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Abstract: In sport training, fatigue prediction using surface 

electromyography analysis is manually monitored by human 

coach. Decisions rely very much on experience. Hence, the 

endurance training plan for an athlete needs to be individually 

designed by an experienced coach.  The pre-designed training 

plan suits the athlete fitness state in general, but not in real time. 

Real-time muscle monitoring and feedback help in 

understanding every fitness states throughout the training to 

optimise muscle performance. This can be realized with muscle 

fatigue prediction using computational modelling. Due to the 

higher amount of motion artefact, research in isotonic muscle 

fatigue prediction is very much lesser than the isometric 

prediction. Thus, this paper investigates the Butterworth 

high-pass noise filter on isotonic muscle fatigue data. Three 

cut-off thresholds, i.e. 5 Hz, 10 Hz, and 20 Hz, were compared 

using the Fuzzy c-Mean Radial Basis Function Network model. 

Several features of time and frequency domains, i.e. the median 

frequency, mean frequency, mean absolute value, root mean 

squares, simple square integral, variance length, and waveform 

length were used as model predictors. The cut-off threshold at 10 

Hz is the best frequency with the lowest average mean squared 

error of 0.0282 and best validation performance at epoch 972 

then trained in Integration FCM-RBFN model. The result shows 

that the proposed model can adapt the isotonic muscle.  

 
Keywords: Muscle fatigue, sEMG signal analysis, Butterworth 

cut-off threshold, Integration FCM-RBFN.  

 

I. Introduction 

Surface electromyography (sEMG) signals shows the muscle 

activity based on behaviour of electrical signal produced by 

human body movement. Nowadays, computational modelling 

is widely used in assisting human decision making, such as in 

biomedical and  clinical application[1] due to the importance 

of sEMG study[2], [3][4]. The understanding of the 

characteristic of sEMG signal is usually recommended either 

improved the muscle strength or the muscle endurance for 

sport application purposes[5]. For example, sport training 

commonly use surface electromyography (sEMG) signals 

analysis that need a guide from human experts to prolong 

muscle endurance against fatigue.  

A noise filter is designed to attenuate the specific ranges of 

frequencies while allowing other informative and meaningful 

data to pass. There are several types of the frequency spectrum 

of a signal filters such as low pass filter, high-pass filter, band 

pass filter and band stop filter. All of them need a specific 

cut-off frequency threshold during implementation. The 

movement artifact is the most critical noise in dynamic task 

and fundamentally important issue since noise filtration will 

directly affect the quality of data feeding into the learning 

model (e.g. RBF learning model). A recommended cut-off 

threshold is needed especially for modeling isotonic muscle 

task. 

Typically, exercise training in sport is to increase the 

muscle strength against resistance. To complete muscle 

training includes three different types of muscle contraction, 

such as the concentric contractions, eccentric contractions, 

and the isometric contractions. All these contraction are 

needed each other to complete the isotonic muscle contraction 

workout and comprehensive training on all three types of 

muscular contractions is important for athlete in sport training.  

Fatigue prediction studies are popular domain nowadays [6]. 

Moreover, many researches on muscle fatigue prediction are 

still concentrated on isometric training as compared to isotonic 

training. This is because isotonic training generates larger 

volume of motion artefact. Thus, it is giving a greater 

challenge of noise management on signal analysis [7]. The 

noise artefacts in isotonic muscle fatigue can be easily cleaned 

using the high-pass filter because the noise amplitude normally 

falls in the range between 0Hz to 20Hz. Butterworth filters has 

been widely used in sports science and human movement 

studies with varied filter range [8]–[11] and was commonly 

used to clean the undesired noises before prediction model 

building [12]. However, no literature has discussed and 
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confirmed the best cut-off thresholds in isotonic muscle 

fatigue prediction, especially when different loads were 

imposed on a human subject. 

