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Abstract: There has been a great change in the computing 

environment after the introduction of deep learning systems in 

every day applications.  The requirements of these systems are 

so vastly different from the conventional systems that a complete 

revision of the processor design strategies is necessary.  

Processors capable of streamed SIMD, MIMD, Matrix and 

systolic arrays do offer some solutions.  As many new neural 

structures will be introduced over next years, new processor 

architectures need to evolve.  In spite of the variability of 

Artificial Neural Network (ANN) structures, some feature will 

be common among them.  We have tried to implement the 

hardware components required for most of the ANNs.  This 

paper highlights some of the key issues related to hardware 

implementation of neural networks and suggests some possible 

solutions. However, the arena remains very open for innovation. 

Low precision arithmetic and approximation techniques 

suitable for acceleration of computational load of neural 

networks have been implemented and their results have been 

presented.  We also show that for a given ratio of area occupied 

by serial multiplier to that of a parallel multiplier, a threshold 

exists beyond which the serial multipliers have a distinct 

performance advantage over parallel multipliers.  Need for 

multi-operand operations and methods to implement them have 

been discussed. 

 
Keywords: Artificial Intelligence, Artificial Neural Networks, 

Deep Learning, Hardware Accelerators, Low Precision Arithmetic, 

Neural Network Processor. 

I. Introduction 

Development of commercial applications using Deep 

Learning (DL) has set a pace of technological advancements 

that is unprecedented in history of computing.  Artificial 

Neural Networks (ANNs) used in DL, generally called Deep 

Neural Networks (DNNs) process data in massively parallel 

slow low precision streams in contrast to single (or few) 

processor, linear memory, fast computation of high precision 

arithmetic used by conventional computers.  When ANNs are 

implemented on conventional processors, data transfer over 

limited bus bandwidth becomes a bottleneck.  Data flow 

structures with large number of compute cores would be more 

suitable for ANN implementations.  However, data sharing 

among thousands of compute cores and their synchronization 

poses challenges in computer architecture. The non-linear 

activation functions that limit the computational output to a 

small numeric range, precision and accuracy also need 

attention. Therefore, DNN implementations present a 

completely different computational environment which needs 

to be addressed by new hardware architectures to achieve 

better performance.  

Neural computing demands availability of special purpose 

processors with thousands of compute cores.  To some extent, 

this need has been met by use of Graphics Processing Units 

(GPUs) [1], [2], [3], [4].  They have been used in variety of 

applications including image processing, robotics, image 

interpretation, natural language processing and in many other 

intelligent use cases. Operations like scaling, rotation and 

transformations frequently used in GPUs are also useful in 

neural computations.  Hardware capable of vector, matrix and 

tensor representations of data can exploit massive parallelism 

of these architectures and provide a method to speed up the 

computations.  However, several differences do exist: e.g., 

non-linear activation functions like sigmoid, hyperbolic 

tangent (tanh), reLu and softmax are regularly required in 

neural computations.  Interconnections in neural network can 

be more varied than in case of GPU operations.  Clearly, there 

are several features in neural computations that have no 

equivalent in graphics processing.  Many research 

organizations including ARM [5], Imagination Technologies, 

Google [6], Intel [7], Apple, Cadence Tensilica, Cambricon 

[8], IBM [9] et al. are developing hardware to implement 

neural architectures.  These processors were designed to 

address requirements of specific neural networks e.g., Google 

TPU is best suited for TensorFlow implementations, 

TrueNorth from IBM is suited for Multi Layer Perceptron 

implementations, Cambricon AI chip used in Huawei’s Kirin-

970 mobile processors are suitable for vector and matrix 

operations, etc. 

While special purpose chips are being developed for DL 

applications, traditional processors are implementing 

extended instructions to support such applications.  Notably, 

Intel’s Advanced Vector Instructions (AVX), broadcast 

instructions, Fused Multiply Accumulate (FMA) Packed 

Single Precision and streaming SIMD instructions have 

reduced the performance gaps between CPU and GPUs.  

