

A fair comparison between these categories using the four
aforementioned methods has been done on the TID2013
benchmark.

This paper is organized as follows. Section II presents the
selected methods and the proposed framework to compare
the luminance channel, the chrominance channels, and the
combination between both of them, and explains the charac-
teristics of the two chosen color spaces. Section III concerns
the experimental data and the validation protocol. Section
IV details the experimental results and finally concluding re-
marks are presented in Section V.

II. Using color for RRIQA based NSS methods

In light of the worldwide, the human eye can not separate
the chrominance from luminance, indeed, the human eye
sees the world in color. Thus, one cannot exclude either
the chrominance information (CI) nor the luminance infor-
mation (LI). Recently, most commonly known RRIQA meth-
ods [4–8] have addressed the image in grayscale level, which
presents a huge drawback in term of reliability. To emphasize
this issue, Omari et al. [24] accentuates the effectiveness of
CI in image prediction domain, four of the well-known meth-
ods have been handled in a manner more intuitive to itemize
the usefulness of chrominance. This paper has proved with-
out a doubt that these methods are poorly arranged with CI,
which leads us to bring a solution to remedy this problem.



185 Omari et al.

Figure. 2: Histogram of normalized coefficients: the first row depicts the images, from left to right: (a) the original image,
(b), (c), and (d) are an image (a) distorted with Additive Gaussian noise, Additive noise in color components, and Contrast
change respectively. The second row gives a statistical comparison between the original image (a) and the three distorted
images: Red curve presents the original image, where, Blue, Black and Green curves are Y, Cr and Cb components of a
distorted image, respectively.

A. Proposed framework

To reply to the previous ubiquitous question, and according
to the results of [24], such distortions are convenient with CI
where others are appropriate with LI. Therefore, this frame-
work develops three types of measures, one addresses the
luminance information, where the remaining two measures
intended to add the chrominance information onto the de-
bate. For greater certainty, Figure 1 depicts the track from
original and distorted images to the three measures. So, the
first step is related to the extraction of the three components.
The second step is dedicated to computing quality using the
following measures:

• The first measure considers the luminance components
with a simple way to prescribe the luminance measure.

• The second measure retakes the chrominance com-
ponents to adjust the chrominance measure, the two
metrics between the four chrominance components are
added up in order to reach the extent desirable.

• Finally, the third measure is the sum of the chrominance
and the luminance measures.

B. Perceptual color spaces and statistical dependence

As mentioned above, the inquiry role is to investigate the col-
or spaces which separate CI from LI. Thus depending on the
circumstances of the current subject, the RGB color space is
unlikely to be linked to the present study. This claim lead-
s us to redirect this paper into the perceptual color spaces.
Humans can perceive thousands of colors, and only about a
couple of dozen gray shades. Based on this assumption, two
color spaces are proposed (CIELAB and YCbCr).

The CIELAB [32] color space contains all perceivable col-
ors, which means that the gamut of CIELAB exceeds the

gamut of the RGB color space, where L stands for lightness
and a and b for the color-opponent dimensions. Usually, the
fact that the CIELAB [33–35] is described as a color appear-
ance model gives a negative reaction to the the most of col-
orimetry peoples. It is considered as a device-independent.
Hence, it is impossible to produce the range of luminance
and chromatic contrast that is witnessed in the original scene.
However, the CIEXYZ is proposed to get an approximation
of the three components.

The demands for digital algorithms in handling video in-
formation have found a solution with the YCbCr [22] col-
or space and have become a widely used model in a digital
video. Y is the luminance component which computed from
nonlinear RGB [36] by using a weighted sum of RGB values.
Cb is the difference between blue and luminance components
and Cr is the difference between red and luminance compo-
nents [37, 38].

To represent the color information in a statistical manner,
Figure 2 compares the behavior of different color distribu-
tions and the grayscale. In the second row at the far left, four
histograms have been remarked, the red one represents the
normalized coefficients of the original image in grayscales
level, the three others represent the histograms of the three
components of YCbCr of image 2(b), the chrominance his-
tograms (green and black) are clearly far from the histogram
of the original image which is not the case for the luminance
histogram (blue). The graphics on the middle and on the
right prove the chrominance adequacy to represent Additive
noise in color components and Contrast change respective-
ly. However, the intuitive extension proposed in this paper
brought together the two chrominance components. Thus, to
illustrate the statistical dependency of intra-component for
luminance and inter-components for chrominance, Chi-plot
graphs [39] are used to observe the different types of depen-
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dency. This latter can be considered as an extension of the
scatterplot which is usually employed to illustrate a possible
dependency. A common setting has been used as it is not-
ed in [39] to define the tolerance band which is shown as
a gray-shaded region. A deviation from the tolerance band
indicates a dependence structure. Figure 3 shows a set of
Chi-plots for CIELAB and YCbCr. The steerable pyramid
transform [40] enables to get the chi-plots. First of all, for the
luminance channel for both CIELAB and YCbCr, two sub-
bands have been selected from the same level to see the inter-
orientation dependency. For the chrominance part, the two
channels are used to get the chi-plot between them. As con-
cerns the luminance components (first column), the chi-plots
show the high inter-orientation dependency found between
adjacent sub-bands for a same scale decomposition level for
the luminance channel. For the chrominance channels (sec-
ond column), the dependency between the two channels is
clearly seen with a negative chi χ for YCbCr and a positive
chi χ for CIELAB.

