International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 10 (2018) pp. 227-237
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Received: 7 Oct, 2017; Accepted: 6 August, 2018; Publish: 27 August, 2018

Investigation of FPGA based 32-bit
RISC-Modulation Processor

Joseph Anthony Prathap®”, T.S.Anandhi?, Nagarjuna Malladhi®, V.Roja*

1.3.4Department of Electronics and Communication Engineering,
Vardhaman College of Engineering, Hyderabad, India
japtuhilll16@gmail.com

2Department of Electronic and Instrumentation Engineering,
Annamalai University, Chidambaram, India
ans.instrus@gmail.com

Abstract: This paper presents the design of a novel
RISC-Modulation Processor using the Field Programmable Gate
Array. Until now, the RISC processor is designed with
operations like arithmetic and logical; shifting; rotating and
comparing along with the instruction pipeline, which is the heart
of RISC processor. Conventionally, the modulation techniques
are developed separately as per the requirement. In this work,
the RISC processor design is facilitated with the modulation
techniques like pulse width modulation, pulse code modulation,
pulse position modulation, quadrature amplitude modulation,
sine wave generation and cosine wave generation so as to satisfy
both computer and communication manipulations. The real time
validation is performed by the implementation of the
RISC-Modulation Processor using the Xilinx Spartan FPGA
family devices. The power consumption and timing performance
of the RMP design are evaluated for the proposed method and
compared with different FPGA implementations.

Keywords: RISC Processor, Communication Processor, Field
Programmable Gate Array

|I. Introduction

RISC processor is a processor which performs all operations
including arithmetic and logical, shifting and rotating, read
and write by using simple set of instructions. Basically, in
RISC processor design, the concept of pipelining is included.
The RISC processor along with the pipeline concept helps in
the efficient performance of the processor. “Pipelining” as the
name specifies arranges the instructions in pipe or sequence to
pass through the different manipulation phases. In other words,
the CPU of the RISC processor is instruction pipelining. Also
the instruction throughput is increased by the use of the

pipelining.

Without pipeline, all instruction execute with respect to the
clock pulse. The drawback of the clock pulse based operation
is that only one operation could be performed at any time. To
overcome this, the instruction pipelining is included with the
RISC. The pipelining allows five operations within the single
clock pulse. The pipeline involves five stages of operations.
They are stated as a) Instruction Fetch (IF). b) Instruction

Decode (ID). c) Execute (EX). d) Read/Write (RW) and
e) Memory Access (MA).

Recently, the instruction pipeline is customized according to
the requirement of the RISC applications. The top-down
pipelined RISC design achieves maximum throughput of
execution with less clock cycles per instruction [1]. The
pipelined 8 bit RISC minimizes power by the clock gating
technique [2]. But the 5-stage pipelined RISC developed using
the ARM processor consumes more power [3]. To overcome
the power consumption of the pipelined instructions and its
latency, the reservation station based on Tomasulo algorithm
is designed [4].

The design of the RISC processor using the Field
Programmable Gate Array (FPGA) device has evolved
effectively due to the reconfigurable property, reliability,
upgradability, high performance, less power, less area, and
parallelism in hardware which helps to generate high
resolution output and complex computation throughput [5][6].
The power estimation could be performed for each of the
RISC processor units and related the FPGA based power with
the manufacturing power technology gap [7]. The external
memory interfaced with the RISC through the PIC controller
uses the reconfigurable FPGA design [8].The 32-bit RISC
processor with floating point unit works at high speed [9]. The
design of the RISC with circular convolution has less area and
power [10]. The FPGA based RISC processor is designed with
QR decomposition using Gram-Schmidt Ortho-normalization
method to accommodate 79 instructions [11]. For the sake of
removing the set-up slack, the Engineering Change Order
(ECO) is utilized in the FPGA based RISC processor design
[12].The FPGA is a device which has thousands of logic gates
(AND plane and OR plane) drives for high performance.
Another aspect of FPGA is high execution speed measured in
Million Instruction per Second (MIPS) and reduced delays.
The Xilinx Spartan FPGA is of several types such as Spartan
3A DSP, 3E, 6E depending on the number of AND gate and
OR gate planes, LUTSs, flip-flops within the device.

Dynamic Publishers, Inc., USA

228

This paper proposes the novel RISC-Modulation Processor
(RMP) design which utilizes the VHDL coded pulse
modulation techniques like Pulse Width Modulation (PWM),
Pulse Code Modulation (PCM), Pulse Position Modulation
(PPM), Quadrature Amplitude Modulation (QAM) and signal
generations (sine and cosine) with the RISC processor design.
The combining of the RISC architecture with the DSP system
finds advantage in many real time applications [13]. The next
section presents the details of the proposed RMP design.