These instructions reduce the need to transfer data between 

memory and registers during repeated computation of 
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multiply-add cycles used in many DL architectures.  Further 

developments in DL architectures will require redesign of 

processors and accelerators There are new types of DL 

structures available viz., Auto Resonance Network (ARN) 

[10], Generative Adversarial Networks (GAN) [11], 

Explainable Neural Networks [12], [13], that have been 

useful in various applications. As expected, it is necessary to 

identify and redesign hardware units that can accelerate the 

processing while using such networks. 

We discuss some of the issues relevant to design of 

hardware accelerators and processors for neural 

computation.  Section II gives a brief overview of the 

computational needs of contemporary neural networks.  

Some of the issues discussed include implementation of a 

new low precision number format, approximation of 

activation functions using piece-wise-linear (PWL) and 

second order interpolation (SOI), effect of precision on 

accuracy of result, multiplier, multi-operand addition, etc 

are presented in section III. Conclusion and references for 

further research are given at the end. 

II. Computations in Contemporary Deep 

Learning Networks 

Several Deep Neural Network structures like Recurrent 

Neural Networks (RNNs), Auto-encoders, Restricted 

Boltzmann Machines, Radial Basis Functions, word2vec, etc 

have contributed to the modern rush in DL but two structures 

that stand tall are Convolutional Neural Networks (CNNs) 

[14],[15] and Long Short-Term Memory (LSTM) [16].  

Several implementations of CNNs are presently available.  

They all have multiple Convolution layers, pooling layers, 

activation layers like Softmax and ReLU, Fully connected 

layers and decision layers at the output.  Combining them in 

a particular order to address data specific requirements gives 

them varying recognition and classification capabilities.  

LSTM networks are derived from RNN but have additional 

types of nodes, e.g. the central carousal, forget gates 

(remember gates), etc.  LSTM networks also use 

conventional activation functions like hyperbolic tan (tanh) 

and sigmoid (1/(1+e-x)).  CNNs have been useful in image 

classification while LSTM networks are useful in time series 

classification tasks.  There are several other types of networks 

like Generative Adversarial Networks (GAN) that are capable 

of not just understanding but synthesis of creative products 

like digital paintings and music, that are very much like the 

ones produced by practicing artists [11]. 

Several DL development platforms are available for 

development and deployment.  Few popular ones are Eclipse 

DL4J Java libraries, Theano [17] from Univ. of Montreal 

(2007), Caffe [18] from Univ. of California at Berkeley (Dec 

2013), TensorFlow  [19] from Google (Nov 2015), PyTorch 

by Facebook (Oct 2016), etc.  Most of these platforms 

implement low level code in C or C++ and provide Python 

API for easy implementation.  Most of them can run on CPU 

or use GPU for faster operations. Nvidia CUDA GPUs have 

contributed to the developments in many of these libraries.  

Recently pre-trained networks have been made available as 

web services.  In fact, some of the progress in AI has been 

due to availability of these web services.  AWS from Amazon, 

Microsoft Azure and Google Cloud Platform, Google 

Collaboration are significant. Most of the DNNs require 

millions of data records, images, audio patches, etc to be 

processed to train the networks.  This presents a critical 

bottleneck for development.  Therefore, availability of special 

purpose hardware is necessary for further development in this 

field.  Some of the key issues to be considered while 

designing accelerators for neural computing are discussed 

here below. 

A. Instruction set 

Instruction set of conventional processors implement 

procedure flow, while neural networks are best implemented 

as data-flow machines.  Current GPU implementations use 

Multiple Instruction Multiple Data (MIMD) or streamed 

SIMD (Single Instruction Multiple Data) where a continuous 

stream of data is presented to the data-flow machine with 

implicit or programmed computational chain.  Most of the 

operations in neural networks can be performed in parallel.  

Therefore, scalar, vector and tensor operations must be 

included as the part of the instructions.  Introduction of newer 

instructions like Intel AVX hint at the changes necessary to 

move forward.  DL and AI workloads require computational 

chains to be implemented without intervening memory calls 

to be computationally efficient.  Otherwise, the memory–

register data transfer overhead will dominate the 

computational time.  Streamed-data instructions persist over 

long data sets, performing the same operation over the entire 

data set.  This reduces the time required to perform fetch-

decode steps to be performed at every unit of data.  Similarly, 

systolic arrays and data flow architectures can be used to 

perform Fused Multiply Accumulate instructions. 