Fatigue analysis using sEMG signals were usually carried 

out for isometric contraction task to identify the good 

predictor’s performance set as well as for prediction muscle 

force and angle estimation[7][8][9]. For isotonic training, the 

onset of contractile fatigue was successfully predicted in [13] 

using Radius Basis Function Neural Network (RBFNN) model 

and Multilayer Perceptron (MLP) model. Research from [13] 

recommended the use of artificial neural network (ANN) 

model for muscle fatigue prediction. At the same time, many 

studies has proven empirically that models from ANN family 

such as RBF [13] and MLP[14] are good for isometric muscle 

fatigue prediction [9,10] with mean squared error recorded 

between 1.76E-11 to 0.5. However, the capability of ANN 

models in isotonic muscle fatigue prediction is but it does not 

perform comparatively well for isotonic fatigue analysis as it 

has achieved for isometric fatigue analysis [15] but is able to 

perform muscle fatigue analysis on isotonic training. 

Therefore, RBF is proposed in this study as a prediction 

model. 

In other term, Fuzzy C-Mean (FCM) is one of the most 

popular fuzzy clustering techniques for different degree 

estimated problems. The successfully to determine the degree 

and used to choose the best description of faces in a reduced 

dimension [16]. Its strength over the famous k-Means 

algorithm due ability to yields the point’s membership value in 

each class [17]. The FCM clustering algorithm have been 

reported [18]–[22] to the best of knowledge but no similar 

study has been carried out in the isotonic muscle task using 

sEMG signal for sport application and it is still unclear which 

method can provide better clustering.  

The RBFN algorithm is a popular muscle fatigue prediction 

technique due to its capability in  improving the performance 

with respect to a priori of parameter [15][23]. Hence, 

combining the FCM and the RBFN techniques is a possible 

promising approach to predict muscle fatigue based on group 

similarity estimator. However, the capability of FCM-RBFN 

in isotonic muscle fatigue prediction is yet to be confirming in 

the past literature. 

II. The Experimentation 

In this study, the FCM-RBFN technique is used to predict 

muscle fatigue when different loads were imposed on human 

subject. We investigated the influence of three Butterworth 

high-pass filter cut-off thresholds towards the fatigue 

prediction performance. The cut-off thresholds, i.e. at 5 Hz, 10 

Hz and 20 Hz frequency ranges were tested in the experiments. 

Then, the lowest average MSE among the 3 cut off frequency 

will be tested into the Integration of FCM-RBFN and ANN 

will be the benchmark. The following sections explain details 

of the experimental paradigm design, data acquisition, and 

sEMG signals preprocessing phases. 

A. Experiment Setup 

The important phase in every experiment that includes 

capturing signal with sEMG is the skin preparation is needed 

to reduce the resistivity of the skin and the electrode must 

attach to the skin surface without any small barrier. The 

process of the cleaning hair, dirt, shaving, and the 

implementation of alcohol swab will decrease the noise that 

will embed in the signal [24]. 

The electrodes sensors are used to detect the electrical 

activities in muscle during movement. Therefore, the 

participants are asked to not making any additional movement 

to give less motion artifact. The dataset collected based on 

isotonic muscle contraction during the dumbbell lifting 

workout session. Muscle contractions from two muscle types 

were observed during the experiment, i.e. the flexor carpi 

radialis and biceps brachii from both right and left hand (see 

Figure 1). The location of sEMG sensors on muscles are 

measured to ensure the position is fixed in each session. This is 

crucial to ensure data consistency. The armrest is able to 

ensure only the targeted arm muscles are used, not the other 

body muscles, especially lower body muscles. The amount of 

oxygen consumption was monitored throughout the whole 

workout session to avoid cardiovascular overload and this 

monitoring is not use as one of the prediction in the proposed 

model. In addition, video recording was used throughout the 

data acquisition sessions when the subjects were performing 

the workout to aid results validation especially in data 

exploration phase.  

