
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 11(2019) pp. 178-191
c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Submitted: 4 Jan, 2019; Accepted: 18 March, 2019; Publish: 26 July, 2019

Model Optimisation for Server Loading
Forecasting with Genetic Algorithms

Cláudio A.D.Silva1, Carlos Grilo1,2 and Catarina Silva 1,3

1School of Technology and Management, Polytechnic Institute of Leiria,
Portugal

klaudio.ads@gmail.com

2CIIC, Polytechnic Institute of Leiria,
Portugal

{carlos.grilo, catarina}@ipleiria.pt

3Center for Informatics and Systems of the University of Coimbra,
Portugal

catarina@dei.uc.pt

Abstract: Server load prediction has different approaches and
applications, with the general goal of predicting future load for
a period of time ahead on a given system. Depending on the
specific goal, different methodologies can be defined. In this pa-
per, we study the use of temporal factors, along with its manual
or optimised application using genetic algorithms. The main
steps involved are data transformations, a novel pre-processing
method based on enrichment of data through the inducing of
temporal factors and a genetic algorithms wrapper that opti-
mises all the variables in our approach. The created model was
tested on a short-term load forecasting problem, with the use
of data from single and combined months, regarding real data
from Wikipedia servers. The learning methods used for creat-
ing the different models were linear regression, neural network-
s, and support vector machines. A basic dataset, as well as an
enriched dataset, were the core elements for the two scenarios
studied. Results show that it is possible to tune the dataset fea-
tures, e.g., granularity and time window to improve prediction
results.
Keywords: Load Forecasting, Linear Regression, Artificial Neu-
ral Networks, Support Vector Machines, Server Load Prediction,
Wikipedia.

I. Introduction

Load prediction, also known as load forecasting, emerged
as a support to predict and prevent resource imbalance [1],
rapidly proving its importance in the industry. Organisations
with inappropriate forecasts or no forecasts at all have a high
chance of being negatively affected. Incoherent forecasts can
also have devastating effects in an organisation. Underesti-
mation may result in revenue loss or in the incapability to
fulfil the organisations goals. On the other hand, overesti-

mation may lead to overstock, which can be impossible to
resell/use with profit. When forecasting load, it is of the ut-
most importance to keep a balance between resources and
demand, thus avoiding stock outs or over stocking.
Load forecasting is a crucial element in various areas, such
as, electric load forecasting, sales forecasting, dam water
levels forecasting, traffic forecasting and load forecasting in
computer servers, commonly known as server load predic-
tion [2, 3, 4, 5], which is the area of study of this paper. The
goal in server load prediction is usually to determine the load
that will be put on the servers by users, either in terms of da-
ta volume or number of connections. An efficient resource
management is essential for the viability of a data center [6].
Adequate resource availability to workloads should always
be guaranteed without breaching service level agreements.
The resource allocation process can be supported and eased
through prediction algorithms. These algorithms use incom-
ing load and/or resources to forecast adequate resource allo-
cation, thus guaranteeing the performance of the data center
for every kind of specific load [2].
In server load prediction, and in load forecasting in general,
one of the first steps is the identification of the load fore-
casting type. These types are categorised according to the
forecast time horizon, which is usually problem dependent.
It can be set by the specific goal of the prediction to achieve,
or it can be constrained by the availability and accuracy of
data. Therefore, each forecast horizon is used for different
purposes and/or restrictions. According to Gross [7], these
horizons can be divided as:

• Very-Short Term Load Forecasting (VSTLF), which has
a forecast horizon lower than an hour.

• Short-Term Load Forecasting (STLF), which has a fore-

MIR Labs, USA

179 C. Silva et al.

cast horizon of up to 30 days.

• Medium-Term Load Forecasting (MTLF), with a fore-
cast horizon of up to one year.

• Long-Term Load Forecasting (LTLF), with a forecast
horizon higher than a year.

The case study presented in this paper is of hourly load pre-
diction, which falls in the STLF category. Along with the
distinct types of load forecasting, a large variety of methods
exist, each one with different levels of suitability to the dif-
ferent types and goals of the load forecasting problems. The
dynamic nature of load in servers restrains the performance
of certain prediction algorithms, such as, linear models, e.g.,
linear regression. The main cause for this performance deficit
is the non-linearity and non-stationarity in data [8]. Never-
theless, there are other viable models that handle better the
non-linearity and non-stationarity in data. For instance, Arti-
ficial Neural Networks (ANNs) [8, 9, 10, 11, 12] and Support
Vector Machines (SVM) [13].
ANN, when compared to traditional linear models, tend to
have better performance when handling nonlinear and non-
stationary data. However, ANN have some chronic problems
with them, e.g., local minima [14], a problem that SVM do
not share. SVM can guarantee a global minimum by using a
quadratic optimisation approach.
SVM use statistical learning theory, along with a structural
risk minimisation principle. This leads to better generalisa-
tion and it is superior to the empirical risk minimisation used
by ANN.
In this paper, we present a case study involving real data
from the Wikipedia servers, which extends previous work
[15]. The present case study shows an improvement in mod-
el performance through the application of a multiple step ap-
proach. This approach is divided between a manual applica-
tion and an optimised application using genetic algorithms.
The main steps involved are data transformations, such as,
attribute creation, selection and modification. A novel pre-
processing method based on enrichment of data through the
inducing of temporal factors into the data, and lastly a ge-
netic algorithm wrapper that optimises the combination of
variables to be included as inputs of the model. The created
model was tested by predicting the next immediate hour of
load, with a single and combined months approaches. The
learning methods used for creating the different models were
linear regression, neural networks, and support vector ma-
chines.
The rest of the paper is organised as follows. Section 2
presents the learning methods applied in the paper. Section
3 describes the areas of application for server load predic-
tion. In Section 4 the proposed approach is presented, along
with the server load prediction problem. The results are pre-
sented in Section 5. Each tested scenario is described, along
with the details of the test environment. Finally, Section 6
presents conclusions and future lines of research.

II. Learning methods

The learning methods used in this work are linear regression,
ANN and SVM, for the creation of our prediction model, and

genetic algorithms (GAs) for the optimisation of the various
variables found in our approach.

A. Linear Regression

Linear regression [16] uses the relationship between an in-
dependent variable or variables, and the dependent variable,
to build its model. Its applicability is mainly in regression
problems. However, it can be used in classification problems
to identify the correlation between attributes. Linear regres-
sion estimates the coefficients for a hyperplane or line that
best fits the training data. In order to find which line better
fits the training data the following equation is used:

ŷi = α+ βxi (1)

where ŷi is the predicted response or fitted value for input xi.
The forecast value usually has an error, commonly denoted
as prediction error or residual error, associated to it, which
can be defined as:

ξi = yi − ŷi (2)

The line that best fits the training data is the one for which
the n prediction errors, one per observed data point, has the
smallest overall value. This goal can be achieved by using
the least squares criterion, which minimises the sum of the
squared prediction and can be calculated using:

Q =

n∑
i=1

(y − ŷ)2 (3)

The squaring of the prediction error is done to avoid that the
positive and negative prediction errors cancel each other out
when summed and therefore yield 0. The problem that aris-
es when using Equation 3 is that it just gives one value per
regression line, i.e., in order to have the best possible result,
the implementation of Equation 3 must be done in multiple
lines. This problem can be tackled by using Equation 1 in
conjunction with Equation 3, which leads to the following
equation:

Q =

n∑
i=1

(yi − (α+ βxi))
2 (4)

However, in order to compute Equation 4, the values of α
and β must be calculated. This can be done through the e-
quations:

β =

∑n

i
(xi−x̄)(yi−ȳ))∑i

1
(xi−x̄)2

α = ȳ − βx̄
(5)

where x̄ and ȳ are the average values of the observation in x
and y, respectively. Since β and α are derived using the least
squares criterion, the resulting Equation 1 is often referred to
as the least squares line or least squares regression line.

