
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 10 (2018) pp. 227-237

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Received: 7 Oct, 2017; Accepted: 6 August, 2018; Publish: 27 August, 2018

Investigation of FPGA based 32-bit

RISC-Modulation Processor

Joseph Anthony Prathap1*, T.S.Anandhi2, Nagarjuna Malladhi3, V.Roja4

1, 3, 4Department of Electronics and Communication Engineering,

Vardhaman College of Engineering, Hyderabad, India

japtuhi1116@gmail.com

2Department of Electronic and Instrumentation Engineering,

Annamalai University, Chidambaram, India

ans.instrus@gmail.com

Abstract: This paper presents the design of a novel

RISC-Modulation Processor using the Field Programmable Gate

Array. Until now, the RISC processor is designed with

operations like arithmetic and logical; shifting; rotating and

comparing along with the instruction pipeline, which is the heart

of RISC processor. Conventionally, the modulation techniques

are developed separately as per the requirement. In this work,

the RISC processor design is facilitated with the modulation

techniques like pulse width modulation, pulse code modulation,

pulse position modulation, quadrature amplitude modulation,

sine wave generation and cosine wave generation so as to satisfy

both computer and communication manipulations. The real time

validation is performed by the implementation of the

RISC-Modulation Processor using the Xilinx Spartan FPGA

family devices. The power consumption and timing performance

of the RMP design are evaluated for the proposed method and

compared with different FPGA implementations.

Keywords: RISC Processor, Communication Processor, Field

Programmable Gate Array

I. Introduction

RISC processor is a processor which performs all operations

including arithmetic and logical, shifting and rotating, read

and write by using simple set of instructions. Basically, in

RISC processor design, the concept of pipelining is included.

The RISC processor along with the pipeline concept helps in

the efficient performance of the processor. “Pipelining” as the

name specifies arranges the instructions in pipe or sequence to

pass through the different manipulation phases. In other words,

the CPU of the RISC processor is instruction pipelining. Also

the instruction throughput is increased by the use of the

pipelining.

Without pipeline, all instruction execute with respect to the

clock pulse. The drawback of the clock pulse based operation

is that only one operation could be performed at any time. To

overcome this, the instruction pipelining is included with the

RISC. The pipelining allows five operations within the single

clock pulse. The pipeline involves five stages of operations.

They are stated as a) Instruction Fetch (IF). b) Instruction

Decode (ID). c) Execute (EX). d) Read/Write (RW) and

e) Memory Access (MA).

Recently, the instruction pipeline is customized according to

the requirement of the RISC applications. The top-down

pipelined RISC design achieves maximum throughput of

execution with less clock cycles per instruction [1]. The

pipelined 8 bit RISC minimizes power by the clock gating

technique [2]. But the 5-stage pipelined RISC developed using

the ARM processor consumes more power [3]. To overcome

the power consumption of the pipelined instructions and its

latency, the reservation station based on Tomasulo algorithm

is designed [4].

The design of the RISC processor using the Field

Programmable Gate Array (FPGA) device has evolved

effectively due to the reconfigurable property, reliability,

upgradability, high performance, less power, less area, and

parallelism in hardware which helps to generate high

resolution output and complex computation throughput [5][6].

The power estimation could be performed for each of the

RISC processor units and related the FPGA based power with

the manufacturing power technology gap [7]. The external

memory interfaced with the RISC through the PIC controller

uses the reconfigurable FPGA design [8].The 32-bit RISC

processor with floating point unit works at high speed [9]. The

design of the RISC with circular convolution has less area and

power [10]. The FPGA based RISC processor is designed with

QR decomposition using Gram-Schmidt Ortho-normalization

method to accommodate 79 instructions [11]. For the sake of

removing the set-up slack, the Engineering Change Order

(ECO) is utilized in the FPGA based RISC processor design

[12].The FPGA is a device which has thousands of logic gates

(AND plane and OR plane) drives for high performance.

Another aspect of FPGA is high execution speed measured in

Million Instruction per Second (MIPS) and reduced delays.

The Xilinx Spartan FPGA is of several types such as Spartan

3A DSP, 3E, 6E depending on the number of AND gate and

OR gate planes, LUTs, flip-flops within the device.