B. Training and Runtime Environments 

In a conventional processor, an algorithm works the same 

way during development time (debug) and run time 

environments.  However, the scenario is very different when 

handling DL systems:  They require computationally 

intensive training, which has no equivalence in conventional 

algorithms.  Training process actually builds the ‘program.’  

Training DL systems is a slow process as millions of weights 

have to be computed and adjusted to reduce the overall error 

in classification or recognition.  The run time environment of 

DL systems is largely feed forward and hence fast. 

Building processors with additional hardware to facilitate 

training will make the chip area-inefficient and hence 

expensive.  Tuning the hardware to runtime will deteriorate 

already slow training time.  Implementing a trained network 

has different set of constraints from those present during 

training.  We need to explore if there are any DL architectures 

where the training and run-time are not very different. 

Otherwise, the task would be to make the processor efficient 

during training as well as during runtime.  

C. On chip CPU count 

Conventional processors have a single CPU per chip. More 

modern processor chips may have Quad-cores or Octa-cores 

or may be Hexa-cores. These architectures are excellent for 

running multi-threaded applications.  But, the number of 

parallel computations possible in DNNs can run into millions.  

Some of the contemporary special purpose processors and 

GPUs have thousands of ‘compute cores.’ For example, 

NVidia Tesla V100 GPU [20] contains 84 streaming 
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multiprocessors, each with 64 32 bit floating point units, 64 

integer units, 8 tensor units, etc bringing the throughput to 

125 TFLOPS (Tera Floating Point Operations per Second).  

This is only a beginning of the ramp expected ahead.  With 

such a large number of compute cores on chip, many design 

challenges can be anticipated. 

D. Core Instructions 

We have come a long way in device density from the days 

when RISC/CISC classification was relevant to the area of 

chip.  MIMD and streaming SIMD designs rule the 

contemporary GPU designs.  As the processors design has to 

specifically address the computational load of DL 

implementations, attention has to be given to reusable 

partitions. Most of the DNNs contain vector/tensor operations 

that can be implemented as trees of compute cores.  Networks 

like CNN use specific operations like convolution and 

pooling, both of which can be implemented as a combined 

sum of product operation.  Similarly weighted sum of Multi-

Layer Perceptron (MLP) can also be implemented using 

multiply and accumulate units.  

On the other hand implementing non-linear activation 

functions can be a challenge. Using Taylor series expansion 

for such functions is computationally wasteful.  We may 

observe that neural computations can tolerate small errors in 

computation and hence use of low precision arithmetic is 

often sufficient.  Therefore, study of approximation methods 

for implementation of activation function may be conducted.  

Section III B presents implementation of piece-wise linear 

and second order approximations for implementing activation 

functions.  

Many neural networks require weights to be updated 

during training.  Weights are calculated as matrix or tensor 

equations, which are also implemented using multiply and 

accumulate units.  These calculations compute new values of 

weights that need to be transferred to corresponding units 

before starting the next round of computations.  This bulk 

transfer of data between computational units and memory 

needs to be addressed at the instruction level as it is a basic 

operation.  

Several other candidates for hardware implementation of 

instructions may exist, which need to be explored with 

reference to the type of network being implemented.  

E. Efficiency in Massively Parallel Operations 

Operations like multiplication can be performed serially or in 

parallel. Parallel implementations will run several times 

faster than serial implementations, but at the cost of silicon 

area.  Given the area of a parallel unit, it is possible to 

implement several serial units in the same area. As the 

number of parallel units increases, the number of serial units 

increases faster.  Therefore, a threshold/cross-over of area 

efficiency vs. speed of operation will exist.  When the number 

of parallel units is small, as in case of conventional processors, 

the parallel units have a performance advantage.  

However, .as the number of parallel units exceeds a threshold, 

throughput of combined serial units will exceed that of 

parallel units.  Such situations will be present in 

implementation of processors for DNNs.  A sample study is 

presented in section III C. 

