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Abstract: This paper presents the design of a novel 

RISC-Modulation Processor using the Field Programmable Gate 

Array. Until now, the RISC processor is designed with 

operations like arithmetic and logical; shifting; rotating and 

comparing along with the instruction pipeline, which is the heart 

of RISC processor. Conventionally, the modulation techniques 

are developed separately as per the requirement. In this work,  

the  RISC processor design is facilitated with the modulation 

techniques like pulse width modulation, pulse code modulation, 

pulse position modulation, quadrature amplitude modulation, 

sine wave generation and cosine wave generation so as to satisfy 

both computer and communication manipulations.  The real time 

validation is performed by the implementation of the 

RISC-Modulation Processor using the Xilinx Spartan FPGA 

family devices. The power consumption and timing performance 

of the RMP design are evaluated for the proposed method and 

compared with different FPGA implementations.  

 
Keywords: RISC Processor, Communication Processor, Field 

Programmable Gate Array 

I. Introduction 

RISC processor is a processor which performs all operations 

including arithmetic and logical, shifting and rotating, read 

and write by using simple set of instructions. Basically, in 

RISC processor design, the concept of pipelining is included. 

The RISC processor along with the pipeline concept helps in 

the efficient performance of the processor. “Pipelining” as the 

name specifies arranges the instructions in pipe or sequence to 

pass through the different manipulation phases. In other words, 

the CPU of the RISC processor is instruction pipelining. Also 

the instruction throughput is increased by the use of the 

pipelining. 

 

Without pipeline, all instruction execute with respect to the 

clock pulse. The drawback of the clock pulse based operation 

is that only one operation could be performed at any time. To 

overcome this, the instruction pipelining is included with the 

RISC. The pipelining allows five operations within the single 

clock pulse. The pipeline involves five stages of operations. 

They are stated as a) Instruction Fetch (IF). b) Instruction 

Decode (ID). c) Execute (EX). d) Read/Write (RW) and                  

e) Memory Access (MA).  

 

Recently, the instruction pipeline is customized according to 

the requirement of the RISC applications. The top-down 

pipelined RISC design achieves maximum throughput of 

execution with less clock cycles per instruction [1]. The 

pipelined 8 bit RISC minimizes power by the clock gating 

technique [2]. But the 5-stage pipelined RISC developed using 

the ARM processor consumes more power [3]. To overcome 

the power consumption of the pipelined instructions and its 

latency, the reservation station based on Tomasulo algorithm 

is designed [4]. 

 

The design of the RISC processor using the Field 

Programmable Gate Array (FPGA) device has evolved 

effectively due to the reconfigurable property, reliability, 

upgradability, high performance, less power, less area, and 

parallelism in hardware which helps to generate high 

resolution output and complex computation throughput [5][6]. 

The power estimation could be performed for each of the 

RISC processor units and related the FPGA based power with 

the manufacturing power technology gap [7]. The external 

memory interfaced with the RISC through the PIC controller 

uses the reconfigurable FPGA design [8].The 32-bit RISC 

processor with floating point unit works at high speed [9]. The 

design of the RISC with circular convolution has less area and 

power [10]. The FPGA based RISC processor is designed with 

QR decomposition using Gram-Schmidt Ortho-normalization 

method to accommodate 79 instructions [11]. For the sake of 

removing the set-up slack, the Engineering Change Order 

(ECO) is utilized in the FPGA based RISC processor design 

[12].The FPGA is a device which has thousands of logic gates 

(AND plane and OR plane) drives for high performance. 

Another aspect of FPGA is high execution speed measured in 

Million Instruction per Second (MIPS) and reduced delays. 

The Xilinx Spartan FPGA is of several types such as Spartan 

3A DSP, 3E, 6E depending on the number of AND gate and 

OR gate planes, LUTs, flip-flops within the device.  
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This paper proposes the novel RISC-Modulation Processor 

(RMP) design which utilizes the VHDL coded pulse 

modulation techniques like Pulse Width Modulation (PWM), 

Pulse Code Modulation (PCM), Pulse Position Modulation 

(PPM), Quadrature Amplitude Modulation (QAM) and signal 

generations (sine and cosine) with the RISC processor design. 

The combining of the RISC architecture with the DSP system 

finds advantage in many real time applications [13]. The next 

section presents the details of the proposed RMP design.  

II. The proposed RISC-Modulation Processor 

The RISC-Modulation Processor (RMP) is a combination of 

the RISC processor and the digital modulation techniques. 