For non-sporting environment, upper limb frequently 

loaded for daily tasks [25]. In sporting environment upper 

limb muscle are highly important for sports such as swimming, 

combat sports and racquet sports. Due to these reasons upper 

limb muscle were selected for this experiment. sEMG data of 

upper limb provides the strength and conditioning coaches 

guidelines on which muscles were activated in each variations 

of exercises involved [26]. However, those sEMG data need to 

be meaningful. Thus, comparing cut-off filter threshold is 

essential, especially with significant changes in motor unit 

recruitment of biceps muscles after strength training 

interventions was hard to detect [27] due to several reasons 

such as a much slower rate of movement, typically less than 

1Hz [28] and smaller cross-sectional area (less motor-neuron) 

compared to lower limb muscles. Butterworth filters has also 

been widely used in sports science and human movement 

studies, with varied filters range [8][9][10][11]. Thus, further 

investigations needed to verify which range is the best.  

In order to collect sEMG signal, a total of 27 undergraduate 

Sport Science students from Faculty of Sport Science and 

Coaching, Sultan Idris Education University were recruited to 

participate in the experiment based on voluntary basis. From 

the subject group, there were 9 healthy male subjects (age = 

22-24 years; body weight = 50-75 kg; height = 152-180cm) 

and 18 healthy female subjects (age = 22-24 years; body 

weight=42-67 kg; height = 145-164 cm). All of the subjects 

are having normal body mass index.  
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Figure 1. The sEMG signal data collection setup for isotonic 

muscle contractions. 

The dumbbell weight was predefined according to 

individual subject’s one-repetition maximum (1RM) load. The 

measurement of 1RM is used to calculate the maximum load 

that a subject can lift in one maximal muscle contraction 

[26].The subjects were asked to performed dumbbell lifting 

using the maximum load until fatigue in the trial experiment 

set. None of them has any history of neuromuscular disorder. 

The participants were required to lift a dumbbell in the 

position described [10] (see Figure 1).The Wathan 

formula[11], as shown in equation (1) below was used in the 

experiment. 

 0.075R1RM 100w / 48.8牋53.8爀?     (1) 

Where w is the amount of weight used, and R is the number 

of repetition performed. To obtain the 1RM estimation, the 

subjects were tested with the maximum dumbbell weight load 

which he/she can afford to complete a full 10 repetitions. This 

is trial and error estimation although the amount of weight 

used can be guided by past experience and also the best 

practice in sport science [19]. Hence, the more accurate the 

maximum weight used, the more realistic the 1RM 

measurement will estimate the true strength. Each subject 

repeated the experiment for 3 trials with 2 minutes’ rest in 

between trials (see Figure 2). 

A total of 3 experiment sessions were conducted in three 

different days in orders of 1RM followed by 30%RM, and 

50%RM. The orders of experiments for different percentage 

of RM measurement were designed as such to avoid 

performing the 1RM sEMG signal recording twice. Since the 

determination weight of 1RM for each subject needs to be 

performed in the initial trial, the sEMG signal for the particular 

trial will be used as one of the three trials in session 1RM to 

save time.  

 

 
Figure 2. Experimental Paradigm and Design for individual 

workout session. 
 

The experimental paradigm and design were approved by 

the Ethics Committee from the Centre for Research and 

Innovation Management, Universiti Teknikal Malaysia 

Melaka, as well as from the Medical Research and Ethics 

Committee, Ministry of Health Malaysia. The participants 

were informed of the experiment purposes and procedures. An 

informed consent was obtained from every subject prior to the 

experiment. 

B. sEMG Signal Acquisition and Feature Extraction 

After the experiment setup, sEMG signal can be acquired 

using acquisition device. The Delsys Trigno Wireless system 

was used as interfacing between EMG machine and the 

computer for sEMG signal acquisition. Four channels of 

electrode with 48ms fixed group delay were applied on the 

surface of flexor carpi radialis and biceps brachii muscles. The 

sampling rate of 2000 samples per second was used [26]. The 

experimental design and procedure are been explain as in [29]. 