F. Re-configurability 

Section II B, presented a case where the computational 

demands during training and runtime are different.  Does re-

configurability of hardware holds the key to training – 

runtime dilemma?  One of the strong applications of 

reconfigurable hardware is Software Defined Radio (SDR), 

where modulation type and parameters can be changed when 

requirements change.  For example, same SDR board may be 

used to transmit signals with different types of modulation 

schemes like AM, FM, FSK, etc depending on the end user 

requirements.  Similar situation exists in case of DL also.  The 

type of network to be used depends very strongly on the type 

of input, e.g., CNN for image classification and LSTM for 

audio or time series classification.  If the processor is 

designed with only one type of DNN in mind, it may become 

very inefficient to implement other type of DNN.  So there is 

a need to estimate common needs of DNNs and define a 

maximal but ‘functionally complete’ implementation that 

allows easy re-configurability.  It will be interesting to study 

how much of the DL hardware can be reconfigured with 

respect to functionality and reconfiguration overhead. 

G. Memory Bottleneck and Computation in Memory 

As the number of compute cores in DL hardware tends to be 

large, the need to transfer bulk data between heap memory, 

local memory and registers get complex.  The number of 

busses that can be realized on a chip will be a limiting factor.  

Small number of busses means larger memory latency.  Large 

number of busses will not only occupy space on chip but 

partition the chip area into isolated sections.  We have to 

make two observations here: (a) Linear Memory organization 

is inefficient for DNN implementations and (b) use of 

traditional bus oriented architecture becomes a bottleneck. 

Currently, transfer rates on NVidia Tesla V100 with a matrix 

type of organization achieves a transfer rate of 900GB/s to 82 

streaming multiprocessor units using 4096bit HBM2 memory 

interface. There is a need to rethink of memory design as well 

as transfer mode. A good hierarchical memory organization 

may use high speed serial transfer between heap and core but 

use multiple buses within complex compute cores.  Actual 

organization depends on the processor design, intended 

application, etc but much like the hierarchical memory (flash, 

heap, L1 cache, L2 cache, …), the data transfer also needs to 

be hierarchical.  Again, high speed serial transfers may be 

more feasible than parallel bus transfers. 

H. Numerical Precision and Accuracy of Computation 

Most of the ANNs will use limiting activation functions.  That 

means the output of a neuron is always bound to an 

asymptotic limit.  Successive transfer of data between nodes 

will encounter these limiting activation functions multiple 

times and the output will be limited to a small value.  

Multiplication or addition has very little effect on the output 

of a node once it reaches the asymptotic limit.  Note that the 

derivate of the activation functions approaches zero when the 

output is approaching asymptotic limits.  The derivative is 

significant only in a limited range of the number scale.  

Therefore, the range of input values where the output will 

significantly change is limited to a small range of values. This 

effect is generally called as the problem of vanishing or 

exploding gradient.  

Further, neural networks should produce useful output 
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even in presence of noisy environments or input. In fact noise 

tolerance is a hallmark of neural networks. That is why they 

are expected to produce correct results even when the applied 

input has no precedence.  These conditions imply that 

precision of input or of computation will have a small bearing 

on the decision taken by a neural network. The accuracy of 

digital systems comes at high cost of precision, which is not 

necessary to achieve correctness of output using neural 

computations.  Many of the modern DL processors use a low 

precision arithmetic to achieve speed.  For example, Intel uses 

a format called flexpoint [7] for AI applications.  We have 

been using a low precision number format for DL for some 

time now [22].  Section III A has some details on this format 

and justification for its use.   

I. Multi-Operand Instructions 

Most of the DNNs use sum of product computation to 

generate neuronal outputs. The number of inputs (synapses) 

to these nodes can be of the order of hundreds.  For example, 

first convolution layer in Alexnet [23] uses nodes with 363 

synapses, ConvNet uses 3072 synapses in first convolution 

layer as well as the pooling layer.  TrueNorth analog AI chip 

from IBM [9] supports 256 synapses per neuron. Each such 

computational node has to perform as many multiplications 

per neuron followed by an addition.  Therefore, performing 

two operand operations on such computation would be very 

inefficient in terms of throughput; most of the time would be 

spent moving the data between partial sum storage elements.  

Therefore, use of multi-operand operations would be 

preferable.  Systolic arrays could be used to implement 

successive multiplication and addition.  Modern instruction 

sets include operations like ‘Fused Multiply and Accumulate 

Single Precision’ to address this problem.  Streamed SIMD 

architecture may also be used to compute the sum of multiple 

products operation.  A multi-operand adder is presented in 

section III D.  

