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Abstract: Selection of appropriate nearest neighbors greatly 

affects predictive accuracy of nearest neighbor classifier. 

Feature similarity is often used to decide the set of k nearest 

neighbors. Predictive accuracy of multi-label kNN could further 

be enhanced if in addition to the feature similarity, difference in 

feature values and dissimilarity of the instance labels are also 

taken into account to decide the set of k nearest neighbors. This 

paper deals with an algorithm called “ML-FLD” that not only 

takes into account features similarity of the instances, but also 

considers feature difference and label dissimilarity in order to 

decide the k nearest neighbors of a given unseen instance for 

the prediction of its labels. The algorithm when tested using 

well-known datasets and checked with the existing well known 

algorithms, provides better performance in terms of example-

based metrics such as hamming loss, ranking loss, one error, 

coverage, average precision, accuracy, F measure as well as 

label-based metrics like macro-averaged and micro-averaged F 

measure.   
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I. Introduction 

Classification is very commonly used tasks in data mining. It 

is referred to as supervised learning. Many applications like 

Text categorization (TC), direct marketing, bioinformatics, 

discovery of drugs, tag recommendation, prediction of gene 

function, etc. use supervised learning [1, 2, 3, 4, 11]. Text 

categorization classifies documents according to their 

contents. Many a times, a document to be categorized has 

multiple semantic meanings. Hence unlike traditional 

classification, such documents may belong to a set of 

predefined categories and therefore associated with more 

than one class labels. 

An approach discussed by Zhang and Zhou in [25] follows 

an algorithm adaptation approach and is a modified version 

of well-known nearest neighbor algorithm. It is used by 

several researchers to perform multi-label classification. It 

utilizes feature similarity to determine nearest neighbors [8, 

10, 11, 12, 13]. In case of multi-label classification, since the 

instances are associated with multiple labels, label 

dissimilarity may also help for better determination of set of 

nearest neighbors.  

In this paper, a novel algorithm adaptation approach called 

ML-FLD is presented. ML-FLD not only takes into account 

features but also labels of instances to determine nearest 

neighbors while assigning weights to the neighbors. When 

the features of two instances are similar, chances of its 

selection as the nearest neighbor is high. However, if the 

labels of such instances are dissimilar, chances of its 

selection as nearest neighbor is low. Experimentation 

presented shows the importance of use of both features and 

labels to improve performance of the classifier. 

Remaining paper is ordered as follows. Section II deals 

with the related work while the details of ML-FLD are in 

section III. Section IV presents the experimental work and 

the concluding comments are in section V. 

II. Related Work 

From the last two decades, many researchers are working in 

the area of multi-label classification as many applications are 

found to exhibit multiple semantic meanings [1, 2, 3, 4, 11]. 

As reported in [12, 13, 14, 15, 16, 17, 18, 25, 28], 

transformation and algorithm adaptation are the general 

approaches to build multi-label classifier. 

BR (Binary Relevance) [5, 6, 7, 8, 22, 28] classifiers first 

transform the multi-label data to the single label data and 

then for each label, they build classifier using any existing 

conventional single label classifier separately.  

Read J. et al. [21, 26] proposed CC (Classifier Chains) that 

also follows the same mechanism like BR, but in a particular 

sequence of labels. Both the algorithms, LP [12, 13, 14, 15, 

16, 17, 18, 22, 28, 32] and RAkEL [5, 32] consider set of 

labels at a time.  

LP treats each combination of labels appeared in 

underlying dataset as a separate class and then the classifier 

follows a multiclass classifier approach. However, its 

performance degrades due to large number of class labels 

with their presence in only a few instances. Thus considering 
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only a subset of the labels has been suggested in RAkEL as 

proposed by Tsoumakas G. et al. [5]. 

Algorithm adaptation approach involves modification in 

existing algorithms to tackle with multi-label data directly 

without any transformation and generally provides better 

performance.  

ML-kNN is an adaptation of conventional kNN to handle 

multi-label data as proposed by Zhang and Zhou [8]. It 

predicts labels of unseen instances using Maximum a 

posteriori and provides better performance when compared 

with other well-known algorithms. However, the algorithm 

does not consider relationship between labels.  

E. Spyromitros et al. [10] proposed an algorithm BRkNN 

using the lazy approach. It uses kNN before applying 

transformation approach. Once neighbors are obtained, then 

BR classifier uses these neighbors independently for 

prediction of each label.  

BPMLL is a modification of a conventional neural 

network with feed-forward for dealing with multi-label data 

where Zhang and Zhou [1] designed a global error function 

by considering the label correlation.  

Jiang et al. [11] computed three terms namely the 

membership degree of each term in each category, that of 

each term in each document and that of each document in 

each category and combined them to get final membership 

degree. Use of clustering has been suggested to reduce the 

computational cost of kNN.  