C. Feature Extraction 

The raw sEMG signal data were just an oscillation shown in 

amplitude across time. Thus, the raw data will normally less 

significance for classification and prediction task. Therefore, 

good feature extraction methods are able to produce a set of 

significant predictors to improve the fatigue classification 

result. Features extraction methods[30], such as the Median 

Frequency (MDF), Mean Frequency (MF), Mean Absolute 

Value (MAV), Root Mean Squares (RMS), Simple Square 

Integral (SSI), Variance Length (VL), and Waveform Length 

(WL) were used to extract meaningful data for fatigue 

prediction. Later, the extracted features are normalized before 

prediction analysis. Therefore, the data will be in 12x7 array 

size such as in Table 3. 

III. Integration of FCM-RBFN 

The 3 level of filter cut-off threshold are been tested with the 

original FCM clustering and directly been predicted in RBFN 

algorithm. The threshold which has the lowest average MSE 

value will be tested in this proposed technique to predict the 

load’s weight value. 

The integration overcomes the limitation by enhancing the 

original FCM- RBFN. These proposed techniques FCM-RBF 

is designed by integrating between these two techniques which 

lead to enhance the FCM and RBFN techniques and bring into 

a next level of predicting model.  

A. Fuzzy C-Mean 

In this proposed FCM still the same as original but the updated 

membership function in FCM clustering techniques will be 

used in RBFN. In addition, the initial membership function 

also has been fixed into a value according to the athlete’s 

weight load data. 

The FCM performs the following steps during clustering: 

1. Fixed initialize the cluster membership values, μij. 

2. Calculate the cluster centers according to the fixed initialize 

membership function: 
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3. Update ij  according to the following: 
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4. Calculate the objective function, mJ . 

5. Repeat steps 2–4 until mJ  improves by less than a specified 

minimum threshold or until after a specified maximum number 

of iterations. 

B. Testing Phase 

The updated ij from FCM will be use in testing phase (α) to 

create a new membership function according to the following: 
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   (4) 

Where  is an updated membership function for testing 

data α and it will determine the representative center of the 

cluster for α resulting grouping the data point in Class α 1, 

Class α 2, and Class α 3 as shown in Figure 3. The Network 

RBFN , Network RBFN , and Network RBFN 

 are formed from RBFN in the next section. 

C. Selection of Radial Basis Function Network Model 

The selection of Radial Basis Function Network part are be 

created when there are two group class in the same subject’s 

data trial such as in Table 1. LB and RB muscle in the same 

group and RF and RB muscle in the same group and in another 

hand, Table 2 show RB, RF and RB muscle in the same group 

and LB muscle the only member in group class 2.  The 

problems raised in when two group classes has been predict 

and which class will be the most nearest correct and reliable.  

Therefore, to solve the above problems, the nearest distance 

between data point with the center point of its group class is 

been compute with Euclidean distance as in the following 

formula:  

2

( 1)
( , ) ( )

n

i ji
d p q p q


   (5) 

Where  denotes distance,  denotes respectively data 

point,  denotes membership function regarding to ’s class.  

The group class with the lowest value of Euclidean distance or 

the majority group class (for an example: Table 2, Group class 

3) will be a dominant on another group class. The dominant 

group class will be the indicator for predicted the next load 

with the two conditions as described in Figure 4 below.

 

 
Figure 3. Network RBFN  Stimulate in Testing Phase Algorithm 

 

Muscle MDF MF MAV RMS SSI VAR WL Predicted class 

LB 0.2903 0.2132 0.3812 0.2487 0.0472 0.0472 0.2534 2 

LF 0.3911 0.4004 0.1260 0.0757 0.0055 0.0055 0.1302 3 

RB 0.3101 0.2481 0.3158 0.2280 0.0401 0.0401 0.2315 2 

RF 0.3074 0.2415 0.1331 0.0903 0.0074 0.0074 0.1027 3 

Table 1. sEMG data for a Subject with Even Presentative Predicted class 

Muscle MDF MF MAV RMS SSI VAR WL Predicted class 

LB 0.3389 0.3517 0.1006 0.0753 0.0025 0.0025 0.0416 2 

LF 0.5960 0.5946 0.0721 0.0449 0.0010 0.0010 0.0471 3 

RB 0.3842 0.3559 0.3526 0.2517 0.0236 0.023 0.1496 3 

RF 0.8454 0.8711 0.0567 0.0366 0.0007 0.0007 0.0508 3 

Table 2. sEMG data for a Subject with Odd Presentative Predicted class 

 

