
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988Volume 11 (2019) pp. 161-169

© MIR Labs,www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 19 Nov, 2018; Accepted: 15 Jun, 2019; Published: 4 July, 2019

A Novel Algorithm for Multi-label Classification by

Exploring Feature and Label Dissimilarities

Vaishali S. Tidake1, Shirish S. Sane2

1 Research Scholar, Matoshri College of Engineering and Research Center, Nashik, India

Dept. of Computer Engineering, MVPS’s KBT College of Engineering, Nashik, India

Savitribai Phule Pune University

tidake.vaishali@kbtcoe.org

2Dept. of Computer Engineering, K. K. Wagh Institute of Engineering Education and Research, Nashik, India

Savitribai Phule Pune University

sssane@kkwagh.edu.in

Abstract: Selection of appropriate nearest neighbors greatly

affects predictive accuracy of nearest neighbor classifier.

Feature similarity is often used to decide the set of k nearest

neighbors. Predictive accuracy of multi-label kNN could further

be enhanced if in addition to the feature similarity, difference in

feature values and dissimilarity of the instance labels are also

taken into account to decide the set of k nearest neighbors. This

paper deals with an algorithm called “ML-FLD” that not only

takes into account features similarity of the instances, but also

considers feature difference and label dissimilarity in order to

decide the k nearest neighbors of a given unseen instance for

the prediction of its labels. The algorithm when tested using

well-known datasets and checked with the existing well known

algorithms, provides better performance in terms of example-

based metrics such as hamming loss, ranking loss, one error,

coverage, average precision, accuracy, F measure as well as

label-based metrics like macro-averaged and micro-averaged F

measure.

Keywords: classification, multi-label, algorithm adaptation,

feature similarity, label dissimilarity, k nearest neighbors

I. Introduction

Classification is very commonly used tasks in data mining. It

is referred to as supervised learning. Many applications like

Text categorization (TC), direct marketing, bioinformatics,

discovery of drugs, tag recommendation, prediction of gene

function, etc. use supervised learning [1, 2, 3, 4, 11]. Text

categorization classifies documents according to their

contents. Many a times, a document to be categorized has

multiple semantic meanings. Hence unlike traditional

classification, such documents may belong to a set of

predefined categories and therefore associated with more

than one class labels.

An approach discussed by Zhang and Zhou in [25] follows

an algorithm adaptation approach and is a modified version

of well-known nearest neighbor algorithm. It is used by

several researchers to perform multi-label classification. It

utilizes feature similarity to determine nearest neighbors [8,

10, 11, 12, 13]. In case of multi-label classification, since the

instances are associated with multiple labels, label

dissimilarity may also help for better determination of set of

nearest neighbors.

In this paper, a novel algorithm adaptation approach called

ML-FLD is presented. ML-FLD not only takes into account

features but also labels of instances to determine nearest

neighbors while assigning weights to the neighbors. When

the features of two instances are similar, chances of its

selection as the nearest neighbor is high. However, if the

labels of such instances are dissimilar, chances of its

selection as nearest neighbor is low. Experimentation

presented shows the importance of use of both features and

labels to improve performance of the classifier.

Remaining paper is ordered as follows. Section II deals

with the related work while the details of ML-FLD are in

section III. Section IV presents the experimental work and

the concluding comments are in section V.

II. Related Work

From the last two decades, many researchers are working in

the area of multi-label classification as many applications are

found to exhibit multiple semantic meanings [1, 2, 3, 4, 11].

As reported in [12, 13, 14, 15, 16, 17, 18, 25, 28],

transformation and algorithm adaptation are the general

approaches to build multi-label classifier.

BR (Binary Relevance) [5, 6, 7, 8, 22, 28] classifiers first

transform the multi-label data to the single label data and

then for each label, they build classifier using any existing

conventional single label classifier separately.

Read J. et al. [21, 26] proposed CC (Classifier Chains) that

also follows the same mechanism like BR, but in a particular

sequence of labels. Both the algorithms, LP [12, 13, 14, 15,

16, 17, 18, 22, 28, 32] and RAkEL [5, 32] consider set of

labels at a time.

LP treats each combination of labels appeared in

underlying dataset as a separate class and then the classifier

follows a multiclass classifier approach. However, its

performance degrades due to large number of class labels

with their presence in only a few instances. Thus considering

Tidake and Sane 162

only a subset of the labels has been suggested in RAkEL as

proposed by Tsoumakas G. et al. [5].

Algorithm adaptation approach involves modification in

existing algorithms to tackle with multi-label data directly

without any transformation and generally provides better

performance.