B. Artificial Neural Networks

ANN have several applications on short-term prediction. Its
application is not exempt from some constraints and chal-
lenges, either due to intrinsic limitations of the methodology
itself or to difficulty in defining the model’s architecture [17].

Model Optimisation for Server Loading Forecasting with Genetic Algorithms 180

An ANN thus consists of an interconnection of several pro-
cessing units (neurons), with a configuration vaguely similar
to that of the human brain. Figure 1 depicts an artificial neu-
ron.

Figure. 1: Biological neuron vs Artificial neuron

The entries and exits of a neuron correspond, similarly, to the
synapses and axons of the human brain neuron. Each new
input presented is therefore weighted by a synaptic weight,
which is indicative of the strength of the bond. Connection
strengths are adjusted by a learning algorithm, in an iterative
learning process. Each neuron performs very simple oper-
ations, starting with the weighted sum of the inputs by the
weights of the respective connections, followed by the com-
putation of the neuron activation value using an activation
function, which receives the weighted sum as input. Usually,
the activation function is non-linear and differentiable.
In load forecasting, the most common used type of ANN
are multilayer feed-forward networks, trained with the back-
propagation algorithm [18]. This approach is also applied in
this work. Backpropagation can be divided into two distinct
phases, a forward and a backward passing phase. In the for-
ward phase, the output of the network is computed for each
input pattern. The backward phase consists in updating the
network weights in the direction of negative derivative of the
output error. Forward and backward phases operate on the
same data points and only proceed to the next data points
after both phases are completed.

C. Support Vector Machines

SVM are supervised learning models that use learning al-
gorithms for solving classification and regression problems.
They were introduced by Vapnik and its co-workers in 1990
[19]. SVM are focused on two class discriminant functions.
SVM make use of a combination of convex optimisation [20]
and statistical learning [21] to find a suitable plane/margin
in a data space that can separate the data into two different
classes.
SVM represent their data as points in a high or infinite di-
mensional space. A hyperplane is created to correctly divide
the data into different categories. SVM can then predict to
which category new data will belong. A hyperplane should
have the largest margin possible, which is the minimal dis-
tance between the hyperplane separating the two classes and
the closest data points to the hyperplane (support vectors).
Figure 2 depicts a hyperplane with its support vectors and
respective margin.
The problem of finding the optimal hyperplane is often tack-

Figure. 2: Hyperplane with respective support vectors

led by optimisation techniques. One of the most common
techniques used is the Lagrange multiplier. Lagrange multi-
pliers, sometimes referred as dual variables, are scalar vari-
ables that calculate function extremes in mathematical opti-
misation with constraints [22]. The optimisation algorithm
for the hyperplane generates the weights of the output so that
only the support vectors are taken into consideration when
calculating the weights.
Support Vector Classification (SVC) and Support Vector Re-
gression (SVR) are the current nomenclature used by re-
searchers to denominate SVM for classification and regres-
sion problems, respectively. In this paper, due to the nature of
the problem, we use a SVM model adapted to linear regres-
sion functions, which categorises it as SVR. The operation
of SVRs closely resembles that of ANN since they use mul-
tilayer sensors and Kernel functions. As in linear regression,
the basic idea is to find a function that closely approximates
the points of training while trying to reduce the error.

D. Genetic Algorithms

Genetic algorithms (GA) are parallel and stochastic search
algorithms inspired by the natural selection of species theory
and molecular biology, which allow the evolution of a set of
potential solutions to a problem [23].
A GA starts by creating an initial population P(0) of size n
of potential solutions to the problem to be solved. Then, it
evaluates this population using a fitness function that returns
a value for each individual indicating its quality as a solution
to the problem. After these two steps, it proceeds iteratively
while a stop condition is not met. In each iteration, the first
step consists of the creation of a new intermediate population
P1(t), also of size n, by stochastically selecting the best in-
dividuals from P(t). All selection methods must obey to the
following two principles: 1) The best individuals have more
possibilities of being chosen; 2) Selection is done with repo-
sition so that individuals can be chosen more than once. After
the selection step, a second intermediate population P2(t) is
created by stochastically applying genetic operators to the in-
dividuals of P1(t). There are mainly two types of genetic op-
erators: recombination and mutation. Recombination mixes
genetic material of two solutions, generating two new ones.
This operator is applied hoping that the resulting solutions
combine the best of their parents. Mutation undergoes mi-
nor changes on the solutions and it has the role of replacing
or adding genetic material that does not exist in the current
population, either because it has been lost or because it has

181 C. Silva et al.

never existed in previous populations. The process usually
involves the choice of a random point of an individual and
the validation of a probability of mutation, which switches
an existing gene with a randomly generated one. The last
step of each iteration consists in evaluating the new popu-
lation P(t + 1). This sequence of operations stops usually
after a predefined number of iterations after which the best
individual found is returned [24].

III. Server load prediction

In server load prediction, the most common goal is to deter-
mine the load that will be put on the servers by users, either in
terms of connections or data volume. To efficiently allocate
resources, prediction algorithms are used. In addition, load
forecasting lets data centers minimise resource consumption,
reducing energy consumption, costs, and, as a result, reduc-
ing carbon emissions [25].

A. Areas of application

Server load prediction can be found in a variety of areas, such
as, cloud computing, grid computing, utility computing, vir-
tualisation or energy load prediction [25, 26, 27, 28]. The
National Institute of Standards and Technology (NIST), de-
fines cloud computing as a model that enables on-demand
network access to a shared pool of configurable computing
resources, such as, servers, networks, applications, services
and storage, that can be rapidly supplied and/or released with
minimal service provider interaction [26]. Cloud computing
uses the predictions of load of different components to adjust
its resources to an optimal state in a proactive approach. For
example, the predictions of CPU load, enables the system to
adjust the number of cores to an optimal state, releasing or
allocating further resources when needed.
Grid computing uses server load prediction to coordinate net-
work and computational resources to achieve a single load.
Various scientific applications use grid computing in their so-
lutions, due to its usually computationally intensive tasks.
Load prediction lets researchers, analyse the resources need-
ed to run, and adjust the resources accordingly. Although
sharing many similarities and challenges, grid computing
and cloud computing differ. The difference between cloud
computing and grid computing relies mainly in the goal. Grid
computing tries to use its resources for a single goal/load,
such as, calculating a complex equation. Cloud computing
tries to use its resources to answer to multiple goals, e.g., ad-
justing resources to answer the many different requests made
to a server.
Server load prediction is also found in utility computing. U-
tility computing provides resources on-demand and charges
customers based on usage, instead of the typical hardware
renting process. Server load prediction enables service
providers to truly maximise resource utilisation and min-
imise their operating costs. Virtualisation is another area
that makes use of server load prediction. In virtualisation
the physical hardware is overlooked, providing instead virtu-
alized re-sources for applications to use. A virtualised server,
which is frequently referred to as virtual machine (VM), pro-
vides the capability of merging computing re-sources from
clusters of servers and dynamically allocate or re-allocate