Prathap et al. 228

This paper proposes the novel RISC-Modulation Processor

(RMP) design which utilizes the VHDL coded pulse

modulation techniques like Pulse Width Modulation (PWM),

Pulse Code Modulation (PCM), Pulse Position Modulation

(PPM), Quadrature Amplitude Modulation (QAM) and signal

generations (sine and cosine) with the RISC processor design.

The combining of the RISC architecture with the DSP system

finds advantage in many real time applications [13]. The next

section presents the details of the proposed RMP design.

II. The proposed RISC-Modulation Processor

The RISC-Modulation Processor (RMP) is a combination of

the RISC processor and the digital modulation techniques.

Fig.1 shows the design flow for the proposed RMP. The RMP

utilizes the pipelining concept for its operations. The

instructions are stored in the memory in 32 bits. Depending on

the instructions, the pipeline operation is initiated. The

pipeline reduces the number of cycles while executing the

instruction along with Read/Write function. The pipeline

operation includes five sequences of operations as Instruction

Fetch (IF), Instruction Decode (ID), Execute (EX),

Read/Write Memory (RW) and Memory Access (MA).

The instruction has to be fetched from the memory and

decoded or separated as per the instruction given. The 32 bits

are split as opcode, input, output and RW operations. In this

design, the RMP is included with 32 operations. Thus the

opcode used in the RMP design is 25 bits. The operations in the

RMP design is categorized as Arithmetic and Logical Unit

(ALU), Shifting Unit (SU), Rotation Unit (RU), Comparator

Unit (CU) and Modulation Unit (MU). The other important

unit in the RMP design is the Control Unit (CTU) that

performs control in pipeline operations, read/write operations,

memory access operations and Program Counter (PC)

operations. The RMP design is coded using the mixed style of

the modeling in VHDL language. The following section

discuss about the instruction pipeline in the proposed RMP

design.

III. Instruction Pipeline in RMP using FPGA

A. Instruction Fetch (IF)

During the instruction fetch process of the pipeline, the 32 bit

instruction is fetched from the memory. The IF operation uses

the PC to keep track of the addresses for all the operations and

increments by 1 for the next Instruction. The VHDL code for

the IF requires the 32 bit register declared as array variable

stored with the addresses of all the operations in the RMP

design. The PC is developed using the increment design to

track the current operation and predict the next operations in

the RMP design.

B. Instruction Decode (ID)

The ID is the process of the splitting the 32 bit instruction to

control according to the operation such as read/write and the

number of inputs & outputs. For all operations, the VHDL

code for the ID is developed so as to split the 32 bits

instruction as opcode bits (4-0 bits) and the MSB namely 31st

bit as Read/Write operation indicator. If the value of the 31st

bit is ‘0’, the read operation is activated and ‘1’ value is used

for the write operation activation. The bit splitting for the

inputs and outputs depends on the operations being used. The

ID for each of the operations used in the RMP is unique. The

RMP design presents 32 different operations starting from the

simple addition to the constellation for 64 bit QAM. The

VHDL code for the 32 operations is developed in structural

modeling, as the five units are instantiated as components. The

preceding sections present each of the operations along with

its instruction formats.

INSTRUCTIONS

FETCH

DECODE

OPERATIONS

OP-CODE

EXECUTE

MEMORY ACCESS

& READ/WRITE

REGISTER

CONTROL UNIT

ALU

SHIFTING

ROTATION

C O MPARATO R

MODULATION

CLOCK RESET

Figure 1. FPGA implemented RISC-Modulation processor

1) Arithmetic and Logical Unit (ALU)

The ALU consists of the arithmetic operations like addition,

subtraction, multiplication and division. The logical

operations are AND, OR, NOT, XOR, XNOR, NAND, NOR.

All the arithmetic and logical operations are performed with

respect to 28 bits, except the multiplication of two 8 bits

number produce maximum 15 bits in the output due to the

overflow. The increment and decrement operation is used for

the PC unit to track and predict the addresses of the present

and next instruction respectively. The instruction format for

the ALU of the RMP is depicted in Table 1. The number of

inputs utilized is indicated within the parentheses.