ML-kNN is an adaptation of conventional kNN to handle

multi-label data as proposed by Zhang and Zhou [8]. It

predicts labels of unseen instances using Maximum a

posteriori and provides better performance when compared

with other well-known algorithms. However, the algorithm

does not consider relationship between labels.

E. Spyromitros et al. [10] proposed an algorithm BRkNN

using the lazy approach. It uses kNN before applying

transformation approach. Once neighbors are obtained, then

BR classifier uses these neighbors independently for

prediction of each label.

BPMLL is a modification of a conventional neural

network with feed-forward for dealing with multi-label data

where Zhang and Zhou [1] designed a global error function

by considering the label correlation.

Jiang et al. [11] computed three terms namely the

membership degree of each term in each category, that of

each term in each document and that of each document in

each category and combined them to get final membership

degree. Use of clustering has been suggested to reduce the

computational cost of kNN.

Y. Yu et al. [12] proposed two approaches MLRS and

MLRS-LC that suggest global and local computation of

neighbors respectively.

An approach called, RF-ML, to search for the k neighbors

and use of dissimilarity of instances to find the importance of

features has been suggested by Newton Spolaˆor et al. [15].

Based on our survey and to the best of our knowledge none

of the reported work takes into account label dissimilarity

while determining nearest neighbors. We present here a novel

algorithm ML-FLD, that determines the nearest neighbors

based on feature similarity and differences as well as label

dissimilarity.

III. Proposed Algorithm: ML-FLD

Proposed algorithm ML-FLD aims to improve

performance of the multi-label classifier through proper

selection of neighbors. It uses labels along with the features

while searching for the neighbors. This information is utilized

for the estimation of the likelihood probabilities of each label.

These probabilities along with computed prior probabilities of

particular label are further utilized to predict that label for an

unseen instance.

 Let C be a set of c disjoint labels. Let Q be a dataset

having q instances {X1… Xq}. Let each instance Xj be

represented by a pair of vectors, (xj, yl), where xj, (j = 1, 2…f)

be the set of features and vector yl (l = 1, 2…c) be a set of

labels. The aim is to construct a function g(x) that maps a

given feature vector xj to a vector yl.

Figure 1 shows the algorithm for Multi-Label

classification using Feature and Label Dissimilarity (ML-

FLD) as shown in lines (7) and (24). Algorithm ML-FLD

takes four parameters as an input: a training dataset Q with q

Algorithm ML-FLD

Input:

- A training dataset Q with q instances

- An unseen instance t

- Number of nearest neighbors k

- A user-defined threshold Th

Output: Prediction of labels for unseen instance t

begin

1) for each label c in each instance q

2) Compute Priorc: P (Hc=1) and P (Hc=0) using

Eq. (1) and Eq. (2) respectively

3) end for

4) for each instance Xi (1 ≤i≤ q)

5) Ni = Ø // neighbors of Xi

6) for each instance Xj (1 ≤ j ≤ q, i ≠ j)

7) Wj = fs (xi, xj) х diff (xi, xj) x ld (yi, yj)

8) if |Ni| ≤ k

9) Ni = Ni U { Xj }

10) else

11) find instance Xm in Ni having max weight Wm

12) if Wm > Wj // Replace Xm by Xj

13) Ni = Ni - { Xm }

14) Ni = Ni U { Xj }

15) end if

16) end if

17) end for

18) end for

19) for each label c in j neighbors (0 ≤ j ≤ k)

20) Estimate Likelihoodc: P (E=j | Hc=1) and

P (E=j | Hc=0) using Eq. (3) and Eq. (4) respectively

21) end for

22) Nt = Ø // neighbors of instance t

23) for each instance Xi (1 ≤ i ≤ q) and unseen instance t

24) Wi = fs (xi, xt) x diff (xi, xt)

25) if |Nt | ≤ k

26) Nt = Nt U { Xi }

27) else

28) Find instance Xm in Nt with max weight Wm

29) if Wm > Wi // Replace Xm by Xi

30) Nt = Nt - { Xm }

31) Nt = Nt U { Xi }

32) end if

33) end if

34) end for

35) for each label c

36) Predict tc for instance t using Priorc and Likelihoodc

as given in Eq. (5) and Eq. (6) respectively

37) end for

end

Figure 1 Algorithm ML-FLD

A Novel Algorithm for Multi-Label Classification by Exploring Feature and Label Dissimilarities 163

instances, an unseen instance t, number of nearest neighbors

k and a user-defined threshold Th.

Initially, prior probabilities of each label are computed by

counting the number of instances from train set Q that belong

to each label c (Lines 1-3). This count 𝑐𝑛𝑡(𝑐)along with the

smoothing parameter p and size of the training dataset q, are

used to compute the prior probabilities of every label in the

set C of labels using Eq. (1) and (2) given below. Two kinds

of prior probabilities are estimated for each label c: the

probability P (Hc = 1) of the event that “an instance belongs

to a label c” and the probability P (Hc = 0) of the event that

“an instance does not belong to a label c”.