Figure. 3: Chi-plots to show the statistical dependency
of intra-component for luminance and inter-components for
chrominance.

C. Studied RRIQA based NSS methods

The Reduced Reference methods for image quality assess-
ment in grayscale levels have known a glut, starting by mod-
eling image distortions and modeling the human visual sys-
tem and going to modeling natural image statistics. Never-
theless, these processes may be reconsidered in the future if
and when the grayscale levels evolve to multi-color channel-
s. Therefore, four of the most commonly cited methods have
been selected.

1) WNISM [16](Wavelet-Domain Natural Image Statistic
Model)

The transform used for this method is the steerable pyra-
mid [40] in order to decompose an image into scale and ori-
entation subbands in an efficient and accurate manner. The
generalized Gaussian density (GGD) is the distribution used
for subbands modeling. The statistical framework to estimate
and compute efficiently the parameters of GGD is the Max-
imum Likelihood. Afterward, the overall distortion measure

is the sum of the Kullback-Leibler Divergence (KLD) of all
subbands. It should be noted that there exists a closed-form
expression for the KLD to quantify the difference between
the model parameters of the GGD.

2) DNT [41](Divisive Normalization Transform)

Statistical and perceptual issues Motivated Li et al. [41] to
substitute the steerable pyramid representation by a divisive
normalization transform (DNT). They propose a two-stage
procedure, a wavelet image decomposition, followed by a
divisive normalization stage. First of all, an initial model
based on the Gaussian Scale Mixture (GSM) for the wavelet
coefficients [42] is called. It is a result of the product of
two independent components; a zero-mean Gaussian random
vector with covariance and a scalar random variable called a
mixing multiplier. As well as WNISM, the DNT computed
coefficients are based on the maximum-likelihood estimate
of the multiplier. Finally, the quality score is then computed
using the KLD between the zero-mean Gaussian models.

3) EMISM [17](Empirical Mode Image Statistic Measure)

In [17], authors choose the bidimensional empirical mode
decomposition (BEMD) as a transformation domain. This
procedure is based on the frequency-time analysis, each im-
age is decomposed into a number of intrinsic mode functions
(IMFs) and a residue. To model the visual information in
a suitable manner, an adaptive analysis is allowed from the
basic functions of the EMD derived from the image content.

Indeed, the main drawback of the steerable pyramid rep-
resentation is that the basis functions are fixed and do not
necessarily match the varying nature of images. Experimen-
tal results have shown that the GGD is a good fit for the IMF
distribution. The distortion measure is computed based on
the KLD between the IMF statistics.

4) RRED [43](Reduced Reference Entropic Differencing)

The Soundararajan et al. [43] propose a measure based on
entropy. The principal idea is to link the distortion to the
entropy difference between the wavelet coefficients. First
step based on splitting a selected sub-band into blocks, and
then computing the entropy of each block, assuming a GSM
model. Then, they calculated the difference between the en-
tropies of the original and degraded blocks in order to find
the overall distance. There is two way to compute the over-
all measure, the first one is the summation of the entropies
difference, the second one is the difference between the sum-
mation of the entropies of the blocks.

III. Experimental setup

A. Dataset

The TID2013 dataset [44,45] is used to test the performances
of the measures under investigation. This recently released
benchmark is an improved version of the TID2008 database.
It has the same number of reference images as TID2008, with
3000 distorted images (25 reference images with 24 types of
distortions and 5 levels of distortions). The quality of each
image in TID2013 has been graded by the Mean Opinion
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Figure. 4: Two artifacts from two different kinds of distortions influencing the three components of YCbCr.

Method EMISM [17] WNISM [16] DNT [41] RRED [43]

Information Luminance

Number of features 12 18 48 L/36

Information Chrominance

Number of features 24 36 96 (2× L) /36

Information Luminance+Chrominance

Number of features 36 54 144 (3× L) /36

Table 3: The numbers of features for the four selected methods (L is the size of the image).
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Score (MOS) and experiments was carried out by 971 ob-
servers.

In scrutinizing TID2013, according to Ponomarenko et al.
in [46], only three chrominance distortions (Additive noise in
color components, Quantization noise, JPEG compression)
have been token in TID2008. Owing to the lack of chromi-
nance distortions, Ponomarenko et al. [44] have developed
TID2008 into TID2013 to append new distortion types, es-
pecially the chrominance distortions. For the purpose of the
current study, the distortion types of TID2013 can be divided
into two categories: Color distortions and Luminance distor-
tions. The first category has been prescribed in Table III-
A. For the luminance distortions, one can find eighteen dis-
tortion types mentioned in Table III-A. The wealth of the
chrominance distortions for this newest benchmark strong-
ly motivates our choice, to parse the impact of chrominance,
luminance, and combination on each category.