The VHDL code split the 32 bits instruction as per the

operation required within the ALU. The bit split code is same

for ALU operations except the multiplication, NOT logic

operation, increment and decrement operations. Due to the

prevalence of the output with 15 bits in multiplication

operations, the multiplication operation is performed with the

same two numbers. In other words, no two different 8 bits

number are multiplied. The NOT logic is a single operator

performed only for 8 bits of input. Increment and Decrement

requires one bit for its operations

 Investigation of FPGA based 32-bit RISC-Modulation Processor 229

ALU

OPERATION
RW

BITS FORMAT FOR INPUTS &

OUTPUTS
OP-

-CODE

OUTPUT

SECOND

INPUT

FIRST

INPUT

Addition 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Subtraction 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Multiplication 31 27-13 (15) -- 12-5 (8) 4-0

Division 31 28-26 (3) 25-21 (5) 13-5 (8) 4-0

And Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Or Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Nand Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Nor Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Xor Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Xnor Logic 31 28-21 (8) 20-13 (8) 12-5 (8) 4-0

Not A 31 28-21 (8) -- 12-5 (8) 4-0

Not B 31 28-21 (8) -- 12-5 (8) 4-0

Increment 31 7 (1) -- 5 (1) 4-0

Decrement 31 7 (1) -- 5 (1) 4-0

Table 1 Instruction Format for the ALU of the RMP design

2) Shift Register Unit (SU)

The SU can also be referred as universal shift register unit. The

SU consists of four types of registers implemented using the

same hardware components that is controlled by the opcode.

The four types of shift registers are Serial In Serial Out (SISO),

Serial In Parallel Out (SIPO), Parallel In Serial Out (PISO),

Parallel In Parallel Out (PIPO). The choice of the shift

operation is decided by the opcode fed within the instruction

set. The decode of the instruction fetched is performed for the

SU of the RMP is as given in the Table 2

OPERATION RW

BITS FORMAT FOR INPUTS &

OUTPUTS OP

CODE
LOAD

ENABLE
OUTPUT INPUT

SISO 31 -- 6 (1) 5 (1) 4-0

SIPO 31 -- 13-6 (8) 5 (1) 4-0

PISO 31 16 (1) 15 (1) 12-5 (8) 4-0

PIPO 31 -- 22-15 (8) 12-5 (8) 4-0

Table 2 Instruction Format for the ALU of the RMP design

The VHDL code for the universal SU is developed

considering the instruction format. The input format is split as

1 bit for SISO & SIPO and 8 bits for PISO and PIPO. The

Load Enable (LE) is used with the PISO operation, to transfer

the parallel bit to the serial bit output. The behavioral model of

the VHDL code is developed for the PISO.

3) Rotation Unit (RU)

The RU is performed by the barrel shifting. The sequence of 8

bits is called as barrel. The barrel shifting refers to moving

specified number of bits out of the 8 bits input towards the

given particular direction. In order to indicate the rotating

direction, 1 bit is provided and for the number of bits to be

rotated, 3 bits are used. The RU can be manipulated for the

range of 1 to 5 bits of rotation in either direction. The VHDL

code for the RU performs the splitting of the 32 bit instruction

as shown in the Table 3. The number of bits for rotation and

direction of the rotation is performed accordingly within the

VHDL code. The behavioral style of coding is preferred for

RU.

OPERATION
R

W

BIT FORMAT FOR INPUT &

OUTPUT OP
COD

E OUTPU

T
BITS

DIRE-

-CTION
INPUT

ROTATION 31
28-21

(8)

17-15

(3)
14 (1)

12-5

(8)
4-0

Table 3 Instruction Format for the RU of the RMP design

4) Comparator Unit (CU)

The CU utilizes two 8 bit binary value comparisons for 3

conditions. The condition validation is performed for greater

than, less than and equal to. The instruction decode for the CU

as presented in Table 4. The decoded values of the inputs are 8

bits each along with the 5 bits opcode are coded by the VHDL

code.