Fig.1 shows the design flow for the proposed RMP. The RMP 

utilizes the pipelining concept for its operations. The 

instructions are stored in the memory in 32 bits. Depending on 

the instructions, the pipeline operation is initiated. The 

pipeline reduces the number of cycles while executing the 

instruction along with Read/Write function. The pipeline 

operation includes five sequences of operations as Instruction 

Fetch (IF), Instruction Decode (ID), Execute (EX), 

Read/Write Memory (RW) and Memory Access (MA).  

 

The instruction has to be fetched from the memory and 

decoded or separated as per the instruction given. The 32 bits 

are split as opcode, input, output and RW operations. In this 

design, the RMP is included with 32 operations. Thus the 

opcode used in the RMP design is 25 bits. The operations in the 

RMP design is categorized as Arithmetic and Logical Unit 

(ALU), Shifting Unit (SU), Rotation Unit (RU), Comparator 

Unit (CU) and Modulation Unit (MU). The other important 

unit in the RMP design is the Control Unit (CTU) that 

performs control in pipeline operations, read/write operations, 

memory access operations and Program Counter (PC) 

operations. The RMP design is coded using the mixed style of 

the modeling in VHDL language. The following section 

discuss about the instruction pipeline in the proposed RMP 

design. 

III. Instruction Pipeline in RMP using FPGA 

A. Instruction Fetch (IF) 

 

During the instruction fetch process of the pipeline, the 32 bit 

instruction is fetched from the memory. The IF operation uses 

the PC to keep track of the addresses for all the operations and 

increments by 1 for the next Instruction. The VHDL code for 

the IF requires the 32 bit register declared as array variable 

stored with the addresses of all the operations in the RMP 

design. The PC is developed using the increment design to 

track the current operation and predict the next operations in 

the RMP design. 

B. Instruction Decode (ID) 

 

The ID is the process of the splitting the 32 bit instruction to 

control according to the operation such as read/write and the 

number of inputs & outputs. For all operations, the VHDL 

code for the ID is developed so as to split the 32 bits 

instruction as opcode bits (4-0 bits) and the MSB namely 31st 

bit as Read/Write operation indicator. If the value of the 31st 

bit is ‘0’, the read operation is activated and ‘1’ value is used 

for the write operation activation. The bit splitting for the 

inputs and outputs depends on the operations being used. The 

ID for each of the operations used in the RMP is unique. The 

RMP design presents 32 different operations starting from the 

simple addition to the constellation for 64 bit QAM. The 

VHDL code for the 32 operations is developed in structural 

modeling, as the five units are instantiated as components. The 

preceding sections present each of the operations along with 

its instruction formats. 
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Figure 1. FPGA implemented RISC-Modulation processor 

 

1) Arithmetic and Logical Unit (ALU) 

 

The ALU consists of the arithmetic operations like addition, 

subtraction, multiplication and division. The logical 

operations are AND, OR, NOT, XOR, XNOR, NAND, NOR. 

All the arithmetic and logical operations are performed with 

respect to 28 bits, except the multiplication of two 8 bits 

number produce maximum 15 bits in the output due to the 

overflow. The increment and decrement operation is used for 

the PC unit to track and predict the addresses of the present 

and next instruction respectively. The instruction format for 

the ALU of the RMP is depicted in Table 1. The number of 

inputs utilized is indicated within the parentheses. 

 

The VHDL code split the 32 bits instruction as per the 

operation required within the ALU. The bit split code is same 

for ALU operations except the multiplication, NOT logic 

operation, increment and decrement operations. Due to the 

prevalence of the output with 15 bits in multiplication 

operations, the multiplication operation is performed with the 

same two numbers. In other words, no two different 8 bits 

number are multiplied. The NOT logic is a single operator 

performed only for 8 bits of input. Increment and Decrement 

requires one bit for its operations 
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ALU 

OPERATION 
RW 

BITS FORMAT FOR INPUTS & 

OUTPUTS  
OP- 

-CODE  

OUTPUT  

SECOND 

INPUT  

FIRST 

INPUT  

Addition 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Subtraction 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Multiplication 31 27-13 (15) -- 12-5 (8) 4-0 

Division 31 28-26 (3) 25-21 (5) 13-5 (8) 4-0 

And Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Or Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Nand Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Nor Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Xor Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Xnor Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0 

Not A 31 28-21 (8) -- 12-5 (8) 4-0 

Not B 31 28-21 (8) -- 12-5 (8) 4-0 

Increment 31 7 (1) -- 5 (1) 4-0 

Decrement 31 7 (1) -- 5 (1) 4-0 

Table 1 Instruction Format for the ALU of the RMP design 

 

2) Shift Register Unit (SU) 

 

The SU can also be referred as universal shift register unit. The 

SU consists of four types of registers implemented using the 

same hardware components that is controlled by the opcode. 