Il. The proposed RISC-Modulation Processor

The RISC-Modulation Processor (RMP) is a combination of
the RISC processor and the digital modulation techniques.
Fig.1 shows the design flow for the proposed RMP. The RMP
utilizes the pipelining concept for its operations. The
instructions are stored in the memory in 32 bits. Depending on
the instructions, the pipeline operation is initiated. The
pipeline reduces the number of cycles while executing the
instruction along with Read/Write function. The pipeline
operation includes five sequences of operations as Instruction
Fetch (IF), Instruction Decode (ID), Execute (EX),
Read/Write Memory (RW) and Memory Access (MA).

The instruction has to be fetched from the memory and
decoded or separated as per the instruction given. The 32 bits
are split as opcode, input, output and RW operations. In this
design, the RMP is included with 32 operations. Thus the
opcode used in the RMP design is 2° bits. The operations in the
RMP design is categorized as Arithmetic and Logical Unit
(ALU), Shifting Unit (SU), Rotation Unit (RU), Comparator
Unit (CU) and Modulation Unit (MU). The other important
unit in the RMP design is the Control Unit (CTU) that
performs control in pipeline operations, read/write operations,
memory access operations and Program Counter (PC)
operations. The RMP design is coded using the mixed style of
the modeling in VHDL language. The following section
discuss about the instruction pipeline in the proposed RMP
design.

I11. Instruction Pipeline in RMP using FPGA

A. Instruction Fetch (IF)

During the instruction fetch process of the pipeline, the 32 bit
instruction is fetched from the memory. The IF operation uses
the PC to keep track of the addresses for all the operations and
increments by 1 for the next Instruction. The VHDL code for
the IF requires the 32 bit register declared as array variable
stored with the addresses of all the operations in the RMP
design. The PC is developed using the increment design to
track the current operation and predict the next operations in
the RMP design.

B. Instruction Decode (ID)

The ID is the process of the splitting the 32 bit instruction to
control according to the operation such as read/write and the
number of inputs & outputs. For all operations, the VHDL
code for the ID is developed so as to split the 32 bits
instruction as opcode bits (4-0 bits) and the MSB namely 31%
bit as Read/Write operation indicator. If the value of the 31%
bit is ‘0’, the read operation is activated and ‘1’ value is used

Prathap et al.

for the write operation activation. The bit splitting for the
inputs and outputs depends on the operations being used. The
ID for each of the operations used in the RMP is unique. The
RMP design presents 32 different operations starting from the
simple addition to the constellation for 64 bit QAM. The
VHDL code for the 32 operations is developed in structural
modeling, as the five units are instantiated as components. The
preceding sections present each of the operations along with
its instruction formats.

INSTRUCTIONS
FETCH

DECODE CLOCK RESET

MEMORY ACCESS
OP-CODE & READMRITE
ALU REGISTER

< CONTROL UNIT

SHIFTING

ROTATION OPERATIONS

COMPARATOR

MODULATION
EXECUTE

Figure 1. FPGA implemented RISC-Modulation processor
1) Arithmetic and Logical Unit (ALU)

The ALU consists of the arithmetic operations like addition,
subtraction, multiplication and division. The logical
operations are AND, OR, NOT, XOR, XNOR, NAND, NOR.
All the arithmetic and logical operations are performed with
respect to 28 bits, except the multiplication of two 8 bits
number produce maximum 15 bits in the output due to the
overflow. The increment and decrement operation is used for
the PC unit to track and predict the addresses of the present
and next instruction respectively. The instruction format for
the ALU of the RMP is depicted in Table 1. The number of
inputs utilized is indicated within the parentheses.

The VHDL code split the 32 bits instruction as per the
operation required within the ALU. The bit split code is same
for ALU operations except the multiplication, NOT logic
operation, increment and decrement operations. Due to the
prevalence of the output with 15 bits in multiplication
operations, the multiplication operation is performed with the
same two numbers. In other words, no two different 8 bits
number are multiplied. The NOT logic is a single operator
performed only for 8 bits of input. Increment and Decrement
requires one bit for its operations

Investigation of FPGA based 32-bit RISC-Modulation Processor

BITS FORMAT FOR INPUTS &

229

as shown in the Table 3. The number of bits for rotation and
direction of the rotation is performed accordingly within the
VHDL code. The behavioral style of coding is preferred for
RU.

BIT FORMAT FOR INPUT &

OPERATION R OUTPUT o
W outpu BITS DIRE- INPUT C(EDD
T -CTION
28-21 17-15 12-5
ROTATION 31 14 (1 4-0
® @ W

ALU R OUTPUTS oP-
OPERATION SECOND EIRST -CODE
OUTPUT INPUT INPUT
Addition 31 28-21(8) 20-13(8) 12-5(8) 4-0
Subtraction 31 28-21(8) 20-13(8) 12-5(8) 4-0
Multiplication 31 27-13 (15) 12-5(8) 4-0
Division 31 28-26(3) 25-21(5) 13-5(8) 4-0
And Logic 31 28-21(8) 20-13(8) 12-5(8) 4-0
Or Logic 31 28-21(8) 20-13(8) 12-5(8) 4-0
Nand Logic 31 28-21(8) 20-13(8) 12-5(8) 4-0
Nor Logic 31 28-21(8) 20-13(8) 12-5(8) 4-0
Xor Logic 31 28-21(8) 20-13(8) 12-5(8) 4-0
Xnor Logic 31 28-21 (8) 20-13 (8) 12-5(8) 4-0
Not A 31 28-21 (8) 12-5 (8) 4-0
Not B 31 28-21(8) 12-5(8) 4-0
Increment 31 7(1) 5(1) 4-0
Decrement 31 7() 5(1) 4-0