It is interesting to note that the number of synapses of a 

neuron in human brain is of the order of 100,000 and that in 

mice is about 45,000. While the current range of processors 

for DNNs has an amazing complexity, we are at least three to 

four orders of magnitude behind the natural intelligence.  This 

shows the complexity of processors to come. 

J. Explainable Neural Networks and other Networks 

One of the bottlenecks to improving the performance of deep 

neural networks is the ambiguity in explaining the decision 

the network took. Largely DNNs are seen as a black box 

because of the large number of inputs and synapses 

connecting to individual nodes in the network. Similar 

problems were also present in classical neural networks using 

gradient descent and back propagation.  This problem was 

highlighted by [24] as the inability to assign a state or node 

of a network to how and why a network took a specific 

decision.  More modern networks like CNN work on parts of 

the input and merge the components in successive layers of 

neurons.  However, the association is not recorded or 

remembered explicitly.  Therefore, it becomes difficult to 

express a causal relation between the input and output [25]. 

Newer DNNs will store such information about relations and 

causes as an associated part of the network.  This again is 

similar to the semantic net of the classical AI networks. Some 

networks like ARN address the issue of explainable DNNs 

better than others.  Fast implementation of tunable ARN 

nodes is discussed in our earlier publication [26].  

III. Hardware Implementations 

This section contains discussion on some of the experiments 

with implementation of some of the hardware modules 

required for various Deep Neural Network Architectures. 

A. Number Representation 

The accuracy and speed of computation in neural networks 

depend on the numerical representation.  The performance of 

a neural network is largely dependent on how the inputs, 

weights and output of a neuron are represented.  The output 

of ARN nodes is limited to a small range.  The input that 

produces output is also limited to a small range of numbers 

around resonance. Therefore, it is possible to translate the 

input range to a smaller range.  The spread of input around 

the resonance point is limited to plus or minus 1. Therefore, 

it was sufficient to use a 16 bit fixed point number with 12 

bits to represent the fractional part.  Figure 2 shows that using 

12 bits is enough to limit the accuracy of number to 3 

fractional digits after calculations. 

 
Figure 1. Number format 

 

 
Figure 2. Selection of 12 fractional bits to achieve 3-

fractional digit accuracy 

 

It is worth noting that the Silicon area required for 

implementing a design with 16-bit representation is 

considerably less as compared to 32-bit design.  Due to the 

noise tolerant nature of neural networks, some loss in 

precision is acceptable.  Therefore, use of 16-bit was 

preferred to any other higher bit width. The proposed 16-bit 

number format is shown in Figure 1. The reason behind 

choosing 12 bits for fraction is to get the accuracy up to 3 

fractional digits is illustrated in Figure 2. 

Recently, Intel has announced its numerical format called 

flexpoint, designed for deep learning systems [7], [21].  It is 

reported that, performance of a network with 16-bit flexpoint 

closely matches with that of 32-bit floating point. Most of the 

current research work on accelerators is focusing on the 

numerical format [27], [28] because the performance depends 
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on the speed of computation rather than precision and 

accuracy of calculation.  As the number of modules to be 

realized on the accelerators is large, saving in silicon area due 

to reduced precision gains importance. 

B. Activation Functions 

In Artificial Neural Networks (ANNs), an activation function 

is defined as the action potential required for firing of a 

neuron. The response of a neuron is non-linear function of the 

applied stimulus. The output of a neuron in ANN is calculated 

as a weighted sum of inputs followed by the activation 

function. Several types of activation functions are used in 

ANNs, viz., sigmoid, tanh, reLu and softmax, each with 

different capabilities.  The non-linear curves for these 

activation functions are shown in Figure 3.  

 
Figure 3. Activation functions in ANN 

 

Sigmoid is an activation function having an ‘S’ shaped curve 

as shown in Figure 3.  It is defined as 

 

 y =  
1

1+e−x  (1) 

 

Equation (1) involves an exponent, which may be expanded 

using Taylor series as  

 

 y =  
1

1+1−x+ 
x2

2!
− 

x3

3!
+  …

 (2) 

 

It can be seen from Equation (2) that, it is computationally 

expensive and hence direct implementation of this is 

inefficient.  To address this challenge we have used two 

approximation methods namely Piece Wise Linear (PWL) 

and Second Order Interpolation (SOI).  Implementing the 

sigmoid function using direct method and using 

approximation methods is discussed and compared in our 

earlier publication [20]. 