virtual resources to applications on-demand [26]. Through
the use of load prediction, it is possible to test the optimal
hardware configuration needed for a VM. Another area of
application for server load prediction is autonomic comput-
ing, which aims at implementing computing systems capable
of self-management, able to react to internal and external ac-
tions without human intervention. The goal is to overcome
the complexity of managing computer systems and avoid hu-
man inter-action that may cause failures to the system. IB-
M’s mainframes are a prime ex-ample in which autonomic
computing is applied. Through the analysis of future load,
the system independently readjusts the resources for upcom-
ing load. The process of load prediction in autonomic com-
puting involves usually predicting the number of application
instances required to handle demand at each particular lev-
el, periodically predict the future demand and determining
resource requirements, and, lastly, automatically allocating
resources using the predicted re-source requirements [29].
Energy efficiency in data centers is another major area in
server load prediction. It has been estimated that the cost
of powering and cooling accounts for 53% of the total op-
erational expenses of data centers [30]. Companies such as,
Google or Amazon are under enormous pressure to reduce
energy consumption. The goal is not only to cut down energy
cost in data centers, but also to meet government regulations
and environmental standards. Energy-aware job scheduling
[31] is one way to do this, as well as reducing power con-
sumption by turning off unused machines. For any of these
solutions, load prediction is indispensable since, by foresee-
ing future load, it is possible to adequate schedule energy-
aware jobs or turn of machines with no load running on them.
Server load prediction became also an indispensable tool for
the commercial viability of products like Amazon’s web ser-
vice1, Google App Engine2, Microsoft Windows Azure plat-
form3, or IBM’s Bluemix4.

IV. Proposed approach

The server load prediction problem studied in this paper uses
Wikipedia’s traffic logs as its research study source. An ap-
propriate solution was defined and created containing auto-
mated data gathering, analysis and cleaning processes, data
subset configuration and transformation modules and solu-
tion optimisation through the application of GA.

A. Solution architecture overview

In this paper we propose a solution that tackles the load pre-
diction problem. The initial steps involve downloading, for-
matting, and cleaning the data available from the Wikimedia
foundation, which is then stored locally. With the stored da-
ta, a transformation module is applied to each dataset, which
creates new training and test sets. Figure 3 presents the ar-
chitecture of the approach taken.
The newly created train and test sets are submitted to the
model creation and testing module. This module creates

1https://aws.amazon.com
2https://cloud.google.com/appengine
3https://azure.microsoft.com
4https://www.ibm.com/cloud-computing/bluemix

Model Optimisation for Server Loading Forecasting with Genetic Algorithms 182

Figure. 3: Wikipedia solution architecture diagram

models based on linear regression, artificial neural networks
and support vector machines.

1) Data gathering, analysis and cleaning

In the data gathering process, the initial step is to treat and
collect the data from single or multiple sources and store lo-
cally. This can be achieved through a script. After the gather-
ing process, the data is analysed and cleaned. Data analysis
tools such as WEKA5 or RapidMiner6 can be used. In the
cleaning process, the methodologies used in this work were
a Pearson correlation coefficient analyses to eliminate irrel-
evant or repetitive data, direct manipulation in the dataset,
e.g., wrongly formatted data, correctly re-formatted and the
use of average values to fill in missing values and the applica-
tion of a cleaning script, which automates the previous men-
tioned steps, along with adding surgical functions, increasing
the versatility and utility of the overall script.
Subsequently to the cleaning step, the configuration values
for different train and test sets are defined. The subset config-
uration values used in this paper were defined in accordance
with the human interaction patterns/intervals. Different gran-
ularity and time window values were used, being granulari-
ty the level of detail each record contains and time window,
the quantity of information back in time that is stored in
each record. Once the configuration values are defined, the
transformation module follows, involving a set of mandato-

5https://www.cs.waikato.ac.nz/ml/weka
6https://rapidminer.com

ry transformations to the dataset. Figure 4 depicts the steps
involved in a single transformation cycle.

Figure. 4: Diagram depicting the different steps involved in
the data transformation module [15].

The first step is applied when more than one dataset worth
of data is available. The module uses the different possible
combinations of data sets, to create a new aggregate dataset.
A resulting dataset could be, for example, the combination
of the months May, June, July and August.
Then, the next module transforms the data in accordance to
the granularity level. Granularity defines the level of de-
tail in the data, which in this work is always in an hourly
scale. Through the application of a granularity value, the ini-
tial dataset is transformed into a dataset with records of G
granularity, i.e., if we have a granularity of 3, and each orig-
inal record contains data from an hour, the resulting record
will contain the aggregate of 3 hours after the application of
the granularity step. Following the granularity step, the time
window step is applied. In this step the number of time win-
dow units (granularity units) back in time that a record will
contain is defined. Since the granularity step was applied be-
fore, the created history/time-window shares the same scale.
In the attribute selection step, the different sets of possi-
ble/desired combinations of attributes are used, creating d-
ifferent combinations datasets. The last step consists in ap-
plying normalisation on the resulting train and test set. For
each train and test set that is normalised, there is another one
that remains unaltered. This is done in order to evaluate how
normalization affects the performance of the created model.

V. Experiments and results

This section focus on the solution for the Wikipedia load
problem. Two variations of the dataset are used: a basic
and an enriched one. In the test scenario the best general
model is tested against the best absolute model. The general
model is created by using the configuration for time window
and granularity that has the best results on average (across all
months), while the absolute model is the best model found.
This is done to test the overall generalisation capabilities of
the approach. The last test scenario is the application of a
GA, for dataset optimisation. A final summary and discus-

183 C. Silva et al.

sion among all test scenarios are presented at the end of this
section.

A. Dataset overview

The data used in this paper was collected from the Wiki-
media foundation7. Whenever a request of a page is made
to Wikipedia, whether for reading or editing, it must pass
through one of Wikipedia’s internal hosts. From this request,
the project name, the size of the page, and the title of the page
is collected. The resulting information is written into a page
view raw dataset where one record is the hourly aggregate of
the pageviews/requests and size of an individual page.
Figure 5 exemplifies five records of data of the initial dataset:

Figure. 5: Record structure example

Each record has four attributes separated by spaces. The first
attribute refers to the language the page is written in. In
the example above, all records start with en followed by a
dot and as second sub-parameter, e.g., the first line has en.b.
The en refers to the Wikipedia language, which in this ex-
ample is English. The second parameter after the dot indi-
cates what type of page was requested. Attributes that do
not contain any second parameter correspond to Wikipedia
projects. The second attribute is the name of the retrieved
page. In the example above, for the first record this would
be 19 Century Literature. The third attribute indicates the
number of times a specific page was requested within that
hour. These request numbers are not solely unique page visit-
s. The last attribute is the size of the re-turned content. In the
given example, the first record had just one request which ac-
counted in total for 8422 response bytes. Each hourly dataset
is composed of millions of records with this structure. Al-
though the raw data presents an enormous quantity of data,
the resulting dataset was significantly reduced by aggregating
the records in an hourly basis instead of using unique page
requests. A final single month dataset can have between 672
and 744 records, which is the equivalent of all the hours in
February and all the hours in a month with 31 days.
Two different variations of datasets were tested. The first
variation contained only two different attributes, aggregate
number of generated load and aggregate number of requests.
Each record contained the aggregate value of an hour. The
second dataset variation was enriched with seven additional
attributes. The at-tributes are the average number of request-
s, the average generated load, the standard deviation of the
number of requests, the standard deviation of the load and
the number of unique requested wiki pages. These attributes
were also hourly aggregated. All the data used in the dataset-
s was selected to contain English only requests. Figure 6
presents the steps involved in the data transformation pro-
cess, from the data logs into a valid dataset record.
The data logs contain data regarding the hourly aggregates of
each wiki page request. As such, this first step is to read line

7https://dumps.wikimedia.org/other/pageviews/2016

by line the data logs. During this procedure, an algorithm
tries to find and correct anomalies in a line, e.g., the number
of requests and/or load may contain text information. In such
situations the algorithm identifies and removes the incorrect
data, re-using, if possible, the remaining information. Each
line is then divided by white spaces, creating a total of four
different attributes.