𝑃(𝐻𝑐 = 1) = (𝑝 + 𝑐𝑛𝑡(𝑐)) / (2𝑝 + 𝑞) (1)

𝑃(𝐻𝑐 = 0) = 1 − 𝑃(𝐻𝑐 = 1) (2)

Once the prior probabilities are obtained, then likelihood

probabilities are estimated. It requires the knowledge

obtained from k nearest neighbors (kNN). These neighbors

are computed for each instance X in set Q (Lines 4-18). If

the traditional kNN algorithm is applied, it selects k

neighbors with minimum distance and then votes are

obtained from the k nearest neighbors to decide the class of

particular unseen instance. However, since the instances in

case of multi-label data may have one or more class labels,

ML-FLD not only considers features but it also takes into

account class labels while deciding nearest neighbors. ML-

FLD uses Euclidean distance [9] for checking the similarity

of features between the instances (function fs(.) in Line 7)

and uses Hamming distance [15] to find the label similarity

(function ld(.)). Hamming distance between two strings is the

number of positions where the characters of two strings are

not same. ML-FLD uses a similar method to obtain the

statistics from the total number of distinct labels of two

instances collectively and the total number of common labels

between two instances. The difference between these two

values divided by total number of labels is used to update the

weight of a neighbor [30, 31]. Along with fs (.) and ld (.),

function diff (.) is also used to compute weights of neighbors.

The diff (.) function finds the difference between values of

corresponding features between the two instances [14, 15].

Summation of absolute values of differences in features is

returned by diff (.) function. Thus neighbors are weighed

using the information obtained from features as well as

labels together (Line 7). Initial k computed weights for

instance Xi are directly considered as its k neighbors denoted

by set Ni (Lines 8-10). Thereafter, maximum of previously

computed k weights in set Ni is searched and it is replaced by

the new weight if new weight is smaller (Lines 11-16).

Next, the algorithm decides how many instances have the

total number of 0, 1…k neighbors respectively such that each

neighbor is associated with the label c. This knowledge is

stored in arrays 𝐹
(𝑐)

1
[0 … 𝑘] and 𝐹

(𝑐)

0
[0 … 𝑘] respectively,

depending on whether particular instance whose neighbors

are observed, is associated or not associated with the label c.

Using this information, the likelihood probabilities of each

label are estimated (Lines 19-21). Two kinds of likelihood

probabilities are estimated: First the probability that an

instance x has j neighbors associated with label c when “an

instance x belongs to the label c” as computed in Eq. (3) and

second, the probability that an instance x has j neighbors

associated with label c when “an instance x does not belong

to the label c” as computed in Eq. (4).

𝑃(E = j|𝐻𝑐 = 1) =
p+𝐹

(𝑐)
1

[𝑗]

𝑝(1+k)+∑ 𝐹
(𝑐)
1

[𝑟]
𝑘

𝑟=0

, 0 ≤ 𝑗 ≤ 𝑘 (3)

𝑃(E = j|𝐻𝑐 = 0) =
p+𝐹

(𝑐)
0

[𝑗]

𝑝(1+k)+∑ 𝐹
(𝑐)
0

[𝑟]
𝑘

𝑟=0

, 0 ≤ 𝑗 ≤ 𝑘 (4)

Next, computation of the Euclidean distance and the

difference of features of an unseen instance t with each

instance in the dataset Q is done using fs (.) and diff (.)

functions respectively (Line 24). It is followed by the

selection of k nearest neighbors denoted by set Nt for the

unseen instance t based on the minimum weights (Lines 25-

33).

Finally prior and likelihood probabilities of each label c,

and count of neighbors of the unseen instance t belonging to

each label c (Eq. (5)) is used for the prediction of label c as

per the Bayes theorem (Lines 35-37) [8]. Eq. (5) measures

the number of neighbors of an unseen instance t from the set

Nt that are associated with each label c. This count j along

with the prior and the likelihood probabilities are used in Eq.

(6) to find the ratio to decide whether the unseen instance t is

associated with the label c or not. The ‘Th’ in Eq. (6)

represents threshold and is one of the input to the algorithm.