In Figure 4, the three components of YCbCr color s-

Label Type of distortion

1 Additive noise in color components

2 Quantization noise

3 JPEG compression

4 Change of color saturation

5 Image color quantization with dither

6 Chromatic aberrations

Table 1: The six chrominance distortion types in TID2013.

Label Type of distortion

1 Additive Gaussian noise

2 Spatially correlated noise

3 Masked noise

4 High frequency noise

5 Impulse noise

6 Gaussian blur

7 Image denoising

8 JPEG2000 compression

9 JPEG transmission errors

10 JPEG2000 transmission errors

11 Non eccentricity pattern noise

12 Local block-wise distortion of different intensity

13 Mean shift

14 Contrast change

15 Multiplicative Gaussian noise

16 Comfort noise

17 Lossy compression of noisy images

18 Sparse sampling and reconstruction

Table 2: The eighteen luminance distortion types in
TID2013.

pace altered by two distortions: the additive noise in color
components that belongs to chrominance distortions; and the
contrast change that belongs to luminance distortions, show
that the influence of the first artifact is clearly remarked for
Cb and Cr components, on the contrary for the Y component.
As regards the second artifact, it affected the Y component

more than the Cb and the Cr components.

B. Experimental protocol

1) Validation protocol

To compare the proposed measure with the subjective quality
score (MOS), a nonlinear regression using a logistic function
in order to map the objective and subjective scores [47] is
performed. To do so, a logistic function is proposed by the
Video Quality Expert Group (VQEG) Phase I FR-TV with
five parameters. The expression of the quality with five pa-
rameters. The expression of the quality score which is the
predicted MOS is given by:

DMOSp = β1logistic (β2, D − β3) + β4D + β5. (1)

Where the vector (β1, β2, β3, β4, β5) is estimated thanks to
fminsearch function in the optimization Toolbox of Matlab,
and the logistic function is expressed by :

logistic (τ,D) =
1

2
− 1

1 + exp (τD)
. (2)

Where D is the distortion measure in Figure 1.
The prediction accuracy is measured by the Pearson’s lin-

ear correlation coefficient PLCC to evaluate the relevance of
a quality metric. This coefficient is defined as follows:

PLCC =

∑n
i=1(si − s̄)(xi − x̄)√∑n

i=1(si − s̄)
√∑n

i=1(xi − x̄)
, (3)

Where si is the subjective score of the ith image, xi rep-
resents the predicted MOS defined in equation 1 of the ith

image, and (s̄, x̄) denote respectively the average of (s, x).

2) Adaptation protocol for color information categorization

In the present study, a new framework to integrate color in-
formation into RRIQA procedures is proposed. However, the
term ”reduced reference” must be taken into account, while
keeping a good correlation with MOS scores. In this sense,
Table III-A shows a comparison between the number of fea-
tures required by each color information for the studied qual-
ity methods. the results demonstrate that LI remains the least
expensive information in terms of features number followed
by the chrominance information CI, and the last is the com-
bination of both LI and CI. Until now, the features size of
each color information was not incorporated in the proposed
framework prescribed in subsection II-A.

As the main objective of this study is to find what quali-
ty color information-based measure is more appropriate for
which type of distortion, a protocol of information adaptation
is enclosed to the current framework. Figure 5 illustrates the
mechanism of the adaptation protocol. Firstly, the three mea-
sures in Figure 1 have been used for the development of the
proposed framework. The idea behind the adaptation proto-
col is undoubtedly related to the choice of the information.
Therefore, in order to apply the adaptation protocol, the fol-
lowing equation is employed:

∆ (x, y) = ((x− y) /y) ∗ 100 (4)

Where ∆ (x, y) represents the percentage of variation be-
tween two values (x, y).
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Label EMISM [17] WNISM [16]

CIELAB YCbCr CIELAB YCbCr

Chrominance distortions

L AB Lab Y CbCr YCbCr L AB Lab Y CbCr YCbCr

1 0.51 0.73 0.63 0.44 0.60 0.60 0.70 0.86 0.80 0.65 0.86 0.78

2 0.73 0.79 0.79 0.66 0.74 0.73 0.72 0.66 0.70 0.62 0.68 0.65

3 0.81 0.88 0.70 0.68 0.75 0.69 0.78 0.67 0.81 0.87 0.81 0.90
4 0.24 0.68 0.25 0.27 0.62 0.25 0.11 0.65 0.67 0.22 0.51 0.58
5 0.65 0.46 0.78 0.64 0.44 0.72 0.75 0.56 0.73 0.52 0.29 0.51