OPERATION RW

BIT FORMAT FOR INPUT &

OUTPUT OP

CODE
OUTPUT

SECOND

INPUT

FIRST

INPUT

EQUAL 31 28 (1) 20-13 (8) 12-5 (8) 4-0

GREATER 31 28 (1) 20-13 (8) 12-5 (8) 4-0

LESSER 31 28 (1) 20-13 (8) 12-5 (8) 4-0

Table 4 Instruction Format for the CU of the RMP design

5) Modulation Unit (MU)

The MU is developed using the mixed style of modeling in

VHDL code to satisfy all the modulation techniques. The

modulation techniques like PWM, PPM, PCM, QAM, sine

wave and cosine wave generation are used in the MU. The

instruction format for the all the modulation techniques in the

MU is discussed below.

(a) Pulse Width Modulation (PWM)

The PWM is designed by comparing the high carrier wave

with the DC signal. The duty-in value represents the DC signal

equivalent in 28 bits. The carrier wave is the generation of

triangle wave with the peak value as 255 for 28 bit resolution.

The duty cycle is represented by ‘D’ and is given by

 where Ton is the ON period and Toff is the OFF period.

The duty cycle is always represented in percentage (%).

Depending on the DC value fed in, the pulse width changes.

This RMP gets the instruction decoded as shown in Table 5.
The VHDL code for the PWM generation involves in the

carrier triangular wave generation and then comparing with

the DC value. The PWM implemented using the FPGA is

reliable and feasible [14]. The resolution of the PWM design is

28 bits.

Prathap et al. 230

OPERATION RW

BIT FORMAT FOR INPUT &

OUTPUT OP

CODE
PWM 1 PWM 2 DUTY IN

PWM 31 27 (1) 26 (1) 12-5 (8) 4-0

Table 5 Instruction Format for the PWM in the MU-RMP

design

(b) Pulse Position Modulation

The PPM uses the sine modulating signal and overlaps with

the carrier signal to produce the pulse output. The position of

the pulse output prevails more with the low level of the

modulating signal and as the level increases the position of the

pulse output has some separation or gap between pulses. The

resolution used is 28 bits. The enable signal is provided for the

control of the PPM generation. The instruction format for the

PPM is as given in Table 6. The VHDL code for the PPM

generation is developed in the behavioral model which

includes the enable signal.

OPERATION RW

BIT FORMAT FOR INPUT &

OUTPUT OP

CODE
PPM ENABLE

DUTY

IN

PPM 31 27 (1) 20 (1) 12-5 (8) 4-0

Table 6 Instruction Format for the PPM in the MU-RMP

design

(c) Pulse Code Modulation

The discrete sine wave signal is subjected to two processes

namely sampling and quantized to generate the steam of bits.

The sampling process is the digitizing along the X-axis of the

sine wave to obtain the sample sequences and quantization is

the digitizing along the Y-axis of the sine wave to obtain the

quantized levels. The resolution used for the PCM generation

is 28 bit output for both sampling and quantization. The

instruction fetched is decoded as given below in Table 7. The

VHDL code for the PCM prefers the structural model of

design. The VHDL code sine wave generation is functional

input for the PCM circuit.

OPERATION RW

BIT FORMAT FOR

INPUT & OUTPUT

OPCODE

PCM

SINE

WAVE

INPUT

PCM 31 27-20 (8) 12-5 (8) 4-0

Table 7 Instruction Format for the PCM in the MU-RMP

Design

(d) Quadrature Amplitude Modulation

The QAM is generated uses maximum of 64 bits. The 64 bit

QAM requires 26 bits in which 23 MSB bits are used for the

cosine wave and 23 LSB bits are used for the sine wave. The

levels are assumed to be different as per the resolution given.

For every value of the 26 bit, the QAM adds the corresponding

levels of sine and cosine waves. Then the maximum

magnitudes for each of the 26 bit values are taken along with its

corresponding angles. The rectangle form of the obtained

magnitude and angles are converted to constellation diagram

for the QAM transmission. The instruction decode for the

QAM is as below in Table 8. The VHDL code performs the

above mentioned tasks using the mixed style of model.