It can be user-defined or calibrated. In our experimentation,

Th was set to 0.5.

j = ∑ 𝑁 (𝑐)
𝑚

𝑘

𝑚=1
 (5)

𝑡𝑐 = 1 if (
P(𝐻𝑐=1)×P(E = j|𝐻𝑐 = 1)

P(𝐻𝑐=1)×P(E = j|𝐻𝑐 = 1)+P(𝐻𝑐=0)×P(E = j|𝐻𝑐 = 0)
) ≥ 𝑇ℎ

 … (6)

Average time required for both the algorithms, ML-kNN

proposed by Zhang and Zhou [8] and ML-FLD is

comparable. ML-kNN requires O(q2.f + c.q.k) for computing

prior and likelihood probabilities and O(q.f + c.k) for

computation related to unseen instances [25]. Whereas the

time complexity of ML-FLD is O (q2. (f + c) + c.q.k) and

O (q.(f + c) + c.k) respectively. Here k, f, c, and q represent

number of nearest neighbors, features, labels, and instances

in dataset Q respectively. Thus average time complexity of

ML-FLD is slightly higher than that of ML-kNN. However,

ML-FLD provides better performance in terms of various

performance parameters as discussed in section IV.

IV. Experimentation and Performance

Evaluation

A. Multi-label Datasets

Table I shows details of benchmark multi-label datasets

used in the experimentation [5, 8, 10, 16, 17, 23, 25, 28, 32].

Datasets are ordered according to number of examples

Tidake and Sane 164

including train and test. Columns in Table I labeled LC

(label cardinality) and LD (label density) denote average

number of classes per example and the ratio of LC to the

number of distinct classes respectively. All the datasets

consist of numeric features only.

B. Experimental work and Discussions

Experiments were conducted to compare the performance

of algorithm ML-FLD with multi-label and state-of-the-art

classifiers that include BR, LP, CC, RAkEL, BRkNN,

BPMLL and ML-kNN that are available in Mulan [17]. In

case of BR, LP and CC classifiers, J48 decision tree

algorithm was considered as base classifier, while LP using

J48 was considered as base classifier in case of RAkEL.

BPMLL is run with default parameter values in the Mulan.

Parameters such as k and Laplace smoothing factor were

set to 10 and 1 respectively as used in most of the reported

work [1, 12, 17, 24, 26, 29]. Also threshold value was set to

0.5 as in the reported work.

All experiments were carried on Intel(R) Core(TM) i5-

6200U CPU @2.30 GHz with 8GB RAM. Java code libraries

available in Mulan, as well as MEKA and WEKA [16, 17, 18,

19, 20] were used.

Table II to Table X show comparative performance of

algorithm ML-FLD with that of seven other well-known

multi-label classifiers with respect to seven example-based

and two label-based performance measures [3, 7, 8, 11, 25].

The symbol (↓) shown in titles of Table II to Table V

indicates that smaller value indicates better performance and

the symbol (↑)in the title of Table VI to Table X indicates

that a larger value for the metric provides better performance.

Discussions:

Experimentation was performed on normalized datasets

and values were obtained for seven example-based

performance measures, namely hamming loss, ranking loss,

one error, coverage, average-precision, accuracy and F-

measure and two label-based performance measures, namely

macro-averaged and micro-averaged F-measure [3, 7, 8, 11,

25]. Bold values in Table II to Table X represent best values

for the particular performance metric in the respective rows.

Following observations are made after experimentation.

1) Hamming loss of ML-FLD was improved than that of

ML-kNN in case of Scene and Image datasets shown in Table

II. It is comparable in case of the remaining datasets.

However, average hamming loss of ML-FLD was lesser by

approx. 2%.

2) Ranking loss and one error of ML-FLD were improved

for smaller datasets shown in Table III and IV. For larger

datasets we could not obtain value for ranking loss. One error

was found to be comparable for larger datasets. Average one

error was improved by more than 6%.

3) ML-FLD provided better values for coverage for all the

datasets except Mediamill where it was slightly higher shown

in Table V. Average value of coverage for ML-FLD was the

least among comparing algorithms.

4) For smaller datasets, average precision and accuracy of

ML-FLD were the best among all the algorithms shown in

Table VI and VII. But, we could not get its values for larger

datasets. Average values of both metrics were improved by

approximately 8% and 18% respectively as compared to other

algorithms.

5) For all the datasets ML-FLD showed improvement in

the example-based as well as label-based F measure except

Mediamill in Table IX. This improvement was by 13% in

case of example-based F measure as shown in Table VIII and

approx. 6% and 3% in case of macro-averaged and micro-

averaged F measure shown in Tables IX and X respectively.

After experimentation, it was observed that, for some test

instances, no label was predicted. This definitely affects

performance of the classifier. Handling such scenario may

improve performance as well as may help to generate values

for performance measures where no value was generated

specially for larger datasets.