Figure. 6: Data transformation: data log row transformed
into a dataset record.

From these four attributes, the attribute project type is used
to identify the language, which in this paper is English. If
the row is not English, the row is discard-ed without further
treatment. Project type and page name are later discarded
from the final dataset. This is mainly because each row from
the final dataset refers to the hourly aggregate of the desired
language and these attributes refer to singular pages.
When the process of creating a simple dataset row is finished,
a data row enrichment process is initiated. This process is
responsible for creating attributes that will be used in the
dataset enrichment phase, which, as mentioned above, is the
second dataset variation. When all data of a single data log
file is successfully treated, the algorithm passes to the next
hour, repeating the process until all the data logs of a month
are treated. Figure 7 exemplifies both the baseline dataset
and the enriched dataset.

B. The load problem

Server load prediction can be used in many different scenar-
ios. However, scenarios with high activity, either in terms
of requests/connections or generated load, tend to stand out.
Wikipedia falls into such category. Each day, an enormous
quantity of load is generated in the servers, which of course
takes a toll on the servers. Correct adjustment of resources is
utmost important when creating a reliable solution for the
users. An overview of the problem that servers face ev-
ery day, and which falls in the cloud computing application
area, is presented in Figure 8. The example presented uses
Wikipedia as a case study. Nevertheless, this problem can be

Model Optimisation for Server Loading Forecasting with Genetic Algorithms 184

found on a variety of load forecasting applications.

Figure. 8: Wikipedia problem overview.

Wikipedia servers set an initial resource configuration in ac-
cordance with the foreseen incoming load. This type of con-
figuration must however be adapted throughout the day. This
is done to guarantee the Service Level Agreements (SLA), to
optimise the servers from an economical perspective and to
increase hardware’s lifespan.
By analysing the load patterns of previous data, a model
can be constructed that predicts incoming load. Although,
since the load is generated mainly by human interaction, past
load patterns might not be enough to create a reliable model.
The inclusion of extra variables, such as, statistical metric-
s, can increase the model’s accuracy. With a created mod-
el, resources can be adjusted upfront for load peaks and low
points, thus maintaining the adequate resources for the SLA.

C. Experimental setup

The tests were conducted using Wikipedia’s data from Jan-
uary 2016 to August 20168, which were the most recent data
at the time of this study. Time-window values of 1, 2, 4, 6, 8,
24 and 168 hours were applied along with granularity values
of 1, 2 and 7 for experiments where GA where not used.
Linear regression, ANN and SVM were used to create pre-
dictive models. GA were chosen for optimisation of the fea-
ture values of the datasets. The configurations of the learning
methods were the same on all the experiments, including the
ones were the GA was used. The difference relied in the fea-
tures used for training each learning method.
On a first experimental setup, the models were designed to
predict the next hour of the incoming load for the Wikipedia
servers using only a single month worth of data. Later on,
the models were adapted to predict the upcoming hour using
a combination of multiple months. The models were created
using a split ratio of 70/30, i.e., 70% of the data was used
for training the model, while 30% was used for testing. The
record order after the splitting remained unaltered.

1) Evaluation metrics

In classical regression models the methodology adopted
when choosing a model is the minimisation of the empirical
estimation of the Mean Square Error (MSE). Other measures
such as the Mean Absolute Error (MAE) or the Huber loss
can also be used for robustness reasons. In this paper we

8https://dumps.wikimedia.org/other/pageviews/2016

opted however to use the MAPE as a measure of quality for
regression models.
MAPE measures the accuracy of a forecasting method. It
expresses the accuracy as a percentage. MAPE is calculated
as follows:

MAPE =

n∑
t=1

|PEt|
n

(6)

where At is the actual value, and Ft is the forecasted value.
When using MAPE, it is possible to compare results between
models, since it is scale independent. MAPE is also frequent-
ly used due to its very intuitive interpretation in terms of rel-
ative error. An example of this is the use of the MAPE in
finance. Gains and losses are often measured in relative val-
ues. Real life examples of MAPE are frequently used when
the value to predict is recurrently positive, i.e., above zero,
which is the case for the data used in this study. In [34] the
authors advocate the use of MAPE for forecasting problems,
especially in situations where enough data is available.

2) Learning methods parameterization

The configuration adopted for each learning method, tried to
achieve the best results from an average point of view. After
some preliminary experiments, the following parameteriza-
tions were chosen.
The linear regression model uses the Akaike criterion [35]
for model selection, with the ability to deal with weighted
instances. The M5 selection method is used. This method
steps through the attributes removing the one with the small-
est standardised coefficient until no improvement is observed
in the estimate of the error given by the Akaike information
criterion. For the ridge parameter a value of 1.0e-8 was cho-
sen.
The ANN model was created with a Multilayer Perceptron
architecture and us-es backpropagation to classify the in-
stances. The number of neurons was defined dynamically
since our dataset varies in the total number of attributes ac-
cording to the used variant. The hidden layers were defined
by the formula:

Hiddenlayerneurons = ((NA+NoN))/2, (7)

where NA is the number of input attributes and NoN is the
number of output neurons. Only a linear output unit with
no threshold is used. A learning rate of 0.3 was chosen.
The learning rate is a proportionality constant that defines
the amount of change of the weights. The use of 0.3 pre-
vented the network from diverging from the target output, as
well as improved the general performance. A training time
of 500 iterations was defined. Lastly, a momentum of 0.2 for
weights updating was applied during the learning process.
The SVM model implemented was based on the SMOreg
variation. This SVM variation implements the support vec-
tor machine for regression. The RegOpti-mizer, which is the
learning algorithm, was defined as RegSMOImproved with an
e of 1.0e-12 and tolerance of 0.001. The C parameter, which
defines a margin of tolerance where no penalty is given to er-
rors, was set to 1. With a high parameter value, SVM will try
to choose a smaller-margin hyperplane with fewer support
vectors. On the contrary, a very small value of C causes the

185 C. Silva et al.

SVM to look for a larger-margin separating hyperplane, even
if that hyperplane classifies more points. For the SVM ker-
nel, the Polynomial kernel was used, since it is mostly used
in non-linear modelling.

D. Baseline scenario case study

Wikipedia’s data from January 2016 to August 2016 was
used in this test scenario. Time window values of 1, 2, 4, 6, 8,
24 and 168 hours were applied and granularity values of 1, 2
and 7 were used. A grid search approach was used and the d-
ifferent possible combinations of these attributes throughout
different months were tested with the three different learning
methods.

1) Single month

For the single month prediction tests, only datasets contain-
ing data from a single month were used. The prediction s-
cope lied always in the next hour. The average MAPE values
per learning method across all months are presented in the
table below.