OPERATION
R

W

BIT FORMAT FOR INPUT &

OUTPUT

OP

CODE

REAL

PART

OF

QAM

IMAGINARY

PART OF

QAM

26 BIT

INPUT

QAM 31
27-18

(10)
17-8 (10) 10-5 (6) 4-0

Table 8 Instruction Format for the QAM in the MU-RMP

design

(e) Cosine wave generation

The cosine wave generation is vital in the design of most

digital and pulse modulation techniques. The cosine wave is

generated to the maximum of 28 bits. The amplitude level of

the cosine wave is varied by assigning values through the input.

The amplitude of the cosine is limited to -127 to 127 for signed

signals and 0 to 255 for unsigned signals. The VHDL code

takes into considerations the both the signed and unsigned

values for the amplitude levels of the cosine wave. Table 9

depicts the instruction format for the cosine signal generation.

The resolution used for the cosine signal is 28 bits.

Table 9 Instruction Format for the Cosine signal in the

MU-RMP design

(f) Sine wave generation

Similar to the cosine wave, the sine wave is generated to the

maximum of 28 bits resolution. The amplitude level limits to

the -127 to 127 for signed and 0 to 255 for unsigned signals.

The sine signal starts its value at ‘0’. The cosine wave starts at

90° phase shift of the sine wave. The instruction decode is

given as in Table 10. The VHDL code is developed in the

behavioral style of modeling for the sine wave generation.

Table 10 Instruction Format for the Sine signal in the

MU-RMP design

(g) Resolution

The resolution of the MU of the RMP design is 28 bits. The

resolution is defined as the number of bits used for the design

of modulations within the VHDL code. The modulation

techniques like PWM, PPM, PCM, QAM, sine wave and

cosine wave require precise resolution for accurate

manipulation. Further increase in the resolution say >28 bits,

increases the complexity of the proposed RMP method.

OPERATION RW

BIT FORMAT FOR

INPUT & OUTPUT
OPCODE

COSINE

SIGNAL
INPUT

COSINE 31 17-10 (8) 9-5 (5) 4-0

OPERATION RW

BIT FORMAT FOR

INPUT & OUTPUT
OPCODE

SINE

SIGNAL
INPUT

SINE 31 17-10 (8) 9-5 (5) 4-0

 Investigation of FPGA based 32-bit RISC-Modulation Processor 231

C. Execute (EX)

 The EX is the stage at which the outputs are evaluated as per

the operation given. The output of the ALU, SU, RU, CU and

MU are of 28 bit length. The execution of the modulation block

is the most challenging section of the RMP design. The

methodology for each of the modulations is not related to any

other modulation. The MU does not have common input for

the modulation techniques within the unit. The EX is

performed after IF and ID of the pipeline sequence. When any

operation is executed at particular clock cycle, the IF & ID are

performed for previous operations and RW & MA are

manipulated for the preceding operations.

D. READ/WRITE (RW)

The 32 bit instructions when decoded get the information so as

to read from the memory register or write the output to the

memory register. The register length differs as per the

operations used. The RW is an important operation for the

RMP as it provides options to either store the results or

retrieve the information of the previous output. The VHDL

code for the read/write operations is designed using the

behavioral style.

E. Memory Access (MA)

The MA is the final stage of the pipeline operation. In real

practice, the MA is used at two phases of the pipeline process.

The IF and RW utilize the MA for their performance.

Depending on the type of RW operations, the memory is

accessed at the two stages. IF uses the MA for READ

operations. Similarly, the RW uses the MA for WRITE or

READ operations.