Table I Characteristics of Multi-label Datasets used

Dataset Domain #Features #Labels
Train /

Test
#Examples LD LC

Type of

data

Emotions Multimedia 72 6
Train 391 0.302 1.813 Nu

Test 202 0.329 1.975 Nu

Scene Multimedia 294 6
Train 1211 0.177 1.062 Nu

Test 1196 0.181 1.086 Nu

Image Multimedia 294 5
Train 2000 0.247 1.236 Nu

Test 600 0.228 1.14 Nu

Cbmi09-bow Multimedia 100 101
Train 22000 0.042 4.291 Nu

Test 21907 0.044 4.461 Nu

Mediamill Multimedia 120 101
Train 30993 0.043 4.363 Nu

Test 12914 0.044 4.406 Nu

A Novel Algorithm for Multi-Label Classification by Exploring Feature and Label Dissimilarities 165

Table II Experimental Results for Hamming Loss (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.3144 0.3226 0.3317 0.3053 0.2170 0.2690 0.2162 0.2186

Scene 0.1364 0.1469 0.1377 0.1307 0.1080 0.2465 0.0962 0.0851

Image 0.1390 0.2323 0.1683 0.1840 0.1153 0.3833 0.1147 0.1127

Cbmi09-bow 0.0472 0.0544 0.0467 0.0434 0.0331 0.0599 0.0331 0.0341

Mediamill 0.0412 0.0494 0.0424 0.0409 0.0318 0.0645 0.0316 0.0317

Average 0.1356 0.1611 0.1454 0.1409 0.1010 0.2046 0.0984 0.0964

Table III Experimental Results for Ranking Loss (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.3650 0.4050 0.4086 0.2951 0.1694 0.2064 0.1781 0.1570

Scene 0.2315 0.2171 0.2350 0.1591 0.1173 0.1643 0.0930 0.0830

Image 0.1382 0.2240 0.1999 0.1769 0.0924 0.1853 0.1154 0.0888

Cbmi09-bow 0.2939 0.3865 0.2684 0.3487 0.0967 0.0631 0.0604 NaN

Mediamill 0.2142 0.3668 0.2116 0.3465 0.0853 0.0516 0.0533 NaN

Average 0.2486 0.3199 0.2647 0.2653 0.1122 0.1341 0.1000 0.1096

Table IV Experimental Results for One Error (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.4356 0.5396 0.4901 0.4059 0.3069 0.3812 0.3218 0.2970

Scene 0.4189 0.4047 0.3687 0.3470 0.3010 0.5217 0.2425 0.2191

Image 0.2417 0.4100 0.3383 0.3350 0.2267 0.2883 0.2517 0.2183

Cbmi09-bow 0.5836 0.7697 0.3734 0.4300 0.2020 0.2375 0.2043 0.2032

Mediamill 0.5256 0.6951 0.3495 0.4236 0.1810 0.2205 0.1804 0.1809

Average 0.4411 0.5638 0.3840 0.3883 0.2435 0.3298 0.2401 0.2237

Table V Experimental Results for Coverage (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 3.0050 3.1634 3.2030 2.6089 1.9158 2.0545 1.9356 1.8119

Scene 1.2834 1.1982 1.3035 0.9013 0.6873 0.9239 0.5661 0.5184

Image 0.7333 1.0250 0.9550 0.8583 0.5100 0.9217 0.6083 0.5000

Cbmi09-bow 69.7428 66.8468 61.7521 67.2632 31.4247 21.1593 20.1887 20.1426

Mediamill 58.7190 64.4715 53.4878 67.5235 28.8667 18.2272 18.8066 18.8340

Average 26.6967 27.3410 24.1403 27.8310 12.6809 8.6573 8.4211 8.3614

Table VI Experimental Results for Average Precision (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.6540 0.6082 0.6270 0.6946 0.7916 0.7484 0.7810 0.8024

Scene 0.7143 0.7247 0.7312 0.7751 0.8154 0.6970 0.8511 0.8653

Image 0.8377 0.7342 0.7712 0.7862 0.8692 0.8073 0.8456 0.8718

Cbmi09-bow 0.4116 0.2169 0.4549 0.2725 0.6547 0.6366 0.6738 NaN

Mediamill 0.4880 0.2670 0.5156 0.2833 0.6850 0.6782 0.7005 NaN

Average 0.6211 0.5102 0.6200 0.5623 0.7632 0.7135 0.7704 0.8465

Tidake and Sane 166

Table VII Experimental Results for Accuracy (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.3173 0.3774 0.3859 0.3672 0.4612 0.4905 0.4818 0.5227