Muscle MDF MF MAV RMS SSI VAR WL 

1-LB 0.6567 0.8687  0.1377  0.0826  0.0054 0.0054 0.0114 

1-LF 0.1109 0.1562  0.1377  0.0826  0.0054 0.0054 0.1305 

IF data point α = = class α 1 

  Network RBFN  stimulate 

  Display the predicted load 

ENDIF 

IF data point α = = class α 2 

  Network RBFN  stimulate 

  Display the predicted load 

ENDIF 

IF data point α = = class α 3 

  Network RBFN  stimulate 

  Display the predicted load 

ENDIF 
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1-RB 0.0894 0.1007  0.3257  0.2298  0.0385 0.0384 0.2305 

1-RF 0.0887 0.0981  0.1452  0.0967  0.0073 0.0073 0.1026 

2-LB 0.0966 0.1110  0.4256  0.2988  0.0421 0.0421 0.2054 

2-LF 0.1101 0.1591  0.1600  0.0995  0.0050 0.0050 0.1017 

2-RB 0.0898 0.0961  0.3276  0.2206  0.0233 0.0232 0.1477 

2-RF 0.1743 0.2385  0.1582  0.0925  0.0043 0.0044 0.1338 

3-RB 0.0990 0.1135  0.1654  0.1058  0.0087 0.0086 0.1305 

3-LB 0.1691 0.2299  0.1373  0.08053  0.0052 0.0052 0.1714 

3-RF 0.0883 0.1058  0.1338  0.0749  0.0045 0.0045 0.1007 

3-RB 0.1653 0.2155  0.1375  0.0770  0.0047 0.0047 0.1621 

1-LB 0.6567 0.8687  0.1377  0.0826  0.0054 0.0054 0.0114 

1-LF 0.1109 0.1562  0.1377  0.0826  0.0054 0.0054 0.1305 

1-RB 0.0894 0.1007  0.3257  0.2298  0.0385 0.0384 0.2305 

1-RF 0.0887 0.0981  0.1452  0.0967  0.0073 0.0073 0.1026 

2-LB 0.0966 0.1110  0.4256  0.2988  0.0421 0.0421 0.2054 

2-LF 0.1101 0.1591  0.1600  0.0995  0.0050 0.0050 0.1017 

2-RB 0.0898 0.0961  0.3276  0.2206  0.0233 0.0232 0.1477 

Table 3. The normalized data sample for 1 session. 

 

HZ 5 Hz 10Hz 20 Hz 

FCM-RBFN Epoch MSE Epoch MSE Epoch MSE 
1 972 0.0740 972 0.0301 196 0.0199 

2 683 0.0199 377 0.0195 255 0.0199 

3 637 0.0199 972 0.0311 255 0.0199 

4 972 0.0740 385 0.0198 972 0.0380 

5 972 0.0741 972 0.0301 972 0.0380 

6 972 0.0740 972 0.0311 972 0.0380 

7 972 0.0740 972 0.0301 972 0.0380 

8 972 0.0220 972 0.0301 972 0.0380 

9 972 0.0740 972 0.0301 972 0.0380 

10 637 0.0199 972 0.0301 972 0.0380 

MSE Average  0.0526  0.0282  0.0325 

Table 4. Prediction Performance of Butterworth High-Pass Filter With Cut-off Threshold at Different Frequency Ranges. 
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Figure 4. The performance of Butterworth high-pass filter with cut-off threshold at different frequency ranges. 

 

 

 
Figure 5. Selection of RBFN model 

I. Result and Discussion 

Table 3 shows the normalized sEMG data sample of a single 

session used as the training data in the experiment. The trial 

indicates the signal data row of a subject for both biceps (B) 

and flexor (F) muscles on both left (L) and right (R) arms 

across 7 features vector. The overall training data were 

arranged according to the percentage from 1 RM, 30% and 

50% of 1RM for session 1, 2 and 3 respectively. Table 4 shows 

the summary of average MSE comparison between FCM 

clustering techniques. RBFN technique was used for 

validating the clusters efficiency for classification.  