OP

CODE
OPERATIONS

OP

CODE
OPERATIONS

00000 ADDITION 10000 EQUAL

00001 SUBTRACTION 10001 GREATER

00010 MULTIPLICATION 10010 LESSER

00011 DIVISION 10011 1 BIT L/R ROTATION

00100 AND 10100 2 BIT L/R ROTATION

00101 OR 10101 3 BIT L/R ROTATION

00110 NAND 10110 4 BIT L/R ROTATION

00111 NOR 10111 5 BIT L/R ROTATION

01000 XOR 11000 INCREMENT

01001 XNOR 11001 DECREMENT

01010 NOT A 11010 PWM

01011 NOT B 11011 PCM

01100 SISO 11100 QAM

01101 SIPO 11101 PPM

01110 PISO 11110 COSINE WAVE

01111 PIPO 11111 SINE WAVE

Table 11 Opcode with the operation description for the

proposed RMP design

F. Control Unit (CU)

The Control Unit (CU) takes charge of the all the task in the

RMP. The pipelining of the operations is organized according

to the orientation of the instruction given. The operations of

pipelining like IF, ID, EX, RW, MA are performed within one

clock cycle. The RW along with MA requires control to read at

the IF stage or RW stage. The enable signals are to be

organized for few operations within the RMP units. The epode

for all the 32 operations with description is given in the Table

11.

IV. Results and Discussion

The RMP design is executed in simulation using the

MODELSIM software. The instruction of the RMP is fed such

that all the operations pass through the pipeline process. Fig.2

shows the ALU operations with pipelining. The pipelining is

only shown for the three operations of the ALU. The

operations of addition, subtraction, multiplication, division

and all logic operations are achieved by the ALU developed

using the VHDL code. Fig.3 gives the shifting properties of the

8 bit register in the RMP. The SISO and SIPO use the 8 bit

input in sequence. The PISO and PIPO use the 8 bit input in

parallel.

Fig.4 shows the operational characteristics for the RU of the

RMP design. The VHDL code for the versatile barrel shifter is

developed for the rotation purpose. The versatile barrel shifter

produces the rotation in both left and right direction, with the

number of bits to be rotated. The ID transfers control to

monitor the rotational direction by the number of specified bits

as shown in Fig.4. The CU performs the equality, greater or

lesser check operation for 8 bits using the proposed RMP. The

simulation response for the CU is shown in Fig.5. The

instruction decode for the CU specifies the operation through

the opcode and the result of the comparator is stored in register

memory as required. Fig.6 depicts the modulation operation of

the RMP. As shown in the Fig.6, the outputs of the modulation

techniques are converted into bits. The frequency of operation

of the modulation techniques are varying as shown.

The RTL schematic of the proposed RMP design is depicted in

Fig.7 indicating the functional blocks with its interconnections.

Fig.8 presents the VHDL code for the proposed RMP in

structural modeling consisting of ALU, shifting, rotate,

comparator and modulation using Xilinx ISE 14.5. Table 12

shows the comparison of the proposed RMP with other RISC

processor design using different FPGA devices say 3A DSP,

Xilinx Spartan 3E and Virtex 6. The device utilization chart of

the proposed RMP proves to be less in area compared to Ref

[2]. Table 13 presents the timing analysis of the RMP design

using the Xilinx Spartan 3A DSP, Xilinx Spartan 3E and

Virtex 6 FPGA. The timing of the RMP design with respect to

synthesis, mapping, placement and routing is low for the

Xilinx Spartan 3A DSP FPGA implementation. Also the

power and thermal estimation of the RMP design using the

Xilinx Spartan 3A DSP, Xilinx Spartan 3E and Virtex 6

respectively are listed from Table 13. The power consumption

for the proposed RMP using the Xilinx Spartan 3A DSP FPGA

is as low as 0.115W.