Scene 0.5173 0.5787 0.5975 0.5596 0.5439 0.3441 0.6597 0.6958

Image 0.6308 0.5794 0.6165 0.5444 0.6294 0.1290 0.6492 0.7008

Cbmi09-bow 0.2981 0.2690 0.3032 0.1866 0.3899 0.3276 0.4009 NaN

Mediamill 0.3477 0.3140 0.3545 0.2078 0.4176 0.3374 0.4200 NaN

Average 0.4222 0.4237 0.4515 0.3731 0.4884 0.3257 0.5223 0.6398

Table VIII Experimental Results for F measure (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.3936 0.4589 0.4749 0.4630 0.5416 0.5836 0.5662 0.6074

Scene 0.5551 0.5917 0.6177 0.5893 0.5530 0.4586 0.6793 0.7124

Image 0.6713 0.6055 0.6378 0.5683 0.6428 0.2004 0.6667 0.7233

Cbmi09-bow 0.4193 0.3729 0.4079 0.2857 0.4933 0.4673 0.5083 NaN

Mediamill 0.4706 0.4231 0.4648 0.3139 0.5263 0.4766 0.5317 NaN

Average 0.5020 0.4904 0.5206 0.4440 0.5514 0.4373 0.5904 0.6810

Table IX Experimental Results for Macro-averaged F measure (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.4294 0.4563 0.4680 0.5063 0.5909 0.6195 0.5880 0.6339

Scene 0.6209 0.5938 0.6280 0.6388 0.6285 0.5514 0.7156 0.7518

Image 0.4930 0.4078 0.4721 0.4665 0.5666 0.2009 0.5904 0.6104

Cbmi09-bow 0.0742 0.0696 0.0705 0.0242 0.0618 0.0678 0.0939 0.1234

Mediamill 0.1349 0.1102 0.1192 0.0361 0.1056 0.0933 0.1063 0.1128

Average 0.3505 0.3275 0.3516 0.3344 0.3907 0.3066 0.4188 0.4464

Table X Experimental Results for Micro-averaged F measure (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD

Emotions 0.4356 0.4835 0.4911 0.5119 0.6104 0.6192 0.6278 0.6545

Scene 0.6132 0.5870 0.6185 0.6290 0.6380 0.5215 0.7156 0.7474

Image 0.6941 0.5459 0.6273 0.5856 0.7048 0.3314 0.7166 0.7412

Cbmi09-bow 0.4343 0.3848 0.4247 0.2960 0.5033 0.4836 0.5184 0.5307

Mediamill 0.4882 0.4352 0.4824 0.3259 0.5415 0.4935 0.5442 0.5433

Average 0.5331 0.4873 0.5288 0.4697 0.5996 0.4898 0.6245 0.6434

*NaN denotes that ML-FLD program has not generated value for that performance metric.

Values of the ‘label-wise F measure’ in case of smaller

datasets, namely, ‘Emotions’, ‘Scene’ and ‘Image’ were also

observed for the ML-FLD and the other competing

algorithms. The performance is represented graphically in

Figure 2. From Figures 2 (a), 2 (b) and 2 (c), it can be

observed that ‘F measure’ values of ML-FLD are either

improved or similar to that of other competing algorithms for

majority of the labels.

Both the larger datasets, namely, ‘Mediamill’ and

‘Cbmi09-bow’ have 101 class labels and therefore graphical

or tabular representation of performance of all the algorithms

is difficult. Also, as the ML-kNN provided better

performance for almost all datasets in Table II to Table X, we

made comparison of performance of ML-FLD and ML-kNN

only and was in terms of ‘label-based F measure’ for these

datasets. Out of 101 class labels in ‘Mediamill’ dataset, both

algorithms provided value of zero for 41 class labels and for

the remaining 60 class labels, ML-FLD provided better

performance for 35 class labels and almost similar

performance for the remaining 24 class labels. For the dataset

A Novel Algorithm for Multi-Label Classification by Exploring Feature and Label Dissimilarities 167

Figure 2 (a) Label-wise F measure for Emotions dataset

Figure 2 (b) Label-wise F measure for Scene dataset

Figure 2 (c) Label-wise F measure for Image dataset

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

ML-FLD

MLkNN

BR

LP

RAKEL

CC

BRKNN

BPMLL

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Beach Sunset FallFoliage Field Mountain Urban

ML-FLD

MLkNN

BR

LP

RAKEL

CC

BRKNN

BPMLL

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

L1 L2 L3 L4 L5

ML-FLD

MLkNN

BR

LP

RAKEL

CC

BRKNN

BPMLL

Tidake and Sane 168

‘Cbmi09-bow’, both ML-FLD and ML-kNN provided value

of zero in case of 39 class labels out of 101. For the remaining

62 class labels, ML-FLD showed improved performance for

52 class labels. This indicates that ML-FLD has better ability

to assign correct class labels when compared with all the

other competing algorithms.