A. The performance of Butterworth high-pass filter with 

cut-off threshold at different frequency ranges. 

The results reveal that the best prediction results were 

produced by the data at 10Hz frequency cut-off with the lowest 

average MSE value of 0.0283. The raw signal that has been 

filtered with 5 Hz frequency high-pass filter may have not 

enough to filter the noise out for sEMG isotonic training task. 

This has been proved with highest MSE value in FCM-RBFN 

(0.526). The 20 Hz frequency cut-off filter performed better in 

FCM-RBFN with 0.0326 MSE value than 5Hz but had around 

15% higher error rate as compared to the 10Hz frequency 

cut-off. Hence, data exploration from experiments suggested 

that in terms of cut-off frequency for muscle fatigue prediction 

during isotonic contraction task using sEMG signal 

Butterworth high-pass filter with cut-off threshold at 10 Hz for 

FCM-RBFN with a lower average MSE than others and 10 Hz 

suitable to filter off the unwanted noise while maintaining the 

useful information for constructing learning model at the next 

phase.  

In terms of epoch value, the higher of epoch value, the 

higher computational time it could take.  The training process 

uses training data-set and must be executed epoch by epoch, in 

order to calculate the MSE of the network in each epoch for 

the dataset. The best network model then used by training data 

for training process with the minimum MSE is selected for the 

evaluation process.  Therefore, to compare the reproducibility, 

each algorithm was executed 10 times for the same batch of 

data. The question of the computational time requirements of 

each method needs to be addressed. Epoch for all 10 times are 

IF Representative predicted class group = 2 

  LOOP Calculate Euclidean Distance 

   FIND The majority of representative class 

  END LOOP 

ELSE IF Representative predicted class group = 1 or 

class group = 3  

  LOOP The minority of representative class 

  END LOOP 

ELSE Automatic start with the lowest class load  

class 1 

END IF 
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lower than FCM-RBFN where most of the executing process is 

nearest to the maximum epoch = 1000 that assuming 

optimization reaches some local minima and continues to 

move around the minima. At such state the objective function 

and validation performance should both become stationary 

distributions and the optimal value should occur with uniform 

probability anywhere between when the epoch when the local 

optimum is reached and infinity. 

 The results in Table 2 below show that each human subject 

has different optimum epoch values and different mean 

squared errors. Therefore, muscle prediction is proven to be 

better based on group estimates from people with similar 

strength. FCM algorithm tends to cluster the training data into 

different group of subjects to facilitate the personalized 

prediction in RBFN.  

 The cut-off frequencies at 5 Hz and 20 Hz were trapped in 

the local minima MSE values and continues to move around 

the minima at loop 4 while the cut-off frequency at 10 Hz was 

trapped at the local minimum MSE value starting from loop 5 

but was fluctuated at loop 8 and loop 10 (see Figure 4). Among 

the three cut-off thresholds, the noise cut-off at 10 Hz has the 

most stable and lowest average MSE readings. The range of 

difference falls between 0.0116. The MSE fluctuation is the 

greatest when the 5 Hz cut-off threshold was used. The trend 

has showed that the noisy data influence has gradually 

softened when the cut-off threshold is set at 10 Hz and highest. 

However, it is not an advantage to increase the cut-off 

threshold just for the purpose of reducing the MSE values in 

any model building due to the overfitting issue. This is 

especially important during the data pre-processing stage. 

Hence, to preserve the original information at a satisfied 

model prediction is the best way to follows. 

 

CLASS Average MSE 

for Integration 

FCM-RBFN 

Average MSE for 

ANN 

1  0.86 1.63 

2  0.98 1.71 

3  1.33 1.64 

Table 5. Average MSE for Integration FCM-RBFN and ANN 

Techniques. 