Y. Yu et al. [12] proposed two approaches MLRS and 

MLRS-LC that suggest global and local computation of 

neighbors respectively.  

An approach called, RF-ML, to search for the k neighbors 

and use of dissimilarity of instances to find the importance of 

features has been suggested by Newton Spolaˆor et al. [15]. 

Based on our survey and to the best of our knowledge none 

of the reported work takes into account label dissimilarity 

while determining nearest neighbors. We present here a novel 

algorithm ML-FLD, that determines the nearest neighbors 

based on feature similarity and differences as well as label 

dissimilarity. 

III. Proposed Algorithm: ML-FLD 

Proposed algorithm ML-FLD aims to improve 

performance of the multi-label classifier through proper 

selection of neighbors. It uses labels along with the features 

while searching for the neighbors. This information is utilized 

for the estimation of the likelihood probabilities of each label. 

These probabilities along with computed prior probabilities of 

particular label are further utilized to predict that label for an 

unseen instance.  

 Let C be a set of c disjoint labels. Let Q be a dataset 

having q instances {X1… Xq}. Let each instance Xj be 

represented by a pair of vectors, (xj, yl), where xj, (j = 1, 2…f) 

be the set of features and vector yl (l = 1, 2…c) be a set of 

labels. The aim is to construct a function g(x) that maps a 

given feature vector xj to a vector yl. 

Figure 1 shows the algorithm for Multi-Label 

classification using Feature and Label Dissimilarity (ML-

FLD) as shown in lines (7) and (24). Algorithm ML-FLD 

takes four parameters as an input: a training dataset Q with q 

 

 

Algorithm ML-FLD 

Input: 

- A training dataset Q with q instances 

- An unseen instance t 

- Number of nearest neighbors k 

- A user-defined threshold Th 

Output: Prediction of labels for unseen instance t 

begin 

1)    for each label c in each instance q 

2) Compute Priorc: P (Hc=1) and P (Hc=0) using       

Eq. (1) and Eq. (2) respectively 

3)    end for 

 

4)    for each instance Xi (1 ≤i≤ q) 

5)     Ni = Ø // neighbors of Xi 

6)     for each instance Xj (1 ≤ j ≤ q, i ≠ j) 

7)      Wj = fs (xi, xj) х diff (xi, xj) x ld (yi, yj) 

8)      if |Ni| ≤ k 

9)          Ni = Ni U { Xj } 

10)      else 

11)          find instance Xm in Ni having max weight Wm  

12)          if Wm > Wj // Replace Xm by Xj 

13)         Ni = Ni - { Xm } 

14)         Ni = Ni U { Xj } 

15)          end if 

16)      end if 

17) end for 

18)    end for 

 

19)    for each label c in j neighbors (0 ≤ j ≤ k) 

20) Estimate Likelihoodc: P (E=j | Hc=1) and  

P (E=j | Hc=0) using Eq. (3) and Eq. (4) respectively  

21)    end for 

 

22)    Nt = Ø // neighbors of instance t 

23)    for each instance Xi (1 ≤ i ≤ q) and unseen instance t 

24)  Wi = fs (xi, xt) x diff (xi, xt) 

25) if |Nt | ≤ k 

26)          Nt = Nt U { Xi } 

27) else 

28)          Find instance Xm in Nt with max weight Wm 

29)          if Wm > Wi // Replace Xm by Xi 

30)     Nt = Nt - { Xm } 

31)     Nt = Nt U { Xi } 

32)          end if 

33)  end if 

34)   end for 

 

35)   for each label c 

36) Predict tc for instance t using Priorc and Likelihoodc 

as given in Eq. (5) and Eq. (6) respectively 

37)   end for 

end 

Figure 1 Algorithm ML-FLD 
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instances, an unseen instance t, number of nearest neighbors 

k and a user-defined threshold Th. 

Initially, prior probabilities of each label are computed by 

counting the number of instances from train set Q that belong 

to each label c (Lines 1-3). This count 𝑐𝑛𝑡(𝑐)along with the 

smoothing parameter p and size of the training dataset q, are 

used to compute the prior probabilities of every label in the 

set C of labels using Eq. (1) and (2) given below. Two kinds 

of prior probabilities are estimated for each label c: the 

probability P (Hc = 1) of the event that “an instance belongs 

to a label c” and the probability P (Hc = 0) of the event that 

“an instance does not belong to a label c”.  