The four types of shift registers are Serial In Serial Out (SISO), 

Serial In Parallel Out (SIPO), Parallel In Serial Out (PISO), 

Parallel In Parallel Out (PIPO). The choice of the shift 

operation is decided by the opcode fed within the instruction 

set. The decode of the instruction fetched is performed for the 

SU of the RMP is as given in the Table 2 

 

OPERATION RW 

BITS FORMAT FOR INPUTS & 

OUTPUTS OP 

CODE 
LOAD 

ENABLE 
OUTPUT INPUT 

SISO 31 -- 6 (1) 5 (1) 4-0 

SIPO 31 -- 13-6 (8) 5 (1) 4-0 

PISO 31 16 (1) 15 (1) 12-5 (8)  4-0 

PIPO 31 -- 22-15 (8) 12-5 (8) 4-0 

Table 2 Instruction Format for the ALU of the RMP design 
 

The VHDL code for the universal SU is developed 

considering the instruction format. The input format is split as 

1 bit for SISO & SIPO and 8 bits for PISO and PIPO. The 

Load Enable (LE) is used with the PISO operation, to transfer 

the parallel bit to the serial bit output. The behavioral model of 

the VHDL code is developed for the PISO. 
 

 

3) Rotation Unit (RU) 

 

The RU is performed by the barrel shifting. The sequence of 8 

bits is called as barrel. The barrel shifting refers to moving 

specified number of bits out of the 8 bits input towards the 

given particular direction. In order to indicate the rotating 

direction, 1 bit is provided and for the number of bits to be 

rotated, 3 bits are used. The RU can be manipulated for the 

range of 1 to 5 bits of rotation in either direction. The VHDL 

code for the RU performs the splitting of the 32 bit instruction 

as shown in the Table 3. The number of bits for rotation and 

direction of the rotation is performed accordingly within the 

VHDL code. The behavioral style of coding is preferred for 

RU. 

 

OPERATION 
R

W 

BIT FORMAT FOR INPUT & 

OUTPUT OP 
COD

E OUTPU

T 
BITS 

DIRE- 

-CTION 
INPUT 

ROTATION 31 
28-21 

(8) 

17-15 

(3) 
14 (1) 

12-5 

(8) 
4-0 

Table 3 Instruction Format for the RU of the RMP design 

 

4)  Comparator Unit (CU) 

 

The CU utilizes two 8 bit binary value comparisons for 3 

conditions. The condition validation is performed for greater 

than, less than and equal to. The instruction decode for the CU 

as presented in Table 4. The decoded values of the inputs are 8 

bits each along with the 5 bits opcode are coded by the VHDL 

code.  
 

OPERATION RW 

BIT FORMAT FOR INPUT & 

OUTPUT OP 

CODE 
OUTPUT 

SECOND 

INPUT  

FIRST 

INPUT 

EQUAL 31 28 (1) 20-13 (8) 12-5 (8) 4-0 

GREATER 31 28 (1) 20-13 (8) 12-5 (8) 4-0 

LESSER 31 28 (1) 20-13 (8) 12-5 (8) 4-0 

Table 4 Instruction Format for the CU of the RMP design 

 

5)  Modulation Unit (MU) 

 

The MU is developed using the mixed style of modeling in 

VHDL code to satisfy all the modulation techniques. The 

modulation techniques like PWM, PPM, PCM, QAM, sine 

wave and cosine wave generation are used in the MU. The 

instruction format for the all the modulation techniques in the 

MU is discussed below. 

(a) Pulse Width Modulation (PWM)  

 

The PWM is designed by comparing the high carrier wave 

with the DC signal. The duty-in value represents the DC signal 

equivalent in 28 bits. The carrier wave is the generation of 

triangle wave with the peak value as 255 for 28 bit resolution. 

The duty cycle is represented by ‘D’ and is given by  

 

  

 

  where Ton is the ON period and Toff is the OFF period.  

 

The duty cycle is always represented in percentage (%). 

Depending on the DC value fed in, the pulse width changes. 