V. Conclusions

Multi-label learning has received significant attention of

the researchers. Multi-label k-nearest neighbors (ML-kNN) is

widely adapted by various researchers for classification of

multi-label data [8, 10, 11, 12, 13]. Selection of appropriate

neighbors for a given instance is necessary to improve

accuracy of multi-label classifiers. All existing algorithms

determine nearest neighbors using feature similarity only.

This paper presents a novel algorithm called ML-FLD that

suggests use of label dissimilarity in addition to the feature

similarity and difference to determine the neighbors. ML-

FLD takes into account the effect of similarity and differences

in feature as well as label dissimilarity. It performs better with

respect to average values of several example-based as well as

label-based measures when compared with the state-of-the-art

multi-label classifiers.

Experimentation for the performance evaluation of ML-

FLD was carried out using numerical datasets only. In the

future, it will be interesting to investigate the performance of

ML-FLD for datasets with categorical features. Further

investigation is necessary to observe effect of distance metrics

on the performance of ML-FLD.

Acknowledgment

Thanks to Prof. Min-Ling Zhang for his valuable guidance

and providing resources. Also thanks to Janez Demsar for

providing guidance regarding comparison of multiple

classifiers.

References

[1] Zhang ML, Zhou ZH (2006) Multi-label neural

networks with applications to functional genomics and

text categorization, IEEE Transactions on Knowledge

and Data Engineering 18(10) 1338-1351

[2] Papanikolaou, Y., Tsoumakas, G., Laliotis, M.,

Markantonatos, N., and Vlahavas, I. (2017). Large-

scale online semantic indexing of biomedical articles

via an ensemble of multi-label classification models.

Journal of biomedical semantics, 8(1), 43.

doi:10.1186/s13326-017-0150-0

[3] Rafal R et al (2005) Multi-label Associative

Classification of Medical Documents from MEDLINE,

Proceedings of the Fourth International Conference on

Machine Learning and Applications (ICMLA’05) 0-

7695-2495-8/05

[4] Yu, Qinghua & Wang, Jinjun & Zhang, Shizhou &

Gong, Yihong & Zhao, Jizhong. (2016). Combining

Local and Global Hypotheses in Deep Neural Network

for Multi-label Image Classification. Neurocomputing.

235. 10.1016/j.neucom.2016.12.051

[5] Tsoumakas G., Katakis I. and Vlahavas I. (2011).

Random k-Labelsets for Multi-Label Classification.

IEEE Transactions on Knowledge Data Engineering, 23.

1079-1089. 10.1109/TKDE.2010.164

[6] S. S. Sane, Prajakta Chaudhari, V. S. Tidake, (2018) An

Effective Multilabel classification using Feature

Selection, Springer Nature 2018, Intelligent Computing

and Info. and Comm., Adv. in Intelligent Systems and

Computing 673, pp. 129-142

[7] Zhang, Min-Ling & Li, Yu-Kun & Liu, Xu-Ying. (2015),

Towards Class-Imbalance Aware Multi-Label Learning,

IJCAI'15 Proceedings of the 24th International

Conference on Artificial Intelligence Proceeding, Pages

4041-4047

[8] M.-L. Zhang and Z.-H. Zhou, (2007) ML-kNN: A lazy

learning approach to multi-label learning, Pattern

Recognition, vol. 40, no. 7, pp. 2038–2048

[9] J. Han, M. Kamber (2012), Data Mining: Concepts and

Techniques, The Morgan Kaufmann Series in Data

Management Systems

[10] E. Spyromitros-Xioufis, G. Tsoumakas, and I. Vlahavas

(2008), An empirical study of lazy multilabel

classification algorithms, in Proc. 5thHellenic Conf.

Artificial Intelligence, Syros, Greece, pp. 401–406

[11] Jung-Yi Jiang, Shian-Chi Tsai, Shie-Jue Lee (2012)

FSKNN: multi-label text categorization based on fuzzy

similarity and k nearest neighbors, Expert Systems

Applications, vol.39(3), pp. 2813-2821

[12] Ying Yu, Witold Pedrycz, Duoqian Miao (2014) Multi-

label classification by exploiting label correlations,

Expert Systems with Applications 41 (2014) 2989–

3004

[13] Min-Ling Zhang, Lei Wu 2015. LIFT: Multi-label

learning with label specific features. IEEE transactions

on pattern analysis and machine intelligence, 37(1),

pp.107-120

[14] Kenji Kira and Larry A. Rendell (1992) A practical

approach to feature selection, Machine Learning

Proceedings, Pages 249–256

[15] Newton Spolaˆor et al (2013) Relief for multi-label

feature selection, Brazilian Conference on Intelligent

Systems IEEE

[16] Read, Jesse, and Peter Reutemann (2012) MEKA: a

multi-label extension to WEKA. URL

http://meka.sourceforge.net

[17] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I.