𝑃(𝐻𝑐 = 1) = (𝑝 + 𝑐𝑛𝑡(𝑐)) / (2𝑝 + 𝑞)         (1) 

𝑃(𝐻𝑐 = 0) = 1 − 𝑃(𝐻𝑐 = 1)          (2) 

Once the prior probabilities are obtained, then likelihood 

probabilities are estimated. It requires the knowledge 

obtained from k nearest neighbors (kNN). These neighbors 

are computed for each instance X in set Q (Lines 4-18). If 

the traditional kNN algorithm is applied, it selects k 

neighbors with minimum distance and then votes are 

obtained from the k nearest neighbors to decide the class of 

particular unseen instance. However, since the instances in 

case of multi-label data may have one or more class labels, 

ML-FLD not only considers features but it also takes into 

account class labels while deciding nearest neighbors. ML-

FLD uses Euclidean distance [9] for checking the similarity 

of features between the instances (function fs(.) in Line 7) 

and uses Hamming distance [15] to find the label similarity 

(function ld(.)). Hamming distance between two strings is the 

number of positions where the characters of two strings are 

not same. ML-FLD uses a similar method to obtain the 

statistics from the total number of distinct labels of two 

instances collectively and the total number of common labels 

between two instances. The difference between these two 

values divided by total number of labels is used to update the 

weight of a neighbor [30, 31]. Along with fs (.) and ld (.), 

function diff (.) is also used to compute weights of neighbors. 

The diff (.) function finds the difference between values of 

corresponding features between the two instances [14, 15]. 

Summation of absolute values of differences in features is 

returned by diff (.) function. Thus neighbors are weighed 

using the information obtained from features as well as 

labels together (Line 7). Initial k computed weights for 

instance Xi are directly considered as its k neighbors denoted 

by set Ni (Lines 8-10). Thereafter, maximum of previously 

computed k weights in set Ni is searched and it is replaced by 

the new weight if new weight is smaller (Lines 11-16). 

Next, the algorithm decides how many instances have the 

total number of 0, 1…k neighbors respectively such that each 

neighbor is associated with the label c. This knowledge is 

stored in arrays 𝐹
(𝑐)

1
[0 … 𝑘]  and 𝐹

(𝑐)

0
[0 … 𝑘]  respectively, 

depending on whether particular instance whose neighbors 

are observed, is associated or not associated with the label c. 

Using this information, the likelihood probabilities of each 

label are estimated (Lines 19-21). Two kinds of likelihood 

probabilities are estimated: First the probability that an 

instance x has j neighbors associated with label c when “an 

instance x belongs to the label c” as computed in Eq. (3) and 

second, the probability that an instance x has j neighbors 

associated with label c when “an instance x does not belong 

to the label c” as computed in Eq. (4). 

𝑃(E = j|𝐻𝑐 = 1) =
p+𝐹

(𝑐)
1

[ 𝑗 ]

𝑝(1+k)+∑ 𝐹
(𝑐)
1

[𝑟]
𝑘

𝑟=0

, 0 ≤ 𝑗 ≤ 𝑘        (3) 

𝑃(E = j|𝐻𝑐 = 0) =
p+𝐹

(𝑐)
0

[ 𝑗 ]

𝑝(1+k)+∑ 𝐹
(𝑐)
0

[𝑟]
𝑘

𝑟=0

, 0 ≤ 𝑗 ≤ 𝑘        (4) 

Next, computation of the Euclidean distance and the 

difference of features of an unseen instance t with each 

instance in the dataset Q is done using fs (.) and diff (.) 

functions respectively (Line 24). It is followed by the 

selection of k nearest neighbors denoted by set Nt for the 

unseen instance t based on the minimum weights (Lines 25-

33).  

Finally prior and likelihood probabilities of each label c, 

and count of neighbors of the unseen instance t belonging to 

each label c (Eq. (5)) is used for the prediction of label c as 

per the Bayes theorem (Lines 35-37) [8]. Eq. (5) measures 

the number of neighbors of an unseen instance t from the set 

Nt that are associated with each label c. This count j along 

with the prior and the likelihood probabilities are used in Eq. 

(6) to find the ratio to decide whether the unseen instance t is 

associated with the label c or not. The ‘Th’ in Eq. (6) 

represents threshold and is one of the input to the algorithm. 

It can be user-defined or calibrated. In our experimentation, 

Th was set to 0.5. 

 

j = ∑ 𝑁 (𝑐)
𝑚

𝑘

𝑚=1
                  (5) 

𝑡𝑐 = 1 if (
P(𝐻𝑐=1)×P(E = j|𝐻𝑐 = 1)

P(𝐻𝑐=1)×P(E = j|𝐻𝑐 = 1)+P(𝐻𝑐=0)×P(E = j|𝐻𝑐 = 0)
) ≥ 𝑇ℎ

        … (6) 

Average time required for both the algorithms, ML-kNN 

proposed by Zhang and Zhou [8] and ML-FLD is 

comparable. ML-kNN requires O(q2.f + c.q.k) for computing 

prior and likelihood probabilities and O(q.f + c.k) for 

computation related to unseen instances [25]. Whereas the 

time complexity of ML-FLD is O (q2. (f + c) + c.q.k) and       

O (q.(f + c) + c.k) respectively. Here k, f, c, and q represent 

number of nearest neighbors, features, labels, and instances 

in dataset Q respectively. Thus average time complexity of 

ML-FLD is slightly higher than that of ML-kNN. However, 

ML-FLD provides better performance in terms of various 

performance parameters as discussed in section IV. 