Table 1 Instruction Format for the ALU of the RMP design
2) Shift Register Unit (SU)

The SU can also be referred as universal shift register unit. The
SU consists of four types of registers implemented using the
same hardware components that is controlled by the opcode.
The four types of shift registers are Serial In Serial Out (SISO),
Serial In Parallel Out (SIPO), Parallel In Serial Out (P1SO),
Parallel In Parallel Out (PIPO). The choice of the shift
operation is decided by the opcode fed within the instruction
set. The decode of the instruction fetched is performed for the
SU of the RMP is as given in the Table 2

BITS FORMAT FOR INPUTS &

OUTPUTS -
OPERATION RW
LOAD ourpuT INPUT OO
ENABLE
SISO 31 6(1) 5(1) 40
sIPO 31 1368 50 40
PISO 31 16Q) 5(1) 1258 40
PIPO 31 2215(8) 12-5(8) 40

Table 2 Instruction Format for the ALU of the RMP design

The VHDL code for the universal SU is developed
considering the instruction format. The input format is split as
1 bit for SISO & SIPO and 8 bits for PISO and PIPO. The
Load Enable (LE) is used with the PISO operation, to transfer
the parallel bit to the serial bit output. The behavioral model of
the VHDL code is developed for the PISO.

3) Rotation Unit (RU)

The RU is performed by the barrel shifting. The sequence of 8
bits is called as barrel. The barrel shifting refers to moving
specified number of bits out of the 8 bits input towards the
given particular direction. In order to indicate the rotating
direction, 1 bit is provided and for the number of bits to be
rotated, 3 bits are used. The RU can be manipulated for the
range of 1 to 5 bits of rotation in either direction. The VHDL
code for the RU performs the splitting of the 32 bit instruction

Table 3 Instruction Format for the RU of the RMP design
4) Comparator Unit (CU)

The CU utilizes two 8 bit binary value comparisons for 3
conditions. The condition validation is performed for greater
than, less than and equal to. The instruction decode for the CU
as presented in Table 4. The decoded values of the inputs are 8
bits each along with the 5 bits opcode are coded by the VHDL
code.

BIT FORMAT FOR INPUT &

OUTPUT oP
OPERATION — RW ouTPuT SECOND FIRST ~ CODE
INPUT _ INPUT
EQUAL 31 28 (1) 20-13(8) 12-5(8) 4-0
GREATER 31 28 (1) 20-13(8) 12-5(8) 4-0
LESSER 31 28 (1) 20-13(8) 12-5(8) 4-0

Table 4 Instruction Format for the CU of the RMP design
5) Modulation Unit (MU)

The MU is developed using the mixed style of modeling in
VHDL code to satisfy all the modulation techniques. The
modulation techniques like PWM, PPM, PCM, QAM, sine
wave and cosine wave generation are used in the MU. The
instruction format for the all the modulation techniques in the
MU is discussed below.

(@) Pulse Width Modulation (PWM)

The PWM is designed by comparing the high carrier wave
with the DC signal. The duty-in value represents the DC signal
equivalent in 28 bits. The carrier wave is the generation of
triangle wave with the peak value as 255 for 28 bit resolution.
The duty cycle is represented by ‘D’ and is given by

Ton

T Ton+Toff
where Ton is the ON period and T is the OFF period.

The duty cycle is always represented in percentage (%).
Depending on the DC value fed in, the pulse width changes.
This RMP gets the instruction decoded as shown in Table 5.
The VHDL code for the PWM generation involves in the
carrier triangular wave generation and then comparing with
the DC value. The PWM implemented using the FPGA is
reliable and feasible [14]. The resolution of the PWM design is
28 bits.

230

BIT FORMAT FOR INPUT &

OPERATION RW OUTPUT OopP
PWM1 PWM2 DUTYIN COPE
PWM 31 27 (1) 26 (1) 12-5 (8) 4-0
Table 5 Instruction Format for the PWM in the MU-RMP
design
(b) Pulse Position Modulation

The PPM uses the sine modulating signal and overlaps with
the carrier signal to produce the pulse output. The position of
the pulse output prevails more with the low level of the
modulating signal and as the level increases the position of the
pulse output has some separation or gap between pulses. The
resolution used is 28 bits. The enable signal is provided for the
control of the PPM generation. The instruction format for the
PPM is as given in Table 6. The VHDL code for the PPM
generation is developed in the behavioral model which
includes the enable signal.

Prathap et al.

magnitude and angles are converted to constellation diagram
for the QAM transmission. The instruction decode for the
QAM is as below in Table 8. The VHDL code performs the
above mentioned tasks using the mixed style of model.