Vlahavas, (2011) MULAN: A Java library for multi-

label learning, J. Machine Learning Res., vol. 12, pp.

2411-2414

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, Ian H. Witten (2009) The WEKA data

mining software: An update, SIGKDD Explore, vol. 11,

no. 1, pp. 10(18)

[19] C.-C. Chang and C.-J. Lin (2011) LIBSVM: A library

for support vector machines, ACM Trans. Intelligent

https://www.sciencedirect.com/science/book/9781558602472
https://www.sciencedirect.com/science/book/9781558602472

A Novel Algorithm for Multi-Label Classification by Exploring Feature and Label Dissimilarities 169

Systems Technol., vol. 2, no. 3, Article 27. [Online].

Available: http://www.csie.ntu.edu.tw/cjlin/libsvm

[20] Tidake, Vaishali S., and Shirish S. Sane (2016) Multi-

label Learning with MEKA, CSI Communications

[21] Liu B., Tsoumakas G., Making Classifier Chains

Resilient to Class Imbalance, Submitted to ACML 2018

1-15

[22] Álvar Arnaiz-González, José-Francisco Díez-Pastor,

JuanJ. Rodríguez, César García-Osorio, Study of data

transformation techniques for adapting single-label

prototype selection algorithms to multi-label learning,

Expert Systems With Applications 109 (2018) 114–130

[23] Laurence A. F. Park, Jesse Read, A Blended Metric for

Multi-label Optimisation and Evaluation, ECML

PKDD 2018

[24] X. Wu and Z. Zhou. A unified view of multi-label

performance measures. In ICML, volume 70, pages

3780-3788. PMLR, 2017

[25] Zhang, Min-Ling & Zhou, Zhi-Hua. (2014). A Review

on Multi-Label Learning Algorithms. Knowledge and

Data Engineering, IEEE Transactions on. 26. 1819-

1837. 10.1109/TKDE.2013.39

[26] Read J, Pfahringer B, Holmes G, Frank E (2009)

Classifier chains for multi-label classification. In:

Proceedings of the European Conference on Machine

Learning and Knowledge Discovery in Databases: Part

II. ECML PKDD '09, Berlin, Heidelberg, Springer-

Verlag pp. 254-269

[27] Fürnkranz J, Hüllermeier E, Mencía EL, Brinker K

(2008) Multilabel classification via calibrated label

ranking. Machine learning, 73(2), pp.133-153

[28] Tsoumakas G, Katakis I (2007) Multi-label

classification: An overview, International Journal of

Data Warehousing and Mining, vol. 3, no. 3, pp. 1-13

[29] Tsoumakas G, Zhang ML, Zhou ZH (2009) Tutorial on

learning from multi-label data, in ECML PKDD, Bled,

Slovenia [Online]. Available:

http://www.ecmlpkdd2009.net/wpcontent/uploads/2009

/08/learning-from-multi-label-data.pdf

[30] Carvalho A de, Freitas AA (2009) A tutorial on multi-

label classification techniques, in Studies in

Computational Intelligence 205, A. Abraham, A. E.

Hassanien, and V. Snásel, Eds. Berlin, Germany:

Springer, pp. 177–195

[31] Tsoumakas G et al (2010) Mining multilabel data, Data

Mining and Knowledge Discovery Handbook, O.

Maimon and L. Rokach, Eds. Berlin, Germany:

Springer, pp. 667-686

[32] Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012)

An extensive experimental comparison of methods for

multi-label learning, Pattern Recognit., vol. 45, no. 9,

pp. 3084-3104

Author Biographies

Vaishali S. Tidake is a research scholar of MCERC,

Nashik. She completed her bachelor’s degree in

Computer Engineering from KKWCOE, Nashik in

1999 and M.E. in Computer Science and

Engineering (IT) from VIT, Pune in 2008. She is

working in Department of Computer Engineering at

MVPS’s KBTCOE, Nashik.

Prof. Shirish S. Sane obtained his bachelor’s degree

in Computer Engineering from PICT, Pune in 1987

and M. Tech. in Computer Science and Engineering

from IIT, Mumbai in 1995. He is the first candidate

being awarded the Ph.D. in Computer Engineering

from University of Pune. He is working as Vice

Principal and Head of Computer Engineering

Department at KKWIEER, Nashik. He is the

Chairman of Board of studies in Computer

Applications and member of Board of studies in

Computer Engineering, SPPU (Formerly, University

of Pune). He has worked as Regional Vice President

for CSI Region VI (Maharashtra and Goa).