IV. Experimentation and Performance 

Evaluation 

A. Multi-label Datasets 

Table I shows details of benchmark multi-label datasets 

used in the experimentation [5, 8, 10, 16, 17, 23, 25, 28, 32]. 

Datasets are ordered according to number of examples 
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including train and test. Columns in Table I labeled LC 

(label cardinality) and LD (label density) denote average 

number of classes per example and the ratio of LC to the 

number of distinct classes respectively. All the datasets 

consist of numeric features only. 

B. Experimental work and Discussions 

Experiments were conducted to compare the performance 

of algorithm ML-FLD with multi-label and state-of-the-art 

classifiers that include BR, LP, CC, RAkEL, BRkNN, 

BPMLL and ML-kNN that are available in Mulan [17]. In 

case of BR, LP and CC classifiers, J48 decision tree 

algorithm was considered as base classifier, while LP using 

J48 was considered as base classifier in case of RAkEL. 

BPMLL is run with default parameter values in the Mulan.  

Parameters such as k and Laplace smoothing factor were 

set to 10 and 1 respectively as used in most of the reported 

work [1, 12, 17, 24, 26, 29]. Also threshold value was set to 

0.5 as in the reported work. 

All experiments were carried on Intel(R) Core(TM) i5-

6200U CPU @2.30 GHz with 8GB RAM. Java code libraries 

available in Mulan, as well as MEKA and WEKA [16, 17, 18, 

19, 20] were used.  

Table II to Table X show comparative performance of 

algorithm ML-FLD with that of seven other well-known 

multi-label classifiers with respect to seven example-based 

and two label-based performance measures [3, 7, 8, 11, 25]. 

The symbol (↓) shown in titles of Table II to Table V 

indicates that smaller value indicates better performance and 

the symbol (↑)in the title of  Table VI to Table X indicates 

that a larger value for the metric provides better performance.  

Discussions: 

Experimentation was performed on normalized datasets 

and values were obtained for seven example-based 

performance measures, namely hamming loss, ranking loss, 

one error, coverage, average-precision, accuracy and F-

measure and two label-based performance measures, namely 

macro-averaged and micro-averaged F-measure [3, 7, 8, 11, 

25]. Bold values in Table II to Table X represent best values 

for the particular performance metric in the respective rows. 

Following observations are made after experimentation. 

1) Hamming loss of ML-FLD was improved than that of 

ML-kNN in case of Scene and Image datasets shown in Table 

II. It is comparable in case of the remaining datasets. 

However, average hamming loss of ML-FLD was lesser by 

approx. 2%. 

2) Ranking loss and one error of ML-FLD were improved 

for smaller datasets shown in Table III and IV. For larger 

datasets we could not obtain value for ranking loss. One error 

was found to be comparable for larger datasets. Average one 

error was improved by more than 6%. 

3) ML-FLD provided better values for coverage for all the 

datasets except Mediamill where it was slightly higher shown 

in Table V. Average value of coverage for ML-FLD was the 

least among comparing algorithms. 

4) For smaller datasets, average precision and accuracy of 

ML-FLD were the best among all the algorithms shown in 

Table VI and VII. But, we could not get its values for larger 

datasets. Average values of both metrics were improved by 

approximately 8% and 18% respectively as compared to other 

algorithms. 

5) For all the datasets ML-FLD showed improvement in 

the example-based as well as label-based F measure except 

Mediamill in Table IX. This improvement was by 13% in 

case of example-based F measure as shown in Table VIII and 

approx. 6% and 3% in case of macro-averaged and micro-

averaged F measure shown in Tables IX and X respectively. 

After experimentation, it was observed that, for some test 

instances, no label was predicted. This definitely affects 

performance of the classifier. Handling such scenario may 

improve performance as well as may help to generate values 

for performance measures where no value was generated 

specially for larger datasets.