BIT FORMAT FOR INPUT &

BIT FORMAT FOR INPUT &

OUTPUT oP
OPERATION RW
PPM ENABLE DLIJNTY CODE
PPM 31 27(Q1) 20 (1) 12-5 (8) 4-0
Table 6 Instruction Format for the PPM in the MU-RMP
design

(© Pulse Code Modulation

The discrete sine wave signal is subjected to two processes
namely sampling and quantized to generate the steam of bits.
The sampling process is the digitizing along the X-axis of the
sine wave to obtain the sample sequences and quantization is
the digitizing along the Y-axis of the sine wave to obtain the
quantized levels. The resolution used for the PCM generation
is 28 bit output for both sampling and quantization. The
instruction fetched is decoded as given below in Table 7. The
VHDL code for the PCM prefers the structural model of
design. The VHDL code sine wave generation is functional
input for the PCM circuit.

OUTPUT
REAL oP
OPERATION PART 'pAclARY 20T CODE
OF QAM INPUT
QAM
QAM 31 2(71'3)8 17-8(10) 10-5(6) 40
Table 8 Instruction Format for the QAM in the MU-RMP
design
(e) Cosine wave generation

The cosine wave generation is vital in the design of most
digital and pulse modulation techniques. The cosine wave is
generated to the maximum of 28 bits. The amplitude level of
the cosine wave is varied by assigning values through the input.
The amplitude of the cosine is limited to -127 to 127 for signed
signals and 0 to 255 for unsigned signals. The VHDL code
takes into considerations the both the signed and unsigned
values for the amplitude levels of the cosine wave. Table 9
depicts the instruction format for the cosine signal generation.
The resolution used for the cosine signal is 28 bits.

BIT FORMAT FOR

OPERATION RW INPUT & OUTPUT OPCODE
COSINE INPUT
SIGNAL
COSINE 31 17-10 (8) 9-5 (5) 4-0

BIT FORMAT FOR

INPUT & OUTPUT
OPERATION RW SINE OPCODE
PCM WAVE
INPUT
PCM 31 27-20 (8) 12-5 (8) 4-0
Table 7 Instruction Format for the PCM in the MU-RMP
Design

(d) Quadrature Amplitude Modulation

The QAM is generated uses maximum of 64 bits. The 64 bit
QAM requires 2° bits in which 22 MSB bits are used for the
cosine wave and 2® LSB bits are used for the sine wave. The
levels are assumed to be different as per the resolution given.
For every value of the 26 bit, the QAM adds the corresponding
levels of sine and cosine waves. Then the maximum
magnitudes for each of the 2° bit values are taken along with its
corresponding angles. The rectangle form of the obtained

Table 9 Instruction Format for the Cosine signal in the
MU-RMP design

Q) Sine wave generation

Similar to the cosine wave, the sine wave is generated to the
maximum of 28 bits resolution. The amplitude level limits to
the -127 to 127 for signed and 0 to 255 for unsigned signals.
The sine signal starts its value at ‘0’. The cosine wave starts at
90°phase shift of the sine wave. The instruction decode is
given as in Table 10. The VHDL code is developed in the
behavioral style of modeling for the sine wave generation.

BIT FORMAT FOR

OPERATION Rw —NPUT & OUTPUT OPCODE
SINE INPUT
SIGNAL

SINE 31 17-10(8) 9-5(5) 4-0

Table 10 Instruction Format for the Sine signal in the
MU-RMP design

(9) Resolution

The resolution of the MU of the RMP design is 28 bits. The
resolution is defined as the number of bits used for the design
of modulations within the VHDL code. The modulation
techniques like PWM, PPM, PCM, QAM, sine wave and
cosine wave require precise resolution for accurate
manipulation. Further increase in the resolution say >28 bits,
increases the complexity of the proposed RMP method.

Investigation of FPGA based 32-bit RISC-Modulation Processor

C. Execute (EX)

The EX is the stage at which the outputs are evaluated as per
the operation given. The output of the ALU, SU, RU, CU and
MU are of 28 bit length. The execution of the modulation block
is the most challenging section of the RMP design. The
methodology for each of the modulations is not related to any
other modulation. The MU does not have common input for
the modulation techniques within the unit. The EX is
performed after IF and ID of the pipeline sequence. When any
operation is executed at particular clock cycle, the IF & ID are
performed for previous operations and RW & MA are
manipulated for the preceding operations.

D. READ/WRITE (RW)

The 32 bit instructions when decoded get the information so as
to read from the memory register or write the output to the
memory register. The register length differs as per the
operations used. The RW is an important operation for the
RMP as it provides options to either store the results or
retrieve the information of the previous output. The VHDL
code for the read/write operations is designed using the
behavioral style.

E. Memory Access (MA)

The MA is the final stage of the pipeline operation. In real
practice, the MA is used at two phases of the pipeline process.
The IF and RW utilize the MA for their performance.
Depending on the type of RW operations, the memory is
accessed at the two stages. IF uses the MA for READ
operations. Similarly, the RW uses the MA for WRITE or
READ operations.