Prathap et al. 232

Figure 2. Simulation output for the ALU of the RMP design using MODELSIM

Figure 3. Simulation output for the SU of the RMP design using MODELSIM

 Investigation of FPGA based 32-bit RISC-Modulation Processor 233

Figure 4. Simulation output for the RU of the RMP design using MODELSIM

Figure 5. Simulation output for the CU of the RMP design using MODELSIM

Prathap et al. 234

Figure 6. Simulation output for the MU of the RMP design using MODELSIM

Figure 7. RTL view of the proposed RMP design using Xilinx Spartan 3A DSP FPGA

How to Format Your Paper for JIAS 235

Figure 8. VHDL code for the proposed RISC-Modulation Processor

Prathap et al. 236

Methods

Proposed RMP design

Ref[2] Spartan 3A

DSP

Spartan

3E
Virtex 6

Total Number Slice

Registers
586 586 625 291

Number of 4 input

LUTs
761 763 655 3374

Number of occupied

Slices
568 569 305 1821

Total Number of 4

input LUTs
826 828 759 --

Number of bonded

IOBs
223 223 223 166

Number of

BUFGMUXs
1 1 2 --

Number of DSP48As 2 2 0 --

Average Fanout of

Non-Clock Nets
3.00 3.01 3.61 --

Table 12 Device utilization comparison table for the proposed

RMP design

Methods

Proposed Method

Spartan 3A

DSP
Spartan 3E Virtex 6

Max Delay 18.213ns 18.179ns 7.170ns

Number of paths 4533369 4533261 4537064

Number of destination

ports
722 722 1123

Memory Utilized 216516 KB 211396 KB 223992 KB

Total REAL time to Xst

completion
19.00 sec 19.00 sec 23.00 sec

Total Real Time to

MAP
8 sec 10 sec 6 min 8 sec

Total Real Time to

PAR
3 min 57 sec 7 min 15 sec 7 min 55 sec

Total Power (W) 0.115 0.203 4.357

Junction

Temperature(°C)
26.8 29.3 55.2

Table 13 Timing analysis comparison of the RMP using three

FPGA devices

V. Conclusion

The real time implementation of the RISC-Modulation

Processor using the Xilinx Spartan 3A DSP FPGA found to be

feasible and satisfactory. The power consumed and timing

analysis for the proposed RMP design using Xilinx Spartan 3A

DSP is low. The resolution used in the design is uniformly

maintained as 28 bits for the purpose of simple circuit design.

Future work could be directed towards advanced

CISC-Modulation processor design using different resolution

ranges from 28 to 212 bits.

Acknowledgement

The authors would like to thank the department of Electronics

and Communication Engineering, Vardhaman College of

Engineering, Shamshabad, Hyderabad, India for the sustained

encouragement and assistance provided for our successful

completion of this work.

References

[1]. S. P. Ritpurkar, M. N. Thakare, G. D. Korde. “Design and

Simulation of 32-Bit RISC Architecture Based on MIPS

using VHDL”. In Proceedings of International

Conference on Advanced Computing and

Communication Systems, 2015.

[2]. Jikku Jeemon. “Pipelined 8-bit RISC Processor Design

using Verilog HDL on FPGA”. In Proceedings of the

IEEE International Conference On Recent Trends In

Electronics Information Communication Technology, pp.

2023-2027, 2016.

[3]. Christiensen C. Arandilla, Joseph Bernard A. Constantino,

Alvin Oliver M. Glova Anastacia P. Ballesil-Alvarez, Joy

Alinda P. Reyes. “High-Level Implementation of the

5-Stage Pipelined ARM9TDM Core”. In Proceedings of

the Technical Conference of IEEE Region10 (TENCON),

pp. 1696-1700, 2010.

[4]. Nathaniel Albuquerque, Kritika Prakash, Anu Mehra,

Nidhi Gaur. “Design and Implementation of Low Power

Reservation Station of a 32-bit DLX-RISC processor”. In

Proceedings of the International Conference on

Information Science (ICIS), pp. 217-221, 2016.

[5]. Wang, W., Shen, Z., and Dinavahi,V. “Physics-Based

Device-Level Power Electronic Circuit Hardware

Emulation on FPGA”. IEEE Transactions on Industrial

Informatics, 10(4), pp. 2166-2179, 2014.

[6]. Hwang, S.H., Liu, X., Kim, J.M., and Li, H. “Distributed

Digital Control of Modular-based Solid-State

Transformer Using DSP and FPGA”. IEEE Transactions

on Industrial Electronics, 60(2), pp. 670-680, 2013.

[7]. Cosmin Cernazanu-Glavan, Marius Marcu, Alexandru

Amaricai, Stefan Fedeac, Madalin Ghenea, Zheng Wang,

Anupam Chattopadhyay. “Direct FPGA-based Power

Profiling for a RISC Processor”. IEEE Instrumentation

and Measurement Society, 2015.

[8]. Suyash Toro, Sushma Wadar, Y. V. Chavan, S C Patil, D

S Bormane, Avinash Patil. “External Memory Interface

for RISC Controller on Reconfigurable Hardware Logic”.