 

Table I Characteristics of Multi-label Datasets used 

Dataset Domain #Features #Labels 
Train / 

Test 
#Examples LD LC 

Type of 

data 

Emotions Multimedia 72 6 
Train 391 0.302 1.813 Nu 

Test 202 0.329 1.975 Nu 

Scene Multimedia 294 6 
Train 1211 0.177 1.062 Nu 

Test 1196 0.181 1.086 Nu 

Image Multimedia 294 5 
Train 2000 0.247 1.236 Nu 

Test 600 0.228 1.14 Nu 

Cbmi09-bow Multimedia 100 101 
Train 22000 0.042 4.291 Nu 

Test 21907 0.044 4.461 Nu 

Mediamill Multimedia 120 101 
Train 30993 0.043 4.363 Nu 

Test 12914 0.044 4.406 Nu 
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Table II Experimental Results for Hamming Loss (↓) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.3144 0.3226 0.3317 0.3053 0.2170 0.2690 0.2162 0.2186 

Scene 0.1364 0.1469 0.1377 0.1307 0.1080 0.2465 0.0962 0.0851 

Image 0.1390 0.2323 0.1683 0.1840 0.1153 0.3833 0.1147 0.1127 

Cbmi09-bow 0.0472 0.0544 0.0467 0.0434 0.0331 0.0599 0.0331 0.0341 

Mediamill 0.0412 0.0494 0.0424 0.0409 0.0318 0.0645 0.0316 0.0317 

Average 0.1356 0.1611 0.1454 0.1409 0.1010 0.2046 0.0984 0.0964 

Table III Experimental Results for Ranking Loss (↓) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.3650 0.4050 0.4086 0.2951 0.1694 0.2064 0.1781 0.1570 

Scene 0.2315 0.2171 0.2350 0.1591 0.1173 0.1643 0.0930 0.0830 

Image 0.1382 0.2240 0.1999 0.1769 0.0924 0.1853 0.1154 0.0888 

Cbmi09-bow 0.2939 0.3865 0.2684 0.3487 0.0967 0.0631 0.0604 NaN 

Mediamill 0.2142 0.3668 0.2116 0.3465 0.0853 0.0516 0.0533 NaN 

Average 0.2486 0.3199 0.2647 0.2653 0.1122 0.1341 0.1000 0.1096 

Table IV Experimental Results for One Error (↓) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.4356 0.5396 0.4901 0.4059 0.3069 0.3812 0.3218 0.2970 

Scene 0.4189 0.4047 0.3687 0.3470 0.3010 0.5217 0.2425 0.2191 

Image 0.2417 0.4100 0.3383 0.3350 0.2267 0.2883 0.2517 0.2183 

Cbmi09-bow 0.5836 0.7697 0.3734 0.4300 0.2020 0.2375 0.2043 0.2032 

Mediamill 0.5256 0.6951 0.3495 0.4236 0.1810 0.2205 0.1804 0.1809 

Average 0.4411 0.5638 0.3840 0.3883 0.2435 0.3298 0.2401 0.2237 

Table V Experimental Results for Coverage (↓) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 3.0050 3.1634 3.2030 2.6089 1.9158 2.0545 1.9356 1.8119 

Scene 1.2834 1.1982 1.3035 0.9013 0.6873 0.9239 0.5661 0.5184 

Image 0.7333 1.0250 0.9550 0.8583 0.5100 0.9217 0.6083 0.5000 

Cbmi09-bow 69.7428 66.8468 61.7521 67.2632 31.4247 21.1593 20.1887 20.1426 

Mediamill 58.7190 64.4715 53.4878 67.5235 28.8667 18.2272 18.8066 18.8340 

Average 26.6967 27.3410 24.1403 27.8310 12.6809 8.6573 8.4211 8.3614 

Table VI Experimental Results for Average Precision (↑) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.6540 0.6082 0.6270 0.6946 0.7916 0.7484 0.7810 0.8024 

Scene 0.7143 0.7247 0.7312 0.7751 0.8154 0.6970 0.8511 0.8653 

Image 0.8377 0.7342 0.7712 0.7862 0.8692 0.8073 0.8456 0.8718 

Cbmi09-bow 0.4116 0.2169 0.4549 0.2725 0.6547 0.6366 0.6738 NaN 

Mediamill 0.4880 0.2670 0.5156 0.2833 0.6850 0.6782 0.7005 NaN 

Average 0.6211 0.5102 0.6200 0.5623 0.7632 0.7135 0.7704 0.8465 
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Table VII Experimental Results for Accuracy (↑) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.3173 0.3774 0.3859 0.3672 0.4612 0.4905 0.4818 0.5227 

Scene 0.5173 0.5787 0.5975 0.5596 0.5439 0.3441 0.6597 0.6958 

Image 0.6308 0.5794 0.6165 0.5444 0.6294 0.1290 0.6492 0.7008 

Cbmi09-bow 0.2981 0.2690 0.3032 0.1866 0.3899 0.3276 0.4009 NaN 

Mediamill 0.3477 0.3140 0.3545 0.2078 0.4176 0.3374 0.4200 NaN 

Average 0.4222 0.4237 0.4515 0.3731 0.4884 0.3257 0.5223 0.6398 

Table VIII Experimental Results for F measure (↑) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.3936 0.4589 0.4749 0.4630 0.5416 0.5836 0.5662 0.6074 