OoP OoP

CODE OPERATIONS CODE OPERATIONS
00000 ADDITION 10000 EQUAL

00001 SUBTRACTION 10001 GREATER
00010 MULTIPLICATION 10010 LESSER

00011 DIVISION 10011 1BIT L/R ROTATION
00100 AND 10100 2 BIT L/R ROTATION
00101 OR 10101 3 BIT L/R ROTATION
00110 NAND 10110 4 BIT L/R ROTATION
00111 NOR 10111 5BIT L/R ROTATION
01000 XOR 11000 INCREMENT
01001 XNOR 11001 DECREMENT
01010 NOT A 11010 PWM

01011 NOT B 11011 PCM

01100 SISO 11100 QAM

01101 SIPO 11101 PPM

01110 PISO 11110 COSINE WAVE
01111 PIPO 11111 SINE WAVE

Table 11 Opcode with the operation description for the
proposed RMP design

231

F. Control Unit (CU)

The Control Unit (CU) takes charge of the all the task in the
RMP. The pipelining of the operations is organized according
to the orientation of the instruction given. The operations of
pipelining like IF, ID, EX, RW, MA are performed within one
clock cycle. The RW along with MA requires control to read at
the IF stage or RW stage. The enable signals are to be
organized for few operations within the RMP units. The epode
for all the 32 operations with description is given in the Table

11.

1V. Results and Discussion

The RMP design is executed in simulation using the
MODELSIM software. The instruction of the RMP is fed such
that all the operations pass through the pipeline process. Fig.2
shows the ALU operations with pipelining. The pipelining is
only shown for the three operations of the ALU. The
operations of addition, subtraction, multiplication, division
and all logic operations are achieved by the ALU developed
using the VHDL code. Fig.3 gives the shifting properties of the
8 bit register in the RMP. The SISO and SIPO use the 8 bit
input in sequence. The PISO and PIPO use the 8 bit input in
parallel.

Fig.4 shows the operational characteristics for the RU of the
RMP design. The VHDL code for the versatile barrel shifter is
developed for the rotation purpose. The versatile barrel shifter
produces the rotation in both left and right direction, with the
number of bits to be rotated. The ID transfers control to
monitor the rotational direction by the number of specified bits
as shown in Fig.4. The CU performs the equality, greater or
lesser check operation for 8 bits using the proposed RMP. The
simulation response for the CU is shown in Fig.5. The
instruction decode for the CU specifies the operation through
the opcode and the result of the comparator is stored in register
memory as required. Fig.6 depicts the modulation operation of
the RMP. As shown in the Fig.6, the outputs of the modulation
techniques are converted into bits. The frequency of operation
of the modulation techniques are varying as shown.

The RTL schematic of the proposed RMP design is depicted in
Fig.7 indicating the functional blocks with its interconnections.
Fig.8 presents the VHDL code for the proposed RMP in
structural modeling consisting of ALU, shifting, rotate,
comparator and modulation using Xilinx ISE 14.5. Table 12
shows the comparison of the proposed RMP with other RISC
processor design using different FPGA devices say 3A DSP,
Xilinx Spartan 3E and Virtex 6. The device utilization chart of
the proposed RMP proves to be less in area compared to Ref
[2]. Table 13 presents the timing analysis of the RMP design
using the Xilinx Spartan 3A DSP, Xilinx Spartan 3E and
Virtex 6 FPGA. The timing of the RMP design with respect to
synthesis, mapping, placement and routing is low for the
Xilinx Spartan 3A DSP FPGA implementation. Also the
power and thermal estimation of the RMP design using the
Xilinx Spartan 3A DSP, Xilinx Spartan 3E and Virtex 6
respectively are listed from Table 13. The power consumption
for the proposed RMP using the Xilinx Spartan 3A DSP FPGA
is as low as 0.115W.

232 Prathap et al.

RISC OPERATIONS

-

I

=

5

nd_out
out

ERRRRE]

PRRPOOERE

it

0 .1 (TR (L

PPEEEE®

5 1 Iy gy Y Y o Y 5 s 8 oy O o 8 A 1y 58 8

OO UL, L L, L L o L oL oL
Tus

RISC OPERATIONS
AU AU AU AT
L1 b H 1 1 1]
i 1 U
m RRANIN] I Ji
(T o0000a0y] CII%
1 [
J] |
L | |
SIS0 @ SIPO) RN otit{ I Joiii
l ([T
L jRpEgey
(TTTF000T
(10101010
(11710001
[
({000t
1 U]
1 |
AR RAL AR AL L
I I i I I 1 I I i
gl T R S G T i 7 D S i v