Same goes to average MSE performance value of 

Integration FCM-RBFN is lower than ANN with 0.86 and 1.63, 

respectively. In other words, Integration FCM-RBFN 

technique yielded good results while ANN technique only 

acquired moderate result for high embedded noise sEMG 

muscle signal. 

According to the Table 5 above, the average MSE of 

Integration FCM-RBFNN and ANN techniques achieved 

0.98% and 1.71%, respectively for class 2. Same goes to class 

3 where the average MSE for Integration FCM-RBFN and 

ANN are 1.33 and 1.64 respectively. This is shows that an 

integration FCM-RBFNN technique is better than ANN 

technique 

The different between Integration of FCM-RBFN and ANN 

are the 3 sub-net in the proposed technique which specific 

predict the load’s according to the signal’s class in RBFN. In 

addition, the membership function in FCM will always update 

according to the current muscle condition.  

 
Figure 6 (a). Comparison of Class 1 between Predicted Load 

and Original Load for Integration FCM-RBFNN technique 

 

 

 
Figure 6(b). Comparison of Class 2 between Predicted Load 

and Original Load for Integration FCM-RBFNN technique 

 

 

 
Figure 6(c). Comparison of Class 3 between Predicted Load 

and Original Load for Integration FCM-RBFNN technique 

 

Based on the graph as shown in Figure 6 (a), (b) and (c) 

above, the graph shows that the comparison of class 1, 2 and 3, 

respectively, for Integration FCM-RBFNN modelling 

technique between predicted load and original load. The 

nearer the predicted load to the original load, it’s shown that 

the modelling is accepting. There are errors in predicting the 

original load but yet still accepted. Therefore, Integration of 
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FCM-RBFNN is flexible to the limitation of the isotonic 

muscle fatigue sEMG signal with the average MSE value. 

 
Figure 7(a). Comparison of Class 1 between Predicted Load 

and Original Load for ANN 

 

 

 
Figure 7(b). Comparison of Class 2 between Predicted Load 

and Original Load for ANN 

 

 
Figure 7(c). Comparison of Class 3 between Predicted Load 

and Original Load for ANN 

 

Next, in contrast, based on the graph as shown in Figure 7 

(a), this graph shows the comparison of class 1 for ANN 

modelling technique between predicted load and original load. 

This graph shows the predicted load is far from the original 

load. In Figure 7 (b), and in Figure 7 (c), shows the comparison 

of class 2 and class 3 for ANN modelling technique between 

predicted load and original load, respectively. Thus, this 

technique is not stable with the limitation of dynamic muscle 

fatigue when compare to proposed technique. The average 

MSE value for ANN performance has been described in the 

previous section. 

II. Conclusion 

In this paper, we have investigated the performance of 

different cut-off frequency thresholds in Butterworth filter for 

isotonic muscle sEMG signal processing based on 2 biceps 

and 2 flexor arms’ muscles. The research findings have 

recommended that the 10 Hz cut-off frequency threshold is the 

best setting in the proposed scenarios. The minimum average 

MSE value was recorded at 0.0282, with the maximum 

fluctuation range at 0.0116. Hence, the 10 Hz is also the most 

stable cut-off frequency compared with the 5 Hz and 20 Hz 

cut-off frequencies. 

Thus, the most stable cut-off frequency, 10 Hz, is used as 

the noise filter for the raw sEMG signal. The extracted signal 

data is used as input data in the proposed technique, 

Integration FCM-RBFN. The Integration FCM-RBFN is able 

to self-adapt to the changing of the current athletes muscle’s 

condition to predict the next load’s weight for the next trial.  

In summary, the proposed model FCM-RBFN can be used 

for sport training analysis especially for isotonic muscle 

contractions. The approach of personalized prediction based 

on similar group estimate is proven to be possible in predicting 

variable load intensity isotonic task. One of the limitations of 

this study is the availability of participants and number of 

sessions involved, as rest in between sessions for muscle 

recovery need to be taken into considerations [31][32][33].  

The future work should look into the prediction model 

architecture to enable real-time prediction in different loads 

used to prolong the endurance of an athlete and conduct more 

cut-off threshold at different frequency ranges.   
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