6 0.83 0.52 0.94 0.45 0.45 0.82 0.93 0.32 0.80 0.96 0.19 0.78

Luminance distortions

1 0.66 0.79 0.71 0.56 0.74 0.68 0.80 0.90 0.87 0.71 0.92 0.78

2 0.70 0.79 0.68 0.58 0.74 0.61 0.81 0.89 0.87 0.71 0.91 0.82

3 0.53 0.66 0.62 0.43 0.67 0.63 0.66 0.70 0.74 0.66 0.65 0.72
4 0.78 0.85 0.79 0.70 0.83 0.73 0.88 0.95 0.92 0.79 0.94 0.91

5 0.44 0.49 0.54 0.39 0.31 0.46 0.73 0.79 0.81 0.67 0.77 0.80
6 0.78 0.79 0.89 0.77 0.87 0.94 0.94 0.81 0.90 0.91 0.50 0.83

7 0.54 0.61 0.81 0.39 0.60 0.78 0.93 0.46 0.83 0.88 0.38 0.82

8 0.67 0.81 0.89 0.62 0.76 0.80 0.95 0.78 0.89 0.93 0.56 0.87

9 0.64 0.61 0.46 0.64 0.09 0.34 0.81 0.45 0.68 0.88 0.11 0.67

10 0.68 0.67 0.60 0.63 0.33 0.54 0.84 0.61 0.74 0.79 0.09 0.72

11 0.25 0.25 0.56 0.20 0.24 0.46 0.39 0.34 0.46 0.42 0.04 0.34

12 0.08 0.03 0.29 0.19 0.25 0.39 0.22 0.08 0.25 0.21 0.04 0.23
13 0.75 0.75 0.58 0.18 0.46 0.43 0.72 0.68 0.73 0.47 0.11 0.52
14 0.60 0.35 0.45 0.59 0.62 0.53 0.57 0.26 0.38 0.72 0.20 0.54

15 0.57 0.71 0.68 0.54 0.60 0.61 0.82 0.86 0.85 0.63 0.81 0.79

16 0.38 0.63 0.45 0.05 0.07 0.21 0.53 0.48 0.56 0.71 0.11 0.73
17 0.68 0.67 0.67 0.65 0.73 0.71 0.80 0.82 0.91 0.76 0.78 0.92
18 0.94 0.87 0.91 0.89 0.44 0.88 0.93 0.78 0.89 0.91 0.39 0.86

Table 4: The Pearson’s linear correlation coefficients (PLCC) for EMISM and WNISM in TID2013 benchmark.

Figure. 5: The description of the proposed protocol of adap-
tation using the three quality information-based measures
LM, CM and LCM presented in Figure 1.

According to the features sizes in Table III-A, three thresh-
olds (10% between LI and CI, 20% between LI and the com-
bination (LCM), and 7% between CI and the combination)
have been accorded for the adaptation protocol.

IV. Experimental results

The previous section looked at the selected benchmark and
experimental protocol. In real-world, the most perceptual in-
formation is the chrominance, therefore, this section searches
for the importance of this information in well-known RRIQA

methods. Thus, for the purpose of the current study, this sec-
tion is organized as follow. First of all, a simple comparison
between the chrominance and the luminance impact despite
the features size has been made. Afterward, the combina-
tion of both information can also improve the performances.
Therefore, this framework compares the best scores between
LI and CI against the combination scores to seek for the bet-
ter of choices. Finally, the adaptation protocol is established
in order to retrieve the convenient information for each dis-
tortion type.

A. Comparison between chrominance and luminance impact
for each method

Table III-B.2 reports the prediction accuracy for both meth-
ods EMISM and WNISM, in both color spaces CIELAB and
YCbCr. In order to compare the impact of the luminance
and the chrominance for each method, the table provides
results for both types of distortions in TID2013 database:
luminance distortions and chrominance distortions. Let us
start with the EMISM method, for chrominance distortions
and as expected, the chrominance gives the best quality
scores for four distortion types (1, 2, 3, and 4) for both color
spaces. In the same Table for the two others chrominance
distortions, suddenly, the domination has been swapped
between chrominance and luminance.
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Label DNT [41] RRED [43]

CIELAB YCbCr CIELAB YCbCr

L AB Lab Y CbCr YCbCr L AB Lab Y CbCr YCbCr

Chrominance distortions

1 0.38 0.67 0.67 0.26 0.54 0.53 0.80 0.85 0.85 0.79 0.84 0.86
2 0.34 0.67 0.68 0.24 0.63 0.65 0.77 0.73 0.76 0.77 0.81 0.80

3 0.78 0.75 0.77 0.55 0.46 0.55 0.94 0.80 0.89 0.94 0.88 0.91

4 0.08 0.48 0.48 0.25 0.44 0.46 0.63 0.65 0.65 0.22 0.70 0.69

5 0.72 0.57 0.57 0.33 0.45 0.43 0.85 0.78 0.84 0.60 0.58 0.61
6 0.90 0.30 0.75 0.91 0.21 0.77 0.94 0.71 0.90 0.95 0.62 0.92