Scene 0.5551 0.5917 0.6177 0.5893 0.5530 0.4586 0.6793 0.7124 

Image 0.6713 0.6055 0.6378 0.5683 0.6428 0.2004 0.6667 0.7233 

Cbmi09-bow 0.4193 0.3729 0.4079 0.2857 0.4933 0.4673 0.5083 NaN 

Mediamill 0.4706 0.4231 0.4648 0.3139 0.5263 0.4766 0.5317 NaN 

Average 0.5020 0.4904 0.5206 0.4440 0.5514 0.4373 0.5904 0.6810 

Table IX Experimental Results for Macro-averaged F measure (↑) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.4294 0.4563 0.4680 0.5063 0.5909 0.6195 0.5880 0.6339 

Scene 0.6209 0.5938 0.6280 0.6388 0.6285 0.5514 0.7156 0.7518 

Image 0.4930 0.4078 0.4721 0.4665 0.5666 0.2009 0.5904 0.6104 

Cbmi09-bow 0.0742 0.0696 0.0705 0.0242 0.0618 0.0678 0.0939 0.1234 

Mediamill 0.1349 0.1102 0.1192 0.0361 0.1056 0.0933 0.1063 0.1128 

Average 0.3505 0.3275 0.3516 0.3344 0.3907 0.3066 0.4188 0.4464 

Table X Experimental Results for Micro-averaged F measure (↑) 

Dataset BR LP CC RAkEL BRkNN BPMLL ML-kNN ML-FLD 

Emotions 0.4356 0.4835 0.4911 0.5119 0.6104 0.6192 0.6278 0.6545 

Scene 0.6132 0.5870 0.6185 0.6290 0.6380 0.5215 0.7156 0.7474 

Image 0.6941 0.5459 0.6273 0.5856 0.7048 0.3314 0.7166 0.7412 

Cbmi09-bow 0.4343 0.3848 0.4247 0.2960 0.5033 0.4836 0.5184 0.5307 

Mediamill 0.4882 0.4352 0.4824 0.3259 0.5415 0.4935 0.5442 0.5433 

Average 0.5331 0.4873 0.5288 0.4697 0.5996 0.4898 0.6245 0.6434 

*NaN denotes that ML-FLD program has not generated value for that performance metric.  

Values of the ‘label-wise F measure’ in case of smaller 

datasets, namely, ‘Emotions’, ‘Scene’ and ‘Image’ were also 

observed for the ML-FLD and the other competing 

algorithms. The performance is represented graphically in 

Figure 2. From Figures 2 (a), 2 (b) and 2 (c), it can be 

observed that ‘F measure’ values of ML-FLD are either 

improved or similar to that of other competing algorithms for 

majority of the labels.  

Both the larger datasets, namely, ‘Mediamill’ and 

‘Cbmi09-bow’ have 101 class labels and therefore graphical 

or tabular representation of performance of all the algorithms 

is difficult. Also, as the ML-kNN provided better 

performance for almost all datasets in Table II to Table X, we 

made comparison of performance of ML-FLD and ML-kNN 

only and was in terms of ‘label-based F measure’ for these 

datasets.  Out of 101 class labels in ‘Mediamill’ dataset, both 

algorithms provided value of zero for 41 class labels and for 

the remaining 60 class labels, ML-FLD provided better 

performance for 35 class labels and almost similar 

performance for the remaining 24 class labels. For the dataset  
 



A Novel Algorithm for Multi-Label Classification by Exploring Feature and Label Dissimilarities 167 

 

Figure 2 (a) Label-wise F measure for Emotions dataset 

 

Figure 2 (b) Label-wise F measure for Scene dataset 

 

Figure 2 (c) Label-wise F measure for Image dataset 
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‘Cbmi09-bow’, both ML-FLD and ML-kNN provided value 

of zero in case of 39 class labels out of 101. For the remaining 

62 class labels, ML-FLD showed improved performance for 

52 class labels. This indicates that ML-FLD has better ability 

to assign correct class labels when compared with all the 

other competing algorithms.  

V. Conclusions 

Multi-label learning has received significant attention of 

the researchers. Multi-label k-nearest neighbors (ML-kNN) is 

widely adapted by various researchers for classification of 

multi-label data [8, 10, 11, 12, 13]. Selection of appropriate 

neighbors for a given instance is necessary to improve 

accuracy of multi-label classifiers. All existing algorithms 

determine nearest neighbors using feature similarity only. 