This RMP gets the instruction decoded as shown in Table 5. 
The VHDL code for the PWM generation involves in the 

carrier triangular wave generation and then comparing with 

the DC value. The PWM implemented using the FPGA is 

reliable and feasible [14]. The resolution of the PWM design is 

28 bits. 
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OPERATION RW 

BIT FORMAT FOR INPUT & 

OUTPUT OP 

CODE 
PWM 1 PWM 2 DUTY IN 

PWM 31 27 (1) 26 (1) 12-5 (8) 4-0 

Table 5 Instruction Format for the PWM in the MU-RMP 

design 

(b) Pulse Position Modulation 

 

The PPM uses the sine modulating signal and overlaps with 

the carrier signal to produce the pulse output. The position of 

the pulse output prevails more with the low level of the 

modulating signal and as the level increases the position of the 

pulse output has some separation or gap between pulses. The 

resolution used is 28 bits. The enable signal is provided for the 

control of the PPM generation. The instruction format for the 

PPM is as given in Table 6. The VHDL code for the PPM 

generation is developed in the behavioral model which 

includes the enable signal. 

 

OPERATION RW 

BIT FORMAT FOR INPUT & 

OUTPUT OP 

CODE 
PPM ENABLE 

DUTY 

IN 

PPM 31 27 (1) 20 (1) 12-5 (8) 4-0 

Table 6 Instruction Format for the PPM in the MU-RMP 

design 

(c) Pulse Code Modulation 

 

The discrete sine wave signal is subjected to two processes 

namely sampling and quantized to generate the steam of bits. 

The sampling process is the digitizing along the X-axis of the 

sine wave to obtain the sample sequences and quantization is 

the digitizing along the Y-axis of the sine wave to obtain the 

quantized levels. The resolution used for the PCM generation 

is 28 bit output for both sampling and quantization. The 

instruction fetched is decoded as given below in Table 7. The 

VHDL code for the PCM prefers the structural model of 

design. The VHDL code sine wave generation is functional 

input for the PCM circuit. 

 

OPERATION RW 

BIT FORMAT FOR 

INPUT & OUTPUT 

OPCODE 

PCM 

SINE 

WAVE 

INPUT 

PCM 31 27-20 (8) 12-5 (8) 4-0 

Table 7 Instruction Format for the PCM in the MU-RMP 

Design 

(d) Quadrature Amplitude Modulation 

 

The QAM is generated uses maximum of 64 bits. The 64 bit 

QAM requires 26 bits in which 23 MSB bits are used for the 

cosine wave and 23 LSB bits are used for the sine wave. The 

levels are assumed to be different as per the resolution given. 

For every value of the 26 bit, the QAM adds the corresponding 

levels of sine and cosine waves. Then the maximum 

magnitudes for each of the 26 bit values are taken along with its 

corresponding angles. The rectangle form of the obtained 

magnitude and angles are converted to constellation diagram 

for the QAM transmission. The instruction decode for the 

QAM is as below in Table 8. The VHDL code performs the 

above mentioned tasks using the mixed style of model. 
 

OPERATION 
R

W 

BIT FORMAT FOR INPUT & 

OUTPUT 

OP 

CODE 

REAL 

PART 

OF 

QAM 

IMAGINARY 

PART OF 

QAM 

26 BIT 

INPUT 

QAM 31 
27-18 

(10) 
17-8 (10) 10-5 (6) 4-0 

Table 8 Instruction Format for the QAM in the MU-RMP 

design 

(e) Cosine wave generation 

 

The cosine wave generation is vital in the design of most 

digital and pulse modulation techniques. The cosine wave is 

generated to the maximum of 28 bits. The amplitude level of 

the cosine wave is varied by assigning values through the input. 

The amplitude of the cosine is limited to -127 to 127 for signed 

signals and 0 to 255 for unsigned signals. The VHDL code 

takes into considerations the both the signed and unsigned 

values for the amplitude levels of the cosine wave. Table 9 

depicts the instruction format for the cosine signal generation. 

The resolution used for the cosine signal is 28 bits. 

Table 9 Instruction Format for the Cosine signal in the 

MU-RMP design 

(f) Sine wave generation 

 

Similar to the cosine wave, the sine wave is generated to the 

maximum of 28 bits resolution. The amplitude level limits to 

the -127 to 127 for signed and 0 to 255 for unsigned signals. 

The sine signal starts its value at ‘0’. The cosine wave starts at 

90° phase shift of the sine wave.  The instruction decode is 

given as in Table 10. The VHDL code is developed in the 

behavioral style of modeling for the sine wave generation. 