Linear Regression ANN SVM

Average Smallest Highest Average Smallest Highest Average Smallest Highest

Jan. 2.15 1.33 4.24 2.60 1.36 5.36 1.97 1.20 3.23
Feb. 1.68 0.97 3.81 2.34 1.16 9.75 1.56 0.96 3.81
Mar. 2.54 1.05 5.22 2.98 1.22 5.79 2.60 1.16 5.17
Apr. 3.52 1.37 10.78 3.50 1.30 12.79 2.30 1.48 10.64
May 2.65 1.33 5.32 2.66 1.61 5.06 2.26 1.32 4.66
Jun. 1.72 1.02 10.48 2.20 1.11 3.76 1.74 1.02 4.63
Jul. 4.99 2.06 5.60 6.54 1.63 8.42 4.97 2.13 5.59

Aug. 2.18 0.93 6.58 2.60 1.21 8.06 2.10 1.04 6.41

Table 1: Average, Smallest, and Highest MAPE values for
all months for Linear Regression, ANN and SVM

Table 1 shows that most average errors fall between 2% and
3%. On average, the best performing month was February
with the lowest average errors being 1.68% and 1.56%, with
linear regression and SVM respectively. An error lower than
2% was also achieved for January and June. The worst re-
sults were obtained for July, with errors between 4.97% and
6.54%. In short, most of our runs led to very appealing re-
sults, with average errors all below the 7% mark. April was
the worst performing month from the absolute point of view,
achieving errors above the 10% mark. The best performing
month was February when using SVM, with a configuration
of granularity 2 and time window 8.
Figure 9 depicts the resulting chart for the month of February
when putting prediction and real value side by side. The two
depicted red arrows represent the peak values that occurred
in that month. It is possible to confirm that, through the ap-
plication of our methodology, the created solution could suc-
cessfully predict these peak values.
Through the various tests that were taken, it was possible
to verify which configurations achieved the best results on
average across all months. We used these configurations to
create a general model and compared the results with the best
achieved model. For linear regression the general model had
granularity 7 and time window 8, for ANN granularity 1 and
time window 8 was used and, lastly, for SVM granularity 7
and time window 8 were used. Table 2 shows a comparison
of the results achieved with these models and the models that
obtained the best results for each month.

Figure. 9: Graphical representation of predicted and real val-
ues resulting from the SVM model regarding the month of
February:a) first half of the month with regular data pattern;
b) second half of the month with irregular data pattern

Linear Regression ANN SVM

General Smallest Difference General Smallest Difference General Smallest Difference

Jan. 1.33 1.33 0 1.36 1.36 0 1.38 1.2 0.18
Feb. 1.21 0.97 0.24 1.18 1.16 0.02 1.24 0.96 0.28
Mar. 1.28 1.05 0.23 1.53 1.22 0.31 1.35 1.16 0.19
Apr. 1.6 1.37 0.23 1.53 1.3 0.23 1.56 1.48 0.08
May 1.92 1.33 0.59 2.06 1.61 0.45 1.94 1.32 0.62
Jun. 1.98 1.02 0.96 1.32 1.11 0.21 1.57 1.02 0.55
Jul. 2.39 2.06 0.33 1.63 1.63 0 2.42 2.13 0.29

Aug. 1.39 0.93 0.46 2.22 1.21 1.01 1.42 1.04 0.38

Table 2: General model MAPE values for linear regression,
ANN and SVM using the basic dataset

From these results it is possible to verify that the gener-
al models achieve satisfying results when compared to the
best ones. All results have a MAPE difference less than
1%. The MAPE difference measures the variance between
the smallest MAPE value, which had specific granularity and
time window configuration for each month, and the model
with the general MAPE configuration. Most importantly, low
MAPE differences indicate that the model is versatile enough
so that less adjustment is needed when applying to different
datasets.

2) Multiple months

For the multiple month’s test, datasets containing the aggre-
gate of sequential months were used, i.e., the first month
combination is the combination of the months July and Au-
gust, while the second combination is the aggregate of the
month June, July and August, creating a total of seven com-
binations containing all months. The prediction scope was
also for the next hour. The average MAPE values across all
months are presented in the table below.

Linear Regression ANN SVM

Average Smallest Highest Average Smallest Highest Average Smallest Highest

1st combi 1.94 1.26 3.28 2.62 1.33 4.99 1.76 1.21 3.20
2nd combi 1.88 1.21 4.90 3.06 1.32 5.71 2.40 1.16 5.04
3rd combi 1.90 1.13 7.17 3.35 1.18 5.26 2.71 1.12 6.64
4th combi 1.73 1.10 4.78 2.66 1.22 5.52 2.13 1.09 4.31
5th combi 2.24 1.16 11.38 2.22 1.26 5.89 1.95 1.18 15.16
6th combi 2.04 1.21 4.10 3.23 1.33 14.21 2.78 1.22 3.73
7th combi 2.04 1.20 4.40 3.55 1.24 8.94 2.88 1.22 3.81

Table 3: Average MAPE values for all month combinations
for linear regression, ANN and SVM

Table 3 shows that most average errors fall between 1.7% and
3.5%. On aver-age, the best performing month combination
was August and July for the SVM with the lowest errors be-

Model Optimisation for Server Loading Forecasting with Genetic Algorithms 186

ing 1.76%, and for linear regression with a MAPE of 1.73%
with the months of August, July, June, May and April. The
highest average error was found when using ANN and com-
bining all months, the MAPE was of 3.55%. It is possible to
verify that the variance across the different combinations is
less than the one in the single month counterpart.
Regarding the learning models, all learning methods per-
formed well, with linear regression being the best perform-
ing method. ANN were the worst performing method. It was
the only learning method that achieved average errors higher
than 3%, with the highest average error being 3.55%. When
comparing the learning models, with the single month varia-
tion, it is possible to conclude that, on both variations, ANN
are the worst performing learning method. Linear regression
and SVM are very similar in results on both variations. From
an absolute point of view, the average values and the absolute
lowest values, scored fairly near values.
In the same way as in the single month variation, in the com-
bined month variation a general model was created using the
average best configurations. For linear regression the gen-
eral model had granularity 1 and time window 24, for ANN
granularity 1 and time window 4 and for SVM granularity 1
and time window 24. Table 4 presents the synthesis of these
results.

Linear Regression ANN SVM

General Smallest Difference General Smallest Difference General Smallest Difference

1st combi. 1.26 1.26 0 3.23 1.33 1.90 1.21 1.21 0
2nd combi. 1.21 1.21 0 1.62 1.32 0.30 1.16 1.16 0
3rd combi. 1.13 1.13 0 1.59 1.18 0.41 1.12 1.12 0
4th combi. 1.10 1.10 0 1.22 1.22 0 1.09 1.09 0
5th combi. 1.16 1.16 0 1.26 1.26 0 1.18 1.18 0
6th combi. 1.21 1.21 0 1.40 1.33 0.07 1.22 1.22 0
7th combi. 1.20 1.20 0 1.31 1.24 0.07 1.22 1.22 0

Table 4: General model MAPE values for linear regression,
ANN and SVM using basic dataset with month combination

The results achieved in this test indicate that a general model
is almost always the best resulting model. Linear regression
and SVM presented MAPE difference of 0 in all instances.
This means that the lowest MAPE is also the general mod-
el. These results induce us to believe that through the use
of month combination a general model is able to be creat-
ed, with a generalisation high enough to be used in other test
scenarios.

E. Enriched dataset scenario

Just as in the basic scenario, data from January 2016 to Au-
gust 2016 was used. History values of 1, 2, 4, 6, 8, 24 and
168 hours and granularity values of 1, 2 and 7 were also used.
The additional attributes used in the enhanced version were
average load, number of requests, standard deviation for the
load and number of request and the unique page visits.