Figure 3. Simulation output for the SU of the RMP design using MODELSIM

Investigation of FPGA based 32-bit RISC-Modulation Processor 233

RISC OPERATION

] I

TQTATE DIRECTION |

[ATION BY VALLE_J010 (0] i
READ WRITE REGISTER
‘ (TTGH0TT0. JETTOTG HGIL OO
[UUUUUUY (G000000 I
[
1

-
|

m1 % % ?%

001010101 001 | Y
i I1a000T I i
110110001 I 1
o i
U UL U U U U U UL UL UL UL UL
3 1
R AR R A A A O A L O
lus 1500 2us 200 Jus

s.. |1
Jeomparator_Bbit_is... {00000000000000011

Jeomparatar_Bbit
Jcomparator_Bbit_ris..
Jeomparator_Bbit_i
Jeomparator_Bt

EQUAI

LESS THAN

Jcomparator_Bt

Jeomparator_Bbit_ris... - - 8 - . : B 3
— COMPARATOR ——| GREATER THAN

Jcomparator_8bit_is.
Jeomparator_Bbit_i

Jcomparator_8bit rs.., |0
Jcomparator_Bbit_ uuuuuuuy
Jcomparator_BY 0 (KR THEN AN} (10011001 0001100
Jeomparator_Bbit i uuuuuuy 1001100 0000100
Jeomparator_ Uuuuu 10000 10001 10010
Jeomparator_Bhit U
Jcomparator_8bit_

PR P

Jeomparatar_Bhit_fis...
Jcomparator_Bbit_ris.
Jeomparator_BY
Jeomparator_Bhit_fis...

Jcomparator_Bbit_rs.
Jeomparator_Bbit_ris...
Jeomparator_Bbit_ris...

Jeomparatar_Bhit_ris..
{comparator_8bit_is..
Jeomparator_Bhit

1
0
1
Jeomparator_Bbit_fis... {0
1
0
1
1

Joomparator_Bbit_ ST A e e ARl fe—alll h—
Jeomparator_Bbit_is... {00000000000000011 (00000000000000010070001100110010 :

Jeomparator_8t -

Jeomparator_ 0 UUUUUPUU " (1001100 0001100

10 PR ECEE N TR ECECE O L e R e oL T L L e L e e T L LI
£ 100 200 300 400 500 600 700 800 900 Tus
Cursor 1 Ons

Figure 5. Simulation output for the CU of the RMP design using MODELSIM

234 Prathap et al.

RISC OPERATIONS

LI —=—} mOe060000 | PCM
uuuuuuul | 01110110
uuuuuuut T 0000000000
uuy U - ! " A1 N iR i | : 0000000000
uuuuuuouuu i ‘ | s H i H | {1 1111000010
Uuuuuuouoy A | A d ' ; : ; { 1107000000
uuuuuLy
= -
= - -
il
AT Tt Ji100 11110 YT
5 e N R T |1
[[I L
| I | I
I T
I
[
AL
1 |
5 s F S o | VA O |
R ! | i o e |
NN T1000000
L O L D L
10us Mus Dus 40us 50 us B0 us

Cusor1 | 66685ns |

Figure 6. Simulation output for the MU of the RMP design using MODELSIM

risc_japcl
risc_pipeline__slu
P b — =
a1
barrel _conso
PP SN-ELH SLE
B3
compar ator_ Sbit_risc
- e - ——

risc_modulation

S

risoc shifreg

e =rs LT
52
risc_jap

Figure 7. RTL view of the proposed RMP design using Xilinx Spartan 3A DSP FPGA

235

How to Format Your Paper for JIAS

1aHA TIP3 TN

_ B puydel" 350

(113

!TRIDTARYSE PUS

Jputs’Turs‘zsoo ' Teon ' Frueh Truel Y pruel / TRl Y puod A Tuod ‘7 wddfT wddfz wmd’'T wmd’re dut‘yTo)dew 1z0d UOTIBIOROW OETI :SH
:{zab duwoo’7zh dwos‘zzT duwoo’TiT dwos‘zba dwoo’tha duos’zg dut‘yro)denm 2zod ostI 1Tgg foilexedumos :E0
:(zTeIzeg’ITaITeq’ze dur‘zearo’aasazd’yTo)dew a1od osuoo TaIIeq :£g

{(zexed’Tezed’zTeTIas [TRTIas ‘7e dur yro)denm azod BaIaITus OSTI :ZC

! {zpnTe‘IpnTe’ZunTe ‘TuUMTE‘ZnTe ‘[nTE‘ATas ‘2e dut ‘o) dew azod nye surradrd 0TI Y

uthag

!quzuoduco pua
{(p DIUMOp g) 202034 oTHOT PIE AN0 :ZUTS OSTI‘[UIS DETI‘ZS0D OSTI‘TS0D 081X
{(p DIUMOR §)Z01034 OTHOT Pas ano T guweb osTI‘z puweb osta‘tT Tweb osti‘z Tuweb 0TI
!{p oaumop L)Ioa103a oTH0T pas ano zmod ostx‘Tuod osTI
!o1f0T pas ano:zuwdd ostx’/Tudd ostxfzumd ostI/Tumd os1z
;{0 oaumop Tg)zo108a otHoT pas ut : dur o5TI
‘07hHoT pi1g ur : IO)azod
UOT1RTAPOW 0811 Juauodmoo