Table 10 Instruction Format for the Sine signal in the 

MU-RMP design 

(g) Resolution 

 

The resolution of the MU of the RMP design is 28 bits. The 

resolution is defined as the number of bits used for the design 

of modulations within the VHDL code. The modulation 

techniques like PWM, PPM, PCM, QAM, sine wave and 

cosine wave require precise resolution for accurate 

manipulation. Further increase in the resolution say >28 bits, 

increases the complexity of the proposed RMP method. 

OPERATION RW 

BIT FORMAT FOR 

INPUT & OUTPUT 
OPCODE 

COSINE 

SIGNAL 
INPUT 

COSINE 31 17-10 (8) 9-5 (5) 4-0 

OPERATION RW 

BIT FORMAT FOR 

INPUT & OUTPUT 
OPCODE 

SINE 

SIGNAL 
INPUT 

SINE 31 17-10 (8) 9-5 (5) 4-0 
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C. Execute (EX) 

 

 The EX is the stage at which the outputs are evaluated as per 

the operation given. The output of the ALU, SU, RU, CU and 

MU are of 28 bit length. The execution of the modulation block 

is the most challenging section of the RMP design. The 

methodology for each of the modulations is not related to any 

other modulation. The MU does not have common input for 

the modulation techniques within the unit. The EX is 

performed after IF and ID of the pipeline sequence. When any 

operation is executed at particular clock cycle, the IF & ID are 

performed for previous operations and RW & MA are 

manipulated for the preceding operations.  

 

D. READ/WRITE (RW) 

 

The 32 bit instructions when decoded get the information so as 

to read from the memory register or write the output to the 

memory register. The register length differs as per the 

operations used. The RW is an important operation for the 

RMP as it provides options to either store the results or 

retrieve the information of the previous output. The VHDL 

code for the read/write operations is designed using the 

behavioral style. 

 

E. Memory Access (MA) 

 

The MA is the final stage of the pipeline operation. In real 

practice, the MA is used at two phases of the pipeline process. 

The IF and RW utilize the MA for their performance. 

Depending on the type of RW operations, the memory is 

accessed at the two stages. IF uses the MA for READ 

operations. Similarly, the RW uses the MA for WRITE or 

READ operations. 

    

OP 

CODE 
OPERATIONS 

OP 

CODE 
OPERATIONS 

00000 ADDITION 10000 EQUAL 

00001 SUBTRACTION 10001 GREATER 

00010 MULTIPLICATION 10010 LESSER 

00011 DIVISION 10011 1 BIT L/R ROTATION 

00100 AND 10100 2 BIT L/R ROTATION 

00101 OR 10101 3 BIT L/R ROTATION 

00110 NAND 10110 4 BIT L/R ROTATION 

00111 NOR 10111 5 BIT L/R ROTATION 

01000 XOR 11000 INCREMENT 

01001 XNOR 11001 DECREMENT 

01010 NOT A 11010 PWM 

01011 NOT B 11011 PCM 

01100 SISO 11100 QAM 

01101 SIPO 11101 PPM 

01110 PISO 11110 COSINE WAVE 

01111 PIPO 11111 SINE WAVE 

 

Table 11 Opcode with the operation description for the 

proposed RMP design 

 

F. Control Unit (CU) 

 

The Control Unit (CU) takes charge of the all the task in the 

RMP. The pipelining of the operations is organized according 

to the orientation of the instruction given. The operations of 

pipelining like IF, ID, EX, RW, MA are performed within one 

clock cycle. The RW along with MA requires control to read at 

the IF stage or RW stage. The enable signals are to be 

organized for few operations within the RMP units. The epode 

for all the 32 operations with description is given in the Table 

11. 

IV. Results and Discussion 

 

The RMP design is executed in simulation using the 

MODELSIM software. The instruction of the RMP is fed such 

that all the operations pass through the pipeline process. Fig.2 

shows the ALU operations with pipelining. The pipelining is 

only shown for the three operations of the ALU. The 

operations of addition, subtraction, multiplication, division 

and all logic operations are achieved by the ALU developed 

using the VHDL code. Fig.3 gives the shifting properties of the 

8 bit register in the RMP. The SISO and SIPO use the 8 bit 

input in sequence. The PISO and PIPO use the 8 bit input in 

parallel. 