Luminance distortions

1 0.69 0.78 0.78 0.60 0.62 0.62 0.79 0.87 0.87 0.80 0.91 0.91

2 0.41 0.69 0.69 0.32 0.64 0.63 0.78 0.87 0.86 0.79 0.91 0.89

3 0.46 0.59 0.59 0.22 0.66 0.67 0.47 0.61 0.59 0.84 0.77 0.81

4 0.52 0.80 0.80 0.41 0.76 0.75 0.88 0.94 0.94 0.86 0.95 0.94

5 0.51 0.52 0.52 0.45 0.54 0.55 0.77 0.85 0.86 0.78 0.85 0.87
6 0.85 0.85 0.82 0.82 0.85 0.83 0.90 0.86 0.94 0.91 0.87 0.93
7 0.88 0.64 0.86 0.87 0.68 0.85 0.94 0.83 0.91 0.94 0.86 0.93

8 0.94 0.88 0.90 0.90 0.82 0.88 0.94 0.70 0.90 0.97 0.74 0.92

9 0.75 0.45 0.49 0.32 0.20 0.28 0.89 0.62 0.80 0.89 0.48 0.77

10 0.45 0.15 0.58 0.75 0.07 0.82 0.74 0.77 0.70 0.76 0.81 0.73

11 0.28 0.31 0.40 0.18 0.28 0.34 0.77 0.80 0.82 0.76 0.81 0.83
12 0.20 0.39 0.34 0.08 0.26 0.25 0.56 0.11 0.23 0.53 0.53 0.53

13 0.24 0.65 0.65 0.12 0.57 0.57 0.79 0.74 0.77 0.66 0.72 0.69

14 0.27 0.35 0.39 0.19 0.04 0.22 0.36 0.08 0.06 0.58 0.29 0.31

15 0.32 0.63 0.63 0.54 0.47 0.58 0.73 0.86 0.85 0.75 0.84 0.83

16 0.13 0.30 0.30 0.21 0.57 0.58 0.92 0.72 0.83 0.91 0.59 0.76

17 0.65 0.68 0.70 0.33 0.75 0.77 0.93 0.90 0.94 0.91 0.93 0.94
18 0.89 0.87 0.90 0.88 0.87 0.92 0.96 0.61 0.87 0.97 0.63 0.91

Table 5: The Pearson’s linear correlation coefficients (PLCC) for DNT and RRED in TID2013 benchmark.

Furthermore, for the luminance distortions, as regards
CIELAB, the domination of chrominance is clearly re-
marked for ten distortion types (1, 2, 3, 4, 5, 6, 7, 8, 15, and
16). Moreover, for the YCbCr, the domination of CI persists
with fourteen artifacts (1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15,
16, and 17). It can be concluded from these results, that
for the EMISM method, the CI needs to be invoked for the
TID2013 artifacts, especially for luminance distortions.

Regarding WNISM method, the rows representing the
chrominance distortions highlighted CI for two cases (1, and
4) for CIELAB, and three cases (1, 2, and 4) for YCbCr. The
results of the Chromatic aberrations distortion are already
distinctly lower for both color spaces and the deterioration
becomes worst with YCbCr. This leads us to conclude that
CI is not required in that case, since LI achieved the highest
results for this artifact.

Regarding the luminance distortions, the results of
CIELAB and YCbCr maintain the advantage of LI for this
method, CI has only seven distinctions (1, 2, 3, 4, 5, 15,
and 17) for CIELAB and six distinctions (1, 2, 4, 5, 15, and
17) for YCbCr. It appears that the results of this method
are widely reflected the crucial requirement of LI for this
method.

In the same way, Table IV-A shows the prediction accura-
cy for both methods DNT and RRED with two color spaces
CIELAB and YCbCr.

Let us consider the DNT method. For the chrominance
distortions, CI dominates for three cases (1, 2, and 4) for
CIELAB and four cases (1, 2, 4, and 5) for YCbCr. While
for 3 and 6, LI is required to achieve better results. For
the distortion type 5, the YCbCr promoted CI while the
CIELAB favored LI.

Concerning luminance distortions, the upper hand goes
for CI with twelve artifacts (1, 2, 3, 4, 5, 11, 12, 13, 14, 15,
16, and 17) for CIELAB, and eleven artifacts (1, 2, 3, 4, 5, 6,
11, 12, 13, 16, and 17) for YCbCr. This means that, for the
DNT, CI is more relevant than LI. Yet it is on this fact that
CI has been attached to this kind of process more than LI.

The second method in Table IV-A is the RRED. This
method has provided an equitable process for the selection of
CI and LI for YCbCr. Concerning chrominance distortions
when the CIELAB components have been awarded, LI
outperforms CI for four artifacts (2, 3, 5, and 6). In the other
color space, LI shares the same number of cases with CI,
moreover, the performances of the distortion type 4 have
known an immense deterioration for LI which excludes this
latter from this artifact.