{qusucducs pua
!{o1hoT pas ano :gxb ostx ‘rab osTIzar osTI ‘TaT osTI‘zha ostx ‘The os1x
! {p ojumop Tg)Ioaoss othol pas ut @ dur osII

{01607 pas ur : ¥oT1o)azed

28TI 1Tqg Ioilexedwmos qusuoduoo

quzuoducs pu=a
{((p oauMop [)Z0102a oTOOT PAE NG @ 18 ZIno o5TI ‘16 TAN0 081X
!{p oqumop Tg)Ioiosa o1boT pas utr ¢ 3f dur OF1II

01607 pas utr : ITo‘dfas 3oTo) aaod

0su0D Taizeq ausuoduco

quzuoducs pu=a
{((p oaumMop [)Ioa02a oTHOT pas ano :dpr ostx‘dim ostI
{0THOT PIE 1IN0 : SPI OETI‘EIM D5TI
!{p oaumop Tg)Ioioss o1boT pas utr ¢ dur osTI

{01607 pas ur : ¥oT1o)azed

BaIi1ITus 08TI ausucduos

Eb
ch
TG
06
68
88
L8
58
58
F8
£8
8
18
08
6l
8L
LL
8L
SL
FL
gL
ZL
155
oL
69
89
Le
9%
58
]
£9
fd)
15
k]
65
85
LS
85
55

sl e 2 2| OO

No

B @@ |WMWrRa|XET¥(% A0

[xel]

dpH nofe mopuipy M3y WPI 34

Figure 8. VHDL code for the proposed RISC-Modulation Processor

236

Proposed RMP design

Methods Spartan3A Spartan Ref[2]
DSP 3E
Total Nur_nber Slice 586 586 625 291
Registers
Number of 4 input
LUTs 761 763 655 3374
Number of occupied 568 569 305 1821
Slices
Total Number of 4
input LUTs 826 828 759
Number of bonded 293 293 293 166
10Bs
Number of
BUFGMUXGs ! ! 2
Number of DSP48As 2 2 0
Average Fanout of 3.00 3.01 361

Non-Clock Nets

Table 12 Device utilization comparison table for the proposed
RMP design

Proposed Method

Methods

Spartan 3A .
DSP Spartan 3E Virtex 6
Max Delay 18.213ns 18.179ns 7.170ns
Number of paths 4533369 4533261 4537064
Number of destination 792 799 1123
ports
Memory Utilized 216516 KB 211396 KB 223992 KB
TO@IREAL imetoXst g g5 o 19.00 sec 23.00 sec
completion
Total Real Time to .
MAP 8 sec 10 sec 6 min 8 sec
Total Real Time to 3 min 57 sec 7min15sec 7 min 55 sec
PAR
Total Power (W) 0.115 0.203 4.357
Junction
Temperature(<T) 268 293 552
Table 13 Timing analysis comparison of the RMP using three
FPGA devices

V. Conclusion

The real time implementation of the RISC-Modulation
Processor using the Xilinx Spartan 3A DSP FPGA found to be
feasible and satisfactory. The power consumed and timing
analysis for the proposed RMP design using Xilinx Spartan 3A
DSP is low. The resolution used in the design is uniformly
maintained as 28 bits for the purpose of simple circuit design.
Future work could be directed towards advanced
CISC-Modulation processor design using different resolution
ranges from 28to 2% bits.

Acknowledgement

The authors would like to thank the department of Electronics
and Communication Engineering, Vardhaman College of
Engineering, Shamshabad, Hyderabad, India for the sustained

Prathap et al.

encouragement and assistance provided for our successful
completion of this work.

References

[1]. S.P.Ritpurkar, M. N. Thakare, G. D. Korde. “Design and
Simulation of 32-Bit RISC Architecture Based on MIPS
using VHDL”. In Proceedings of International
Conference on Advanced Computing and
Communication Systems, 2015.

[2]. Jikku Jeemon. “Pipelined 8-bit RISC Processor Design
using Verilog HDL on FPGA”. In Proceedings of the
IEEE International Conference On Recent Trends In
Electronics Information Communication Technology, pp.
2023-2027, 2016.

[3]. Christiensen C. Arandilla, Joseph Bernard A. Constantino,
Alvin Oliver M. Glova Anastacia P. Ballesil-Alvarez, Joy
Alinda P. Reyes. “High-Level Implementation of the
5-Stage Pipelined ARM9TDM Core”. In Proceedings of
the Technical Conference of IEEE Region10 (TENCON),
pp. 1696-1700, 2010.

[4]. Nathaniel Albuquerque, Kritika Prakash, Anu Mehra,
Nidhi Gaur. “Design and Implementation of Low Power
Reservation Station of a 32-bit DLX-RISC processor™. In
Proceedings of the International Conference on
Information Science (ICIS), pp. 217-221, 2016.

[5]. Wang, W., Shen, Z., and Dinavahi,V. “Physics-Based
Device-Level Power Electronic Circuit Hardware
Emulation on FPGA”. IEEE Transactions on Industrial
Informatics, 10(4), pp. 2166-2179, 2014.