1) Single month

The testing approach taken in the enhanced scenario is equal
to the basic one, only differing in the dataset used. The aver-
age MAPE values per learning method across all months are
presented in the table below.
Table 5 shows that highest average errors fall between 2%
and 3% and with the linear regression model. On average,
the best performing learning methods were ANN and SVM,

Linear Regression ANN SVM

Average Smallest Highest Average Smallest Highest Average Smallest Highest

Jan. 2.73 0.89 5.23 1.09 0.76 1.37 1.31 0.81 1.71
Feb. 3.15 0.87 7.05 1.07 0.79 1.21 1.46 0.84 1.69
Mar. 3.65 1.50 8.41 1.50 0.77 1.84 1.73 0.87 2.02
Apr. 3.02 0.94 5.33 1.24 0.85 1.40 1.50 0.98 1.84
May 1.97 0.88 3.56 1.38 0.85 1.71 1.29 0.87 1.43
Jun. 1.87 0.88 3.44 1.38 0.98 1.53 1.06 0.87 1.21
Jul. 2.55 0.93 4.78 1.63 0.99 1.95 1.57 0.95 1.87

Aug. 3.64 1.04 4.10 1.24 0.89 1.56 2.43 1.08 3.65

Table 5: Average MAPE values for all months for linear re-
gression, ANN and SVM

having the ANN a slight advantage. The best performing
months were January and February for the ANN and June for
the SVM, with all values being around the 1% mark. From
an absolute point of view, all learning methods had models
with errors below the 0.90% mark. The best result was found
in January by using ANN and a configuration with granular-
ity of 2 and time window of 24. The worst result was found
on the month of March and using linear regression. Linear
regression had an overall worse performance when compared
to the remaining learning methods. As for the baseline sce-
nario, a general model was created using the average best
configurations. For linear regression the general model had
granularity 1 and time window 24, for ANN granularity 1 and
time window 4 and for SVM granularity 7 and time window
8. Table 6 presents the synthesis of these results.

Linear Regression ANN SVM

General Smallest Difference General Smallest Difference General Smallest Difference

Jan. 1.07 0.89 0.18 0.83 0.76 0.07 1.01 0.81 0.20
Feb. 1.03 0.87 0.16 0.87 0.79 0.08 1.03 0.84 0.39
Mar. 1.64 1.50 0.14 0.78 0.77 0.01 1.11 0.87 0.24
Apr. 0.94 0.94 0 0.89 0.85 0.04 0.98 0.98 0
May 0.93 0.88 0.05 1.01 0.85 0.16 0.96 0.87 0.09
Jun. 1.09 0.88 0.21 1.03 0.98 0.05 1.05 0.87 0.18
Jul. 0.98 0.93 0.05 1.07 0.99 0.08 1.01 0.95 0.06

Aug. 1.18 1.04 0.14 1.02 0.89 0.13 1.21 1.08 0.13

Table 6: General model MAPE values for linear regression,
ANN and SVM

The results presented, show that the general model achieves
very satisfying and promising results. The use of the en-
hanced dataset evens out the MAPE difference. All results
have a MAPE difference lower than 0.39%.

2) Multiple months

As mentioned in the previous section, the tests taken in this
scenario only varied in the dataset used. The average MAPE
values per learning method across all months are presented
in the Table below.

Linear Regression ANN SVM

Average Smallest Highest Average Smallest Highest Average Smallest Highest

1st combi 4.03 2.43 10.07 1.54 1.31 5.46 1.63 1.22 4.13
2nd combi 3.67 2.93 9.92 1.61 1.18 4.81 1.86 1.41 6.85
3rd combi 4.13 2.57 8.01 1.47 1.08 8.33 1.42 1.42 5.78
4th combi 3.12 1.81 14.45 1.70 1.35 6.78 1.64 1.36 5.11
5th combi 3.07 1.79 13.57 1.39 1.1 5 1.32 1.2 6.88
6th combi 3.13 2.52 6.14 1.42 1.08 9.57 1.39 1.33 4.06
7th combi 2.89 1.89 7.86 1.43 1.05 9.21 1.59 1.51 5.28

Table 7: Average MAPE values for month combinations: lin-
ear regression, ANN and SVM

Table 7 shows that most average errors fall around the 1.5%

187 C. Silva et al.

mark for the learning methods ANN and SVM. Linear re-
gression shows the worst results when using an enriched
dataset. On average, the best performing month combina-
tion was the 5th and 7th, with the lowest errors being 1.32%,
1.39% and 2.89%, for the SVM, ANN and linear regression
respectively. Regarding the learning algorithms, ANN pre-
sented the best results, with occasionally SVM performing
better then ANN. Linear regression was the worst perform-
ing learning method, achieving average errors higher than the
4% mark with the 1st and 3rd month combination. For the
combined month variation with the enriched dataset, a gen-
eral model was created using the average best configurations.
For linear regression the general model had granularity 1 and
time window 24, for ANN granularity 1 and time window
8 and for SVM granularity 1 and time window 24. Table 8
presents the synthesis of these results.

Linear Regression ANN SVM

General Smallest Difference General Smallest Difference General Smallest Difference

1st combi. 3.76 2.43 1.33 1.31 1.31 0 1.22 1.22 0
2nd combi. 3.04 2.93 0.11 1.18 1.18 0 1.41 1.41 0
3rd combi. 2.57 2.57 0 1.08 1.08 0 1.42 1.42 0
4th combi. 1.81 1.81 0 1.35 1.35 0 1.36 1.36 0
5th combi. 1.99 1.79 0.2 1.10 1.10 0 1.20 1.20 0
6th combi. 2.52 2.52 0 1.08 1.08 0 1.33 1.33 0
7th combi. 2.51 1.89 0.62 1.05 1.05 0 1.51 1.51 0

Table 8: General model MAPE values using basic dataset
with month combination

The results show that most average errors fall between 1
and 1.5%, for the learning methods ANN and SVM. Lin-
ear regression was the worst learning method, as for the ba-
sic dataset scenario. On average, the best performing month
combination was the 7th, with the lowest errors being 1.05%,
and using ANN. The conclusions achieved in this test run, are
identical to the basic dataset scenario. The learning methods
were better able to generalise when using a data source of
multiple months.

F. Genetic algorithm scenario

The GA applied in this paper tries to optimise the dataset
from the perspective of its features. Each individual consists
of various genes, containing the variables to optimise. This
process is referred as coding of individuals. The variables
of the problem are the configuration values of granularity,
time window, the use or not of the number of requests at-
tribute, the use or not of normalization and the months of
data used. The evaluation of individuals is done through a
fitness/objective function. The objective function considered
is the Mean Absolute Percentage Error (MAPE), resulting
from the created models using either linear regression, ANN
or SVM. The MAPE function is defined in Equation 6. The
GA in this paper tries to minimise the value of MAPE.

1) Encoding of individuals

Each individual is composed by five genes. Figure 10
presents an example of an encoded individual.
Each gene represents a possible value when configuring the
features in a dataset. Each individual in the initial population
is generated with five random gene values, to ensure greater
diversity. Although the value for each gene is random, the
values are always within a predefined range to ensure that the

Figure. 10: Example of the encoding of an individual.

created individuals have valid configuration values. For the
number of months, the range falls between 1 and 8, since the
study uses a total of 8 different months. The normalisation
flag and request flag vary between 0 and 1. In the event were
a flag is activated, normalization and/or the use of the num-
ber of requests attribute are triggered. Granularity and time
window vary between 1 and 7 and 1 and 168, respectively.
These two ranges could have a higher upper limit. However,
this range was defined in order to replicate the same limits as
the ones used in the non-GA approach.