Regarding the luminance distortions, almost an equal
distribution is reached for the YCbCr color space between
LI and CI with nine artifacts for CI and eight artifacts for
LI and they share the same PLCC for the distortion type 12,
the CIELAB color space grants eight artifacts for CI and ten
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Figure. 6: A holistic view of LI and CI comparison and the fruitful combinations for YCbCr.

for LI. Seeing the quality scores under 0.5, two cases for
each color spaces grab our attention. For the CIELAB, the
distortion type 12 shows the uselessness of CI for this kind
of artifact, nevertheless, whether the usefulness of CI or LI
for the distortion type 14 does not exceed the quality score
of 0.5.

The aim of this subsection was to examine the impact of CI
and LI for different quality assessment methods under study.
One thing that makes sense is that CI have to perform quite
well for images that have undergone color distortions. Simi-
larly, LI have to perform quite well for images that have un-
dergone luminance distortions. However, experiments show
that some cases do not follow this logic. As an example, two
color distortions grab our attention: 5 and 6. For these arti-
facts, results with LI are higher than the ones with CI, this
can be noticed for several methods and for both color spaces.
However, in such cases, the use of LI or CI independently
does not achieve the desired outcome. Therefore, in the next
subsection, the combination between LI and CI contributes
to the debate in order to find if there a possible improvement
can be reached.

B. Combination of luminance and chrominance information

Table III-B.2 shows that the combination does not cause too
much improvement to the results of EMISM in terms of ar-
tifacts. For chrominance distortions, only two artifacts (5,
and 6) for CIELAB and YCbCr have known an amelioration
comparing to the results of CI and LI. Regarding luminance
distortions, six artifacts (5, 6, 7, 8, 11, and 12) for CIELAB
and eight artifacts (5, 6, 7, 8, 11, 12, 15, and 16) for YCbCr
have benefited from the combination. Therefore for thirty
artifacts, the intended outcome of the combination does not
yield as well as the use of LI or CI independently.

Concerning WNISM, when applying the combination to
chrominance distortions, a negligible impact has been re-
marked upon in two artifacts (3, and 4) for both CIELAB and
YCbCr. As regards the luminance distortions, Table III-B.2

illustrates a little bit improvement for thirteen cases (seven
artifacts (3, 5, 11, 12, 13, 16, and 17) for CIELAB and six
artifacts (3, 5, 12, 13, 16, and 17) for YCbCr). Among the
twenty-four distortion types in this benchmark, for both color
spaces, only the distortion type 14 from the luminance dis-
tortions has known a significant improvement with this com-
bination.

The DNT has not known development like that of EMISM
and WNISM and has stayed under 0.8 with the combination
for chrominance distortions as shown in Table IV-A. The lu-
minance distortions acclaim the combination for five artifacts
(10, 11, 14, 17, and 18) for CIELAB. While for YCbCr, six
artifacts (10, 11, 14, 15, 17, and 18) have been improved, as
for three artifacts (3, 5, and 16), the increase does not exceed
0, 01, which is not a substantial added value.

The combination of CI and LI in Table IV-A for RRED
does not seem to be a significant change for chrominance
distortions. The same outcome has been remarked for lumi-
nance distortions, except for eight cases (four artifacts (5, 6,
11, and 17) for each color space), the combination brings a
little bit of improvement.

Figures 6 and 7 show a comparison between LI and CI in
terms of the number of distortion types, and illustrate also
the number of improvements for each method when consid-
ering the combination for YCbCr and CIELAB color spaces,
respectively. For the methods EMISM and DNT, CI has per-
formed better than LI in terms of the number of distortion
types, unlike the WNISM and the RRED, a clear distinction
has been drawn between CI and LI in favor of the second
one. Meanwhile, the percentages of fruitful combination did
not exceed 50%, meaning that CI or LI alone can produce
better results than the combination. Hence, the next subsec-
tion aims to give each type of distortion and each method the
most appropriate information.

C. Information adaptation

The aim of the information adaptation is to assort each infor-
mation according to the distortion type. Hence, the correla-
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Figure. 7: A holistic view of LI and CI comparison and the fruitful combinations for CIELAB.
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Figure. 8: The percentages of fruitful combination with and without a threshold in TID2013 for both color spaces.

tion between the two selected color spaces to avoid the obsta-
cles affecting the adaptation gives 0.78 between the whole t-
wo information which means that both color spaces behave in
the same manner, meanwhile, the correlations between each
information for each method strengthen the last remark.