This paper presents a novel algorithm called ML-FLD that 

suggests use of label dissimilarity in addition to the feature 

similarity and difference to determine the neighbors. ML-

FLD takes into account the effect of similarity and differences 

in feature as well as label dissimilarity. It performs better with 

respect to average values of several example-based as well as 

label-based measures when compared with the state-of-the-art 

multi-label classifiers. 

Experimentation for the performance evaluation of ML-

FLD was carried out using numerical datasets only. In the 

future, it will be interesting to investigate the performance of 

ML-FLD for datasets with categorical features. Further 

investigation is necessary to observe effect of distance metrics 

on the performance of ML-FLD.  

Acknowledgment 

Thanks to Prof. Min-Ling Zhang for his valuable guidance 

and providing resources. Also thanks to Janez Demsar for 

providing guidance regarding comparison of multiple 

classifiers. 

References 

[1] Zhang ML, Zhou ZH (2006) Multi-label neural 

networks with applications to functional genomics and 

text categorization, IEEE Transactions on Knowledge 

and Data Engineering 18(10) 1338-1351 

[2] Papanikolaou, Y., Tsoumakas, G., Laliotis, M., 

Markantonatos, N., and Vlahavas, I. (2017). Large-

scale online semantic indexing of biomedical articles 

via an ensemble of multi-label classification models. 

Journal of biomedical semantics, 8(1), 43. 

doi:10.1186/s13326-017-0150-0 

[3] Rafal R et al (2005) Multi-label Associative 

Classification of Medical Documents from MEDLINE, 

Proceedings of the Fourth International Conference on 

Machine Learning and Applications (ICMLA’05) 0-

7695-2495-8/05 

[4] Yu, Qinghua & Wang, Jinjun & Zhang, Shizhou & 

Gong, Yihong & Zhao, Jizhong. (2016). Combining 

Local and Global Hypotheses in Deep Neural Network 

for Multi-label Image Classification. Neurocomputing. 

235. 10.1016/j.neucom.2016.12.051 

[5] Tsoumakas G., Katakis I. and Vlahavas I. (2011). 

Random k-Labelsets for Multi-Label Classification. 

IEEE Transactions on Knowledge Data Engineering, 23. 

1079-1089. 10.1109/TKDE.2010.164 

[6] S. S. Sane, Prajakta Chaudhari, V. S. Tidake, (2018) An 

Effective Multilabel classification using Feature 

Selection, Springer Nature 2018, Intelligent Computing 

and Info. and Comm., Adv. in Intelligent Systems and 

Computing 673, pp. 129-142 

[7] Zhang, Min-Ling & Li, Yu-Kun & Liu, Xu-Ying. (2015), 

Towards Class-Imbalance Aware Multi-Label Learning,  

IJCAI'15 Proceedings of the 24th International 

Conference on Artificial Intelligence Proceeding, Pages 

4041-4047 

[8] M.-L. Zhang and Z.-H. Zhou, (2007) ML-kNN: A lazy 

learning approach to multi-label learning, Pattern 

Recognition, vol. 40, no. 7, pp. 2038–2048 

[9] J. Han, M. Kamber (2012), Data Mining: Concepts and 

Techniques, The Morgan Kaufmann Series in Data 

Management Systems 

[10] E. Spyromitros-Xioufis, G. Tsoumakas, and I. Vlahavas 

(2008), An empirical study of lazy multilabel 

classification algorithms, in Proc. 5thHellenic Conf. 

Artificial Intelligence, Syros, Greece, pp. 401–406 

[11] Jung-Yi Jiang, Shian-Chi Tsai, Shie-Jue Lee (2012) 

FSKNN: multi-label text categorization based on fuzzy 

similarity and k nearest neighbors, Expert Systems 

Applications, vol.39(3), pp. 2813-2821 

[12] Ying Yu, Witold Pedrycz, Duoqian Miao (2014) Multi-

label classification by exploiting label correlations, 

Expert Systems with Applications 41 (2014) 2989–

3004 

[13] Min-Ling Zhang, Lei Wu 2015. LIFT: Multi-label 

learning with label specific features. IEEE transactions 

on pattern analysis and machine intelligence, 37(1), 

pp.107-120 

[14] Kenji Kira and Larry A. Rendell (1992) A practical 

approach to feature selection, Machine Learning 

Proceedings, Pages 249–256 

[15] Newton Spolaˆor et al (2013) Relief for multi-label 

feature selection, Brazilian Conference on Intelligent 

Systems IEEE 

[16] Read, Jesse, and Peter Reutemann (2012) MEKA: a 

multi-label extension to WEKA. URL 

http://meka.sourceforge.net  

[17] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. 

Vlahavas, (2011) MULAN: A Java library for multi-

label learning, J. Machine Learning Res., vol. 12, pp. 