2) Algorithm configuration

The initial population consists in a set of randomly generated
individuals so that the genes values are inside the respective
ranges. Regarding the selection process, the binary tourna-
ment method was used [24]. This method repeats n times the
following procedure, where n is the size of the population:
two individuals are chosen randomly from the current pop-
ulation. The individual with the best fitness is selected and
inserted in the intermediary population P1(t).
After the selection process, for each pair of individuals in
P1(t), the recombination operator is applied with some prob-
ability previously defined. In this work, the single cut re-
combination operator is used: For each pair of individuals in
P1(t) that should be recombined, a random cut-off point is
defined. The genes to the right (or left) of the cut-off point
are exchanged between the parents thus giving rise to two
descendants.
The mutation operator is applied after the recombination one.
The implementation of the mutation involved an individual-
wise verification of the occurrence of mutation, according
to a given probability. In cases were mutation is to be ap-
plied, a gene is randomly selected. The selected gene value
is then replaced by a randomly generated one bound to its
valid range.
The selection of individuals to be part of the next popula-
tion is the last step of each iteration. The selection of indi-
viduals is made by considering the initial population of that
iteration, P(t), and its descendants P2(t). Several individu-
als are then chosen, so that the new population is made up
of a pre-defined percent-age of the best individuals of that
iteration. This percentage defines the elitism level of the al-
gorithm. For example, 75% of elitism means that 75% of the
best individuals are selected to be part of the new population.
The remaining individuals are chosen at random.
After some preliminary experiments, the GA parameters

Model Optimisation for Server Loading Forecasting with Genetic Algorithms 188

were established as follows: population size equal to 100
individuals, number of generations equal to 100, probabili-
ties of recombination and mutation equal to 80% and 10%,
respectively, and elitism equal to 100%. The chosen elitism
value means that the next population is composed of the best
individuals among the parents, P(t), and their descendants,
P2(t).

3) GA results vs non-GA results

In order to test the GA approach, the basic dataset varia-
tion was used. This dataset variation was the lightest ver-
sion from the computational perspective and did not present
a large difference in results when compared to the enriched
version, hence why it was used in the GA. The computational
time taken by each variation, however, differed enormously.
Being the GA approach for its own already heavy from a
computational perspective, it was opted to choose the lighter
dataset version.
Table 9 presents, for comparison purposes, a synthesis of the
tests using the basic dataset, the enhanced dataset and the
basic dataset using GA, for single months.

Basic dataset Enriched dataset GA model

MAPE Gran TW Alg. MAPE Gran TW Alg. MAPE Gran TW Alg.

Jan. 1.20 7 4 SVM 0.76 2 24 ANN 0.73 4 97 SVM
Feb. 0.96 2 8 SVM 0.79 2 8 ANN 0.66 6 92 SVM
Mar. 1.05 7 8 LR 0.77 1 4 ANN 0.81 3 28 LR
Apr. 1.37 2 24 LR 0.85 2 8 ANN 0.76 2 153 ANN
May. 1.32 7 1 SVM 0.85 7 4 ANN 0.78 7 61 SVM
Jun. 1.02 1 4 LR/SVM 0.87 1 8 SVM 0.83 2 75 LR
Jul. 2.01 1 4 ANN 0.93 1 24 LR 0.84 4 79 ANN

Aug. 0.93 7 8 LR 0.89 1 24 ANN 0.87 7 36 SVM

Table 9: Minimum MAPE values with respective pre-
processing configuration using single

As it is possible to verify, the basic scenario only achieved a
MAPE lower than 1% for February and August, with 0.96%
and 0.93%, respectively. When using the enhanced dataset,
all results were under the 1% mark; the best result was for
January with 0.76%. When using the GA approach, the re-
sults outperformed the basic and enhanced test scenario. The
best results were achieved for February with granularity of
6, time window of 92 and the SVM learning method, with
a MAPE of 0.66%. When comparing the general model re-
sults, with the created GA model, it is possible to compare
which learning method requires more parameterization opti-
misation, in order to increase the model’s performance. Ta-
ble 10 shows the summary of the general model results, along
with GA model results.

Basic dataset Enriched dataset GA model

MAPE Alg. MAPE Alg. MAPE Alg.

Jan. 1.33 LR 0.83 ANN 0.73 SVM
Feb. 1.18 ANN 0.87 ANN 0.66 SVM
Mar. 1.28 LR 0.78 ANN 0.81 LR
Apr. 1.53 ANN 0.89 ANN 0.76 ANN
May. 1.92 LR 0.93 LR 0.78 SVM
Jun. 1.32 ANN 1.03 SVM 0.83 LR
Jul. 1.63 ANN 0.98 LR 0.84 ANN

Aug. 1.39 LR 1.02 SVM 0.87 SVM

Table 10: Minimum MAPE values using single month test
variation

As can be seen, when trying to create the best suitable model
for each month variation and considering all three learning
models, the GA model still achieves the best results. The
enriched dataset version comes second in terms of lowest
MAPE and, finally, the basic dataset comes last. Although
having the highest MAPE from all three variations tested,
the basic scenario is still able to achieve models with MAPE
of lower than 2%. From the learning method perspective,
the results seem to indicate that linear regression and AN-
N create the better models. When taking into consideration
just the enriched dataset, ANN is the clear winner. Neverthe-
less, when taking the whole case study in perspective, SVM
seems to achieve the best results, although this is mainly due
to the optimisation that the GA model does. In summary,
when creating a generalised model, one can take three differ-
ent variations, with all achieving results under the 2% mark.
The factor that most varies between these three variations
is the computation time. By increasing the complexity of
the learning process and dataset, better results are achieved.
However, the computational time is directly proportional to
these factors.

VI. Conclusions and Future Work

This paper described an approach to a server load prediction
problem on Wikipedia’s load. The approach taken involved a
set of data transformations, pre-processing and a genetic al-
gorithm wrapper to optimise all dataset variables. The results
achieved indicate that the approach applied has a high suit-
ability for the data used. The viability of the methodology is
also validated due to the use of real-life data. Lastly, the use
of different training and test sets across multiple months lead-
s us to conclude that the methodology achieves good general-
isation on the overall problem, without creating an overfitted
model. A basic and an enhanced scenario were tested, show-
ing that linear regression and SVM achieved better results in
the basic scenario and ANN achieved the best results when
using the enhanced dataset. The best results however were
achieved using the basic dataset in conjunction with GA.
Since the approach is applied on different training and test
sets across multiple months, results indicate that this method-
ology increases the generalisation capabilities of the models.
We would like to stress that the proposed pre-processing ap-
proach is general and can thus be applied in different scopes
that involve time series, not only server load forecast.
Future work is suggested in the use of data from different
years, the addition of external data, increasing the granular-
ity and time window test range and extending the GA appli-
cation to the model parameter optimisation.

References

[1] Di Persio, L., Cecchin, A. and Cordoni, F., 2017, ”Nov-
el approaches to the energy load unbalance forecasting
in the Italian electricity market”, Journal of Mathemat-
ics in Industry, 7(1), 5.

[2] Ayub, N., Javaid, N., Mujeeb, S., Zahid, M., Khan,
W. Z. and Khattak, M. U., 2019, ”Electricity Load
Forecasting in Smart Grids Using Support Vector Ma-
chine”, International Conference on Advanced Infor-
mation Networking and Applications, 1-13.

189 C. Silva et al.

[3] Cantón Croda, R. M., Gibaja Romero, D. E. and Ca-
ballero Morales, S. O., 2019, ”Sales Prediction through
Neural Networks for a Small Dataset”, International
Journal of Interactive Multimedia & Artificial Intelli-
gence, 5(4).

[4] Hipni, A., El-shafie, A., Najah, A., Karim, O. A., Hus-
sain, A. and Mukhlisin, M., 2013, ”Daily forecasting of
dam water levels: comparing a support vector machine
(SVM) model with adaptive neuro fuzzy inference sys-
tem (ANFIS)”, Water resources management, 27(10),
3803-3823.

[5] Pukach, P. and Hladun, V., 2018, ”Using dynamic neu-
ral networks for server load prediction.”, Computation-
al linguistics and intelligent systems (2), 157-160.