Let us take a look at the overall performance of some of
well-known correlation coefficients and error measures. Ta-
ble IV-B presents a comparison between color information
impact on the studied methods using Pearson linear corre-
lation coefficient (PLCC), Spearman rank correlation coeffi-
cient (SRCC), Kendalls rank correlation coefficient (KRCC),
Root mean-squared error (RMSE), and mean absolute error
(MAE). The PLCC is computed in order to evaluate the pre-
diction accuracy. SRCC and KRCC are employed to assess
prediction monotonicity, they are nonparametric rank order-
based correlation metrics. MAE and RMSE are calculated by
comparing the subjective and objective scores after nonlinear
mapping. A better RRIQA measure should have higher PLC-

C, SRCC, and KRCC, but lower MAE and RMSE values.
The combination based measures (LCM) dominate almost

for all cases, except for two cases. RRED with the lumi-
nance component represents the best solution for CIELAB
color space, and EMISM with the chrominance information,
especially for the color space CIELAB and for the chromi-
nance distortions. These results revealed the effectiveness of
the combination when it comes to the entire database.

Table IV-B describes the desired color information adap-
tation according to section III-B.2. Hence, the categorization
is made starting by the types of distortion then for method-
s. By looking at Table IV-B and regarding the chrominance
distortion, the distortion type 1 has needed CI for seven cas-
es against one case for the combination and none for LI. The
second chrominance distortion type favored CI for six cases
and LI for the remaining two cases. Nonetheless, LI domi-
nates for the distortion type 3 for six cases. Whereas the dis-
tortion type 4 proves the meaningless of LI with seven cases
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Chrominance Distortions Luminance Distortions

PLCC SRCC KROCC RMSE MAE PLCC SRCC KROCC RMSE MAE

L 0.63 0.62 0.47 11.02 8.38 0.59 0.56 0.41 11.52 9.00

AB 0.68 0.66 0.51 10.62 7.92 0.63 0.61 0.46 11.32 8.45

EMISM CIELAB 0.68 0.65 0.51 10.64 7.94 0.64 0.62 0.48 11.28 8.37
Y 0.52 0.51 0.38 11.93 9.31 0.50 0.49 0.33 12.06 9.54

CbCr 0.60 0.58 0.43 11.52 9.06 0.52 0.51 0.38 11.94 9.32

YCbCr 0.63 0.62 0.48 10.98 8.35 0.60 0.58 0.43 11.41 8.89
L 0.66 0.65 0.50 10.82 8.26 0.74 0.72 0.53 9.34 7.64

AB 0.62 0.60 0.47 11.18 8.67 0.65 0.64 0.49 10.84 8.28

WNISM CIELAB 0.75 0.73 0.56 9.11 7.53 0.74 0.73 0.54 9.31 7.58
Y 0.64 0.63 0.48 10.94 8.39 0.70 0.68 0.50 10.12 7.98

CbCr 0.55 0.52 0.37 11.84 9.31 0.46 0.46 0.30 12.76 10.01

YCbCr 0.70 0.69 0.53 10.04 7.93 0.71 0.69 0.52 9.98 7.90
L 0.53 0.52 0.37 11.97 9.38 0.52 0.51 0.35 12.05 9.41

AB 0.57 0.55 0.41 11.78 9.17 0.58 0.57 0.43 11.56 9.17

DNT CIELAB 0.65 0.64 0.49 10.84 8.28 0.63 0.62 0.47 10.99 8.36
Y 0.42 0.40 0.30 12.91 10.29 0.45 0.44 0.32 12.72 9.99

CbCr 0.45 0.43 0.32 12.75 10.02 0.54 0.54 0.39 11.83 9.24

YCbCr 0.56 0.54 0.41 11.77 9.17 0.62 0.61 0.43 11.22 8.68
L 0.82 0.81 0.60 8.18 6.53 0.78 0.76 0.55 8.87 7.03
AB 0.75 0.74 0.53 9.02 7.25 0.70 0.69 0.50 9.27 7.57

RRED CIELAB 0.80 0.79 0.59 8.56 6.77 0.76 0.75 0.54 8.91 7.04

Y 0.71 0.69 0.50 9.13 7.42 0.81 0.79 0.60 8.23 6.64

CbCr 0.74 0.73 0.54 8.79 7.01 0.75 0.73 0.55 8.71 6.87

YCbCr 0.80 0.79 0.58 8.33 6.64 0.80 0.79 0.59 8.37 6.70
L 0.56 0.54 0.40 11.77 9.17 0.57 0.55 0.40 11.71 9.11

AB 0.59 0.58 0.42 11.58 9.00 0.58 0.56 0.41 11.61 8.98

MGGD CIELAB 0.90 0.87 0.68 6.96 5.23 0.85 0.84 0.63 7.23 5.65
Y 0.39 0.37 0.20 13.15 10.43 0.51 0.49 0.37 11.98 9.41

CbCr 0.54 0.52 0.38 11.71 9.27 0.57 0.56 0.41 11.78 9.15

YCbCr 0.89 0.86 0.63 7.03 5.36 0.85 0.83 0.62 7.31 5.67

Table 6: A comparison between the four selected methods using three correlation coefficients and two error measures.

for CI and one case for the combination. The remaining t-
wo chrominance distortions do not benefit from CI over LI
and combination, starting with 5, only one case has stood for
CI against five and two for LI and combination respectively.
CI has been neglected for 6 with six cases for LI and two
for combination. The results of the chrominance distortion-
s deducted that the CI has dominated for twenty three cases
against nineteen cases for LI and only six cases for the com-
bination, which sustain the CI.