2411-2414 

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. 

Reutemann, Ian H. Witten (2009) The WEKA data 

mining software: An update, SIGKDD Explore, vol. 11, 

no. 1, pp. 10(18) 

[19] C.-C. Chang and C.-J. Lin (2011) LIBSVM: A library 

for support vector machines, ACM Trans. Intelligent 

https://www.sciencedirect.com/science/book/9781558602472
https://www.sciencedirect.com/science/book/9781558602472


A Novel Algorithm for Multi-Label Classification by Exploring Feature and Label Dissimilarities 169 

Systems Technol., vol. 2, no. 3, Article 27. [Online]. 

Available: http://www.csie.ntu.edu.tw/cjlin/libsvm 

[20] Tidake, Vaishali S., and Shirish S. Sane  (2016) Multi-

label Learning with MEKA, CSI Communications 

[21] Liu B., Tsoumakas G., Making Classifier Chains 

Resilient to Class Imbalance, Submitted to ACML 2018 

1-15 

[22] Álvar Arnaiz-González, José-Francisco Díez-Pastor, 

JuanJ. Rodríguez, César García-Osorio, Study of data 

transformation techniques for adapting single-label 

prototype selection algorithms to multi-label learning, 

Expert Systems With Applications 109 (2018) 114–130 

[23] Laurence A. F. Park, Jesse Read, A Blended Metric for 

Multi-label Optimisation and Evaluation, ECML 

PKDD 2018 

[24] X. Wu and Z. Zhou. A unified view of multi-label 

performance measures. In ICML, volume 70, pages 

3780-3788. PMLR, 2017 

[25] Zhang, Min-Ling & Zhou, Zhi-Hua. (2014). A Review 

on Multi-Label Learning Algorithms. Knowledge and 

Data Engineering, IEEE Transactions on. 26. 1819-

1837. 10.1109/TKDE.2013.39 

[26] Read J, Pfahringer B, Holmes G, Frank E (2009) 

Classifier chains for multi-label classification. In: 

Proceedings of the European Conference on Machine 

Learning and Knowledge Discovery in Databases: Part 

II. ECML PKDD '09, Berlin, Heidelberg, Springer-

Verlag pp. 254-269 

[27] Fürnkranz J, Hüllermeier E, Mencía EL, Brinker K 

(2008) Multilabel classification via calibrated label 

ranking. Machine learning, 73(2), pp.133-153 

[28] Tsoumakas G, Katakis I (2007) Multi-label 

classification: An overview, International Journal of 

Data Warehousing and Mining, vol. 3, no. 3, pp. 1-13  

[29] Tsoumakas G, Zhang ML, Zhou ZH (2009) Tutorial on 

learning from multi-label data, in ECML PKDD, Bled, 

Slovenia [Online]. Available: 

http://www.ecmlpkdd2009.net/wpcontent/uploads/2009

/08/learning-from-multi-label-data.pdf  

 

 

 

 

 

 

 

 

 

 

 

 

 

[30] Carvalho A de, Freitas AA (2009) A tutorial on multi-

label classification techniques, in Studies in 

Computational Intelligence 205, A. Abraham, A. E. 

Hassanien, and V. Snásel, Eds. Berlin, Germany: 

Springer, pp. 177–195  

[31] Tsoumakas G et al (2010) Mining multilabel data, Data 

Mining and Knowledge Discovery Handbook, O. 

Maimon and L. Rokach, Eds. Berlin, Germany: 

Springer, pp. 667-686  

[32] Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012) 

An extensive experimental comparison of methods for 

multi-label learning, Pattern Recognit., vol. 45, no. 9, 

pp. 3084-3104  

Author Biographies 

 

 

 

 

 

 

Vaishali S. Tidake is a research scholar of MCERC, 

Nashik. She completed her bachelor’s degree in 

Computer Engineering from KKWCOE, Nashik in 

1999 and M.E. in Computer Science and 

Engineering (IT) from VIT, Pune in 2008. She is 

working in Department of Computer Engineering at 

MVPS’s KBTCOE, Nashik. 

 

 

Prof. Shirish S. Sane obtained his bachelor’s degree 

in Computer Engineering from PICT, Pune in 1987 

and M. Tech. in Computer Science and Engineering 

from IIT, Mumbai in 1995. He is the first candidate 

being awarded the Ph.D. in Computer Engineering 

from University of Pune. He is working as Vice 

Principal and Head of Computer Engineering 

Department at KKWIEER, Nashik. He is the 

Chairman of Board of studies in Computer 

Applications and member of Board of studies in 

Computer Engineering, SPPU (Formerly, University 

of Pune). He has worked as Regional Vice President 

for CSI Region VI (Maharashtra and Goa). 

 

 