[6]. Hwang, S.H., Liu, X., Kim, J.M., and Li, H. “Distributed
Digital Control of Modular-based Solid-State
Transformer Using DSP and FPGA”. IEEE Transactions
on Industrial Electronics, 60(2), pp. 670-680, 2013.

[7]. Cosmin Cernazanu-Glavan, Marius Marcu, Alexandru
Amaricai, Stefan Fedeac, Madalin Ghenea, Zheng Wang,
Anupam Chattopadhyay. “Direct FPGA-based Power
Profiling for a RISC Processor”. |IEEE Instrumentation
and Measurement Society, 2015.

[8]. Suyash Toro, Sushma Wadar, Y. V. Chavan, S C Patil, D
S Bormane, Avinash Patil. “External Memory Interface
for RISC Controller on Reconfigurable Hardware Logic”.
In Proceedings of the IEEE International Conference on
Advances in Electronics, Communication and Computer
Technology (ICAECCT), pp. 455-460, 2016.

[9]. Sangeeta Palekar, Nitin Narkhede. “32-bit RISC
Processor with Floating Point Unit for DSP Applications”.
In Proceedings of the IEEE International Conference on
Recent Trends in Electronics Information
Communication Technology, pp. 2062-2066, 2016.

[10].Suyog V Pande, Prashant D Bhirange. “An Efficient
High Speed RISC Processor for Convolution”. In
Proceedings of the IEEE sponsored 9" International
Conference on Intelligent Systems and Control (ISCO),
2015.

[11].Safaa S. Omran and Ahmed K. Abdul-abbas. “Design of
32-Bits RISC Processor for Hardware Efficient QR
Decomposition”. In Proceedings of the International
Conference on Advances in Sustainable Engineering and
Applications (ICASEA), pp. 69-73, 2018.

[12]. Devaraconda Dinesh and R. Manoj Kumar. “Physical
Design Implementation of 16 Bit Risc Processor”. Indian
Journal of Science and Technology, 9(36), pp.1-7, 2016.

How to Format Your Paper for JIAS

[13]. Amit Kumar Singh Tomar, Rita Jain. “20-Bit RISC and
DSP System Design in an FPGA”. In Proceedings of the
Computing in Science & Engineering, Copublished by the
IEEE CS and the AIP, pp. 16-20, 2014.

[14].Joseph Anthony Prathap, T. S. Anandhi and T. S.
Sivakumaran. “Implementation of FPGA based
DPWM-Digital Pl Closed Loop Controller for Voltage
Regulation”, Indian Journal of Science and Technology,
9(38), pp. 1-9, 2016.

Author Biographies

Dr. Joseph Anthony Prathap was born in 1981 in
Puducherry. He has obtained B.E [Electronics and
Communication] and M.Tech [VLSI Design] degrees
in 2003 and 2007 respectively from Sathyabama
University. He has put in 11 years of service in teaching
and research. He is currently Associate Professor in the
Department of Electronics and Communication
Engineering at Vardhaman College of Engineering,
shamshabad, Hyderabad, India. His research interest includes VLSI design,
development of digital switch patterns, FPGA control techniques for power
converters, photovoltaic power electronics converters.

Dr. T.S.Anandhi was born in 1974 in chidambaram.

She has obtained B.E [Electronics and Instrumentation]

an M.E [process control and Instrumentation] degrees

in 1996 and 1998 respectively and then Ph.D in power

electronics in 2008 from Annamalai University. She is

currently Associate professor in the Department of
/ Electronics and Instrumentation Engineering at
#74 Annamalai University, chidambaram, India and has put
in 15 years of service. She has produced one Ph.D and guiding 6 Ph.D
scholars. Her research interests are in power converters, control techniques
for multiple connected power converters, embedded controllers for power
converters, renewable energy based power converters. She is a life member of
Indian society for technical education.

Mr. Nagarjuna Malladhi was born in 1988 in Andhra

Pradesh. He has obtained B.E [Electronics and

Communication] degree from Chirala Engineering
.24 College, Chirala in 2009 and M.Tech [VLSI Design]
- degree from Vignan University in 2011. He has put in 6
years of service in teaching and research. He is
currently Assistant Professor in the Department of
Electronics and Communication Engineering at
Vardhaman College of Engineering, shamshabad,
Hyderabad, India. His research interest includes VLSI design, Analog and
Mixed signal.

Ms.V.Roja was born in 1992 in Telangana State. She
has obtained B.Tech [Electronics and Communication]
degree from Vijay College of Engineering for women,
Nizambad in 2013 and M.Tech [Wireless and Mobile
Communication] degree from JNTU, Hyderabad in
2016. She has put in 2 years of service in teaching. She
is currently Assistant Professor in the Department of
Electronics and Communication Engineering at

2 Vardhaman College of Engineering, shamshabad,
Hyderabad India. Her research interest includes Wireless Communication,
Mobile Networks and Sensors.

237