Let us turn to luminance distortions, CI dominates for five
artifacts (1, 2, 3, 4, and 15) with a score of eight (two col-
or spaces for four methods) for the first two artifacts and the
High frequency noise, which means that CI can be the on-
ly information used for these kinds of degradations, further-
more, the Multiplicative Gaussian noise gives seven cases for
CI and one for LI, proving the effectiveness of CI for this dis-
tortion type.

LI attends for eight distortion types (6, 7, 8, 9, 10, 14, 16,
and 18) as the most efficient information. Thus, the use of
CI alone is not sufficient for these artifacts. Indeed, CI has
been appeared only once in JPEG2000 transmission errors
and three times in comfort noise. These results depicted the
effectiveness of LI for these kinds of degradations, regarding

these artifacts, they are based on data transmission, while ne-
glecting CI.

Finally, the combination between both information is best
suited only for two distortions (5, and 11).

To sum up, the proposed protocol using a threshold obvi-
ously offers a better adaptation than in normal cases. Without
a threshold, the combination has 63 cases, which increases
the features size. However, with a threshold, the combina-
tion has only 31 cases, which gives more accuracy in terms
of features size and correlation with MOS. Figure 8 proves
without a doubt that the use of a threshold reduces the size
of features for the four selected methods. Looking at the per-
centages, the combination has been needed only for 2% for
RRED when the threshold is considered.

V. Conclusion

According to the results of this paper, the chrominance chan-
nels are indispensable for RRIQA methods and for both color
spaces under study. Nonetheless, the combination does not
look to be appropriate for the four selected methods. The
human eye perceives the diffusion as a mixture of the colors
within it. Thus, the artifacts do not only alter the components
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Label EMISM WNISM DNT RRED

CIELAB YCbCr CIELAB YCbCr CIELAB YCbCr CIELAB YCbCr

Chrominance distortions

1 AB CbCr AB CbCr AB CbCr AB YCbCr

2 AB CbCr L CbCr AB CbCr L CbCr

3 AB CbCr L Y L Y L Y

4 AB CbCr AB YCbCr AB CbCr AB CbCr

5 CIELAB YCbCr L Y L CbCr L Y

6 CIELAB YCbCr L Y L Y L Y

Luminance distortions

1 AB CbCr AB CbCr AB CbCr AB CbCr

2 AB CbCr AB CbCr AB CbCr AB CbCr

3 AB CbCr CIELAB YCbCr AB CbCr AB Y

4 AB CbCr AB CbCr AB CbCr AB CbCr

5 CIELAB YCbCr CIELAB YCbCr L CbCr AB CbCr

6 CIELAB YCbCr L Y L Y L Y

7 CIELAB YCbCr L Y L Y L Y

8 CIELAB YCbCr L Y L Y L Y

9 L Y L Y L Y L Y

10 L Y L Y CIELAB Y L CbCr

11 CIELAB YCbCr CIELAB Y CIELAB YCbCr L CbCr

12 CIELAB YCbCr CIELAB Y AB CbCr L Y

13 L CbCr L Y AB CbCr L CbCr

14 L Y L Y CIELAB Y L Y

15 AB CbCr AB CbCr AB Y AB CbCr

16 AB YCbCr L Y AB CbCr L Y

17 L CbCr CIELAB YCbCr AB CbCr L Y

18 L Y L Y L Y L Y

Table 7: The categorization of the three information according to the adaptation protocol in subsection III-B.2.

but also the dependencies between them. Thus, the compari-
son has been enhanced by a compatible RRIQA based color
method which uses multivariate generalized Gaussian distri-
bution MGGD [48] to capture dependencies between color
components.

For Table IV-B, the combination has significantly im-
proved the scores, for the MGGD, with more than 0.2 im-
provement. Figures 6 and 7 strengthen the effectiveness of
this kind of process with 44 cases of improvement from 48
(23 for YCbCr, and 21 for CIELAB).

Moreover, the proposed protocol of adaptation leads to a
better coherence and adequacy of the correlation coefficients.
Table IV-B shows the categorization of the three informa-
tion (LI, CI, Combination) using the adaptation protocol, LI
is more suited to eleven types of distortion, followed by CI
which is appropriate to eight distortion types, whereas the
combination of both of them, is favored for application only
in two distortion types.

As a future work, we plan to develop these four aforemen-
tioned methods while benefiting from the color information
and the dependencies between color components according
to MGGD results. Furthermore, We are interested in enhanc-
ing the proposed protocol of adaption and in studying other
color spaces.
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