In Proceedings of the IEEE International Conference on

Advances in Electronics, Communication and Computer

Technology (ICAECCT), pp. 455-460, 2016.

[9]. Sangeeta Palekar, Nitin Narkhede. “32-bit RISC

Processor with Floating Point Unit for DSP Applications”.

In Proceedings of the IEEE International Conference on

Recent Trends in Electronics Information

Communication Technology, pp. 2062-2066, 2016.

[10]. Suyog V Pande, Prashant D Bhirange. “An Efficient

High Speed RISC Processor for Convolution”. In

Proceedings of the IEEE sponsored 9th International

Conference on Intelligent Systems and Control (ISCO),

2015.

[11]. Safaa S. Omran and Ahmed K. Abdul-abbas. “Design of

32-Bits RISC Processor for Hardware Efficient QR

Decomposition”. In Proceedings of the International

Conference on Advances in Sustainable Engineering and

Applications (ICASEA), pp. 69-73, 2018.

[12]. Devaraconda Dinesh and R. Manoj Kumar. “Physical

Design Implementation of 16 Bit Risc Processor”. Indian

Journal of Science and Technology, 9(36), pp.1-7, 2016.

How to Format Your Paper for JIAS 237

[13]. Amit Kumar Singh Tomar, Rita Jain. “20-Bit RISC and

DSP System Design in an FPGA”. In Proceedings of the

Computing in Science & Engineering, Copublished by the

IEEE CS and the AIP, pp. 16-20, 2014.

[14]. Joseph Anthony Prathap, T. S. Anandhi and T. S.

Sivakumaran. “Implementation of FPGA based

DPWM-Digital PI Closed Loop Controller for Voltage

Regulation”, Indian Journal of Science and Technology,

9(38), pp. 1-9, 2016.

Author Biographies

Dr. Joseph Anthony Prathap was born in 1981 in

Puducherry. He has obtained B.E [Electronics and

Communication] and M.Tech [VLSI Design] degrees

in 2003 and 2007 respectively from Sathyabama

University. He has put in 11 years of service in teaching

and research. He is currently Associate Professor in the

Department of Electronics and Communication

Engineering at Vardhaman College of Engineering,

shamshabad, Hyderabad, India. His research interest includes VLSI design,

development of digital switch patterns, FPGA control techniques for power

converters, photovoltaic power electronics converters.

Dr. T.S.Anandhi was born in 1974 in chidambaram.

She has obtained B.E [Electronics and Instrumentation]

an M.E [process control and Instrumentation] degrees

in 1996 and 1998 respectively and then Ph.D in power

electronics in 2008 from Annamalai University. She is

currently Associate professor in the Department of

Electronics and Instrumentation Engineering at

Annamalai University, chidambaram, India and has put

in 15 years of service. She has produced one Ph.D and guiding 6 Ph.D

scholars. Her research interests are in power converters, control techniques

for multiple connected power converters, embedded controllers for power

converters, renewable energy based power converters. She is a life member of

Indian society for technical education.

Mr. Nagarjuna Malladhi was born in 1988 in Andhra

Pradesh. He has obtained B.E [Electronics and

Communication] degree from Chirala Engineering

College, Chirala in 2009 and M.Tech [VLSI Design]

degree from Vignan University in 2011. He has put in 6

years of service in teaching and research. He is

currently Assistant Professor in the Department of

Electronics and Communication Engineering at

Vardhaman College of Engineering, shamshabad,

Hyderabad, India. His research interest includes VLSI design, Analog and

Mixed signal.

Ms.V.Roja was born in 1992 in Telangana State. She

has obtained B.Tech [Electronics and Communication]

degree from Vijay College of Engineering for women,

Nizambad in 2013 and M.Tech [Wireless and Mobile

Communication] degree from JNTU, Hyderabad in

2016. She has put in 2 years of service in teaching. She

is currently Assistant Professor in the Department of

Electronics and Communication Engineering at

Vardhaman College of Engineering, shamshabad,

Hyderabad, India. Her research interest includes Wireless Communication,

Mobile Networks and Sensors.