 

Fig.4 shows the operational characteristics for the RU of the 

RMP design. The VHDL code for the versatile barrel shifter is 

developed for the rotation purpose. The versatile barrel shifter 

produces the rotation in both left and right direction, with the 

number of bits to be rotated. The ID transfers control to 

monitor the rotational direction by the number of specified bits 

as shown in Fig.4. The CU performs the equality, greater or 

lesser check operation for 8 bits using the proposed RMP. The 

simulation response for the CU is shown in Fig.5. The 

instruction decode for the CU specifies the operation through 

the opcode and the result of the comparator is stored in register 

memory as required. Fig.6 depicts the modulation operation of 

the RMP. As shown in the Fig.6, the outputs of the modulation 

techniques are converted into bits. The frequency of operation 

of the modulation techniques are varying as shown.  

 

The RTL schematic of the proposed RMP design is depicted in 

Fig.7 indicating the functional blocks with its interconnections. 

Fig.8 presents the VHDL code for the proposed RMP in 

structural modeling consisting of ALU, shifting, rotate, 

comparator and modulation using Xilinx ISE 14.5. Table 12 

shows the comparison of the proposed RMP with other RISC 

processor design using different FPGA devices say 3A DSP, 

Xilinx Spartan 3E and Virtex 6. The device utilization chart of 

the proposed RMP proves to be less in area compared to Ref 

[2]. Table 13 presents the timing analysis of the RMP design 

using the Xilinx Spartan 3A DSP, Xilinx Spartan 3E and 

Virtex 6 FPGA. The timing of the RMP design with respect to 

synthesis, mapping, placement and routing is low for the 

Xilinx Spartan 3A DSP FPGA implementation. Also the 

power and thermal estimation of the RMP design using the 

Xilinx Spartan 3A DSP, Xilinx Spartan 3E and Virtex 6 

respectively are listed from Table 13. The power consumption 

for the proposed RMP using the Xilinx Spartan 3A DSP FPGA 

is as low as 0.115W. 
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Figure 2. Simulation output for the ALU of the RMP design using MODELSIM 

 

 
 

Figure 3. Simulation output for the SU of the RMP design using MODELSIM 
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Figure 4. Simulation output for the RU of the RMP design using MODELSIM 

 

 
 

Figure 5. Simulation output for the CU of the RMP design using MODELSIM 
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Figure 6. Simulation output for the MU of the RMP design using MODELSIM 
 

 
 

Figure 7. RTL view of the proposed RMP design using Xilinx Spartan 3A DSP FPGA 
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Figure 8. VHDL code for the proposed RISC-Modulation Processor 
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Methods 

Proposed RMP design 

Ref[2] Spartan 3A 

DSP 

Spartan 

3E 
Virtex 6 

Total Number Slice 

Registers 
586 586 625 291 

Number of 4 input 

LUTs 
761 763 655 3374 

Number of occupied 

Slices 
568 569 305 1821 

Total Number of 4 

input LUTs 
826 828 759 -- 

Number of bonded 

IOBs 
223 223 223 166 

Number of 

BUFGMUXs 
1 1 2 -- 

Number of DSP48As 2 2 0 -- 

Average Fanout of 

Non-Clock Nets 
3.00 3.01 3.61 -- 

Table 12 Device utilization comparison table for the proposed 

RMP design 
 

Methods 

Proposed Method 

Spartan 3A 

DSP 
Spartan 3E Virtex 6 

Max Delay 18.213ns 18.179ns 7.170ns 

Number  of paths 4533369  4533261 4537064  

Number of destination 

ports 
722 722 1123 

Memory Utilized 216516 KB 211396 KB 223992 KB 

Total REAL time to Xst 

completion 
19.00 sec 19.00 sec 23.00 sec 

Total Real Time to 

MAP 
8 sec 10 sec 6 min 8 sec 

Total Real Time to 

PAR 
3 min 57 sec 7 min 15 sec 7 min 55 sec 

Total Power (W) 0.115 0.203 4.357 

Junction 

Temperature(°C) 
26.8 29.3 55.2 

Table 13 Timing analysis comparison of the RMP using three 

FPGA devices 

 

V. Conclusion 
 

The real time implementation of the RISC-Modulation 

Processor using the Xilinx Spartan 3A DSP FPGA found to be 

feasible and satisfactory. The power consumed and timing 

analysis for the proposed RMP design using Xilinx Spartan 3A 

DSP is low. The resolution used in the design is uniformly 

maintained as 28 bits for the purpose of simple circuit design. 

Future work could be directed towards advanced 

CISC-Modulation processor design using different resolution 

ranges from 28 to 212 bits. 
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