[6] Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J.
A., 2014, ”A review of auto-scaling techniques for e-
lastic applications in cloud environments”, Journal of
grid computing, 12(4), 559-592.

[7] Gross, G. and Galiana, F. D., 1987, ”Short-term load
forecasting”, Proceedings of the IEEE, 75(12), 1558-
1573.

[8] Pukach, P. and Hladun, V., 2018, ”Using dynamic neu-
ral networks for server load prediction”, Computational
linguistics and intelligent systems (2), 157-160.

[9] Gebreyohans, G. and Gandhi, N., 2018, ”Analyzing
Children’s Data Using Machine Learning: A Case S-
tudy in Ethiopia”, International Journal of Computer
Information Systems and Industrial Management Ap-
plications, 10, 154-163.

[10] Ashok, K. and Karamjit B., 2018, ”Multiple Classifi-
er System for Writer Independent Offline Handwritten
Signature Verification using Hybrid Features”, Interna-
tional Journal of Computer Information Systems and
Industrial Management Applications, 10, 252-260.

[11] Herbst, N., Amin, A., Andrzejak, A., Grunske, L., K-
ounev, S., Mengshoel, O. J. and Sundararajan, P., 2017,
“Online Workload Forecasting”, Self-Aware Comput-
ing Systems, 529-553.

[12] Sahu, P., Mohapatra, P. and Parvathi, S. P. K., 2017,
”Neural Network training using FFA and its variants for
Channel Equalization”, International Journal of Com-
puter Information Systems and Industrial Management
Applications, 257-264.

[13] Vladimir, V. N., and Vapnik, V., 1995, ”The nature of
statistical learning theory”, Springer Heidelberg.

[14] Silva, C., Grilo, C. and Silva, C., 2018, “Server load
prediction on Wikipedia traffic: influence of granular-
ity and time window”, Proceedings of the Tenth In-
ternational Conference of Soft Computing and Pattern
Recognition, SoCPaR 2018.

[15] Gori, M. and Tesi, A., 1992, ”On the problem of lo-
cal minima in backpropagation”, IEEE Transactions on
Pattern Analysis & Machine Intelligence, (1), 76-86.

[16] Seber, G. A. and Lee, A. J., 2012, ”Linear regression
analysis”, 329, John Wiley & Sons.

[17] Khotanzad, A., Afkhami-Rohani, R., Lu, T. L.,
Abaye, A., Davis, M. and Maratukulam, D. J., 1997,
”ANNSTLF-a neural-network-based electric load fore-
casting system”, IEEE Transactions on Neural network-
s, 8(4), 835-846.

[18] Rojas, I. and Pomares, H., 2016, ”Time series analysis
and forecasting: selected contributions from the ITISE
Conference”, Springer.

[19] Boyd, S. and Vandenberghe, L., 2004, ”Convex opti-
mization”, Cambridge university press.

[20] Vapnik, V. N., 1999, ”An overview of statistical learn-
ing theory”, IEEE transactions on neural networks,
10(5), 988-999.

[21] Bertsekas, D. P., 2014, ”Constrained optimization and
Lagrange multiplier methods”, Academic press.

[22] Forrest, M., M. and S., 1994, ”Genetic algorithms and
artificial life”, Artificial life 1.3, 267-289.

[23] Mitchell, M., 1998, ”An introduction to genetic algo-
rithms”, MIT press.

[24] Zhang, Q., Cheng, L. and Boutaba, R., 2010, ”Cloud
computing: state-of-the-art and research challenges”,
Journal of internet services and applications, 7–18.

[25] Cheng, H. B. and Yang, G., 2005, ”Improved AR-based
model of host load prediction in computing grid [J]”,
Computer Applications, 11.

[26] Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang,
Z., Singhal, S. and Salem, K., 2007, ”Adaptive control
of virtualized resources in utility computing environ-
ments”, ACM SIGOPS Operating Systems Review, 41,
289-302.

[27] Shao-juna, W., Jun-jiea, C. H. E. N. and Taob, G. U. O.,
2012, ”Optimized virtual machine deployment mecha-
nism in cloud platform”, Computer Engineering, 11.

[28] Ghelardoni, L., Ghio, A. and Anguita, D., 2013, ”Ener-
gy load forecasting using empirical mode decomposi-
tion and support vector regression”, IEEE Transactions
on Smart Grid, 4(1), 549-556.

[29] Imperato, M., 1991, “An introduction to Z”, Bromley,
Kent, UK: Chartwell-Bratt.

[30] Hamilton, J., 2009, ”Cooperative expendable micro-
slice servers (CEMS): low cost, low power servers for
internet-scale services”, Conference on Innovative Data
Systems Research, CIDR’09.

[31] Vasić, N., Barisits, M., Salzgeber, V. and Kostic,
D., 2009, ”Making cluster applications energy-aware”,
Proceedings of the 1st workshop on Automated control
for datacenters and clouds, 37-42.

[32] Lee Rodgers, J. and Nicewander, W. A., 1988, ”Thir-
teen ways to look at the correlation coefficient”, The
American Statistician, 42(1), 59-66.

[33] Miltin Mboh, C., Montzka, C., Baatz, R. and Vereeck-
en, H., 2014, ”A novel partial grid search approach
for handling complex multi-dimensional parameter es-
timation and state improvement at the catchment scale”,
EGU General Assembly Conference Abstracts, 16.

[34] Armstrong, J. S. and Collopy, F., 1993, ”Error measures
for generalizing about forecasting methods: Empirical
comparisons: International Journal of Forecasting”, 8
(1), 69–80.

[35] Sakamoto, Y., Ishiguro, M. and Kitagawa, G., 1986,
”Akaike information criterion statistics”, Dordrecht,
The Netherlands: D. Reidel, 81.

Model Optimisation for Server Loading Forecasting with Genetic Algorithms 190

Author Biographies

Cláudio A. D. Silva received his B.Sc
(2014) in Computer Engineering from
the Polytechnic Institute of Leiria (Por-
tugal). He is currently concluding his
M.Sc in Computer Engineering - Mo-
bile Computing. His professional ca-
reer splits between freelancing as a ful-
l stack developer and Software Engi-
neer at IBM Deutschland R&D, where
among his developer tasks he submitted

a patent application for sign language translation framework.
His research areas are load forecasting, optimisation through
genetic algorithms and sign language translation based on
machine learning.

Carlos Grilo graduated in 1997 and
received his M.Sc in Computer Engi-
neering in 2003 from the University
of Coimbra. He received his Ph.D in
Computer Engineering in 2011 from
the University of Lisbon. He teach-
es at the Polytechnic Institute of Leiri-
a, Portugal, since 1997. He is also
a researcher at the Computer Science
and Communication Research Centre,

Polytechnic Institute of Leiria. He has published about 35 ar-
ticles in both international conferences and journals. His re-
search interests include artificial intelligence, machine learn-
ing, evolutionary computation and the evolution of coopera-
tion.

Catarina Silva graduated in Electri-
cal Engineering and received the M.Sc.
and Ph.D. in Computer Science from
the University of Coimbra, Coimbra,
Portugal, in 1997, 2000, and 2009, re-
spectively. She teaches at the Poly-
technic Institute of Leiria, Portugal s-
ince 1997. She is also a Researcher in
the Adaptive Computation Group of the
Centre for Informatics and Systems, U-
niversity of Coimbra. She is the author
and co-author of several books, circa 15

journal articles and 80 conference papers. Her research inter-
ests include intelligent systems, machine learning and their
applications, especially text classification, and mobile appli-
cation development.

191 C. Silva et al.

Figure. 7: Example of Wikipedia dataset variations.