 

 
Figure 4. Approximation methods (a) PWL (b) SOI 

 

Consider the approximation curve shown in Figure 4(a), two 

points on the curve (x1, y1) and (x2, y2) are assumed to be 

known and they are stored in the look-up-table (LUT).  

Intermediate values are approximated by a straight line.  

Therefore, we can use a simple linear equation to calculate 

the sigmoid of any given value x as  

 

 𝑦 = 𝑚 (𝑥 − 𝑥1) +  𝑦1  (3) 

 

Where, m is the slope of the curve defined by; 

 

 𝑚 = (
𝑦2−𝑦1

𝑥2−𝑥1
) (4) 

 

The accuracy of this method varies depending on the distance 

between the known points.  We have experimented this with 

uniform and non-uniform distances.  The accuracy increases 

by decreasing the distance between two known points but it 

will also increase the size of LUT and hence more Silicon 

area is required.  To balance this trade-off, non-uniform 

distance is introduced between the points where the error is 

maximum. 

The accuracy can further be improved by Second Order 

Interpolation using three point approximation.  The second 

order curve as shown in Figure 4(b) is taken for this 

approximation.  In this method, three points (x1, y1), (x2, y2) 

and (x3,y3) are assumed to be known.  The second order 

coefficients a, b, c are calculated using the formula given in 

equations (5) to (7). 

 

 𝑎 =
((𝑥2−𝑥1)(𝑦3−𝑦1))−((𝑥3−𝑥1)(𝑦2−𝑦1))

(𝑥2−𝑥1)(𝑥3−𝑥1)(𝑥3−𝑥2)
 (5) 

 

 𝑏 =
(𝑦2−𝑦1)− 𝑎(𝑥2

2−𝑥1
2)

(𝑥2−𝑥1)
 (6) 

 

 𝑐 = 𝑦1 − 𝑎𝑥1
2 − 𝑏𝑥1 (7) 

 

When the new input is entered, it will be compared with the 

stored values from LUT to fetch the values of coefficients a, 

b and c.  The output is calculated using the equation (8). 

 

 𝑦 = (𝑎𝑥 + 𝑏)𝑥 + 𝑐 (8) 

 

 

The structure of LUT for both the methods is shown in Figure 

5. With non-uniform distance, the size of a look up table for 

PWL is 60 bytes and for SOI is 80 bytes.  Table 1 summarizes 

the computation complexity involved in the implementation 

of a sigmoid function using direct and the proposed 

approximation methods.  It can be noticed that, the number of 

operations (addition, multiplication and fetch) required for 

sigmoid function using approximation methods is very less 

compared to Taylor series expansion given in equation (2).  
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Figure 5. Structure of a look-up-table for (a) PWL, (b) SOI 

approximation methods 

 

Method Operations No. of 

clock 

cycles Look 

up 

Add Sub Mul Div 

Eq.(2) 0 6 6 65 10 N/A 

PWL 3 1 1 1 0 16 

SOI 3 2 0 2 0 28 

Table 1. Computational complexity of sigmoid function. 

 

It is also important to note here that, the gradient of sigmoid 

curve is significant only for few values of x.  It can be easily 

seen from the sigmoid curve that, for any values of x<-5, the 

output is 0 and for any values of x >5, the output is 1.  As the 

input values can be between -5 to 5 and the output value can 

be between 0 and 1, our number format shown in Figure 1 

supports this requirement and therefore, we have used this 

number format to represent input and output in all our 

implementations. 

The PWL method involves few numbers of operations as 

compared to SOI, therefore, it will require less clock cycles. 

However, with SOI it is possible to obtain greater accuracy 

than with PWL method.  There is a trade-off between speed 

and the area. The simulation result of sigmoid 

implementation using PWL and SOI method is shown in 

Figure 6 and Figure 7 respectively.  

 

 
Figure 6. Simulation result for sigmoid using PWL 

approximation 

 

 

Figure 7. Simulation result for sigmoid using SOI 

approximation 

 

A hyperbolic tangent (tanh) is another activation function 

used in neural networks.  It also has an S-shaped curve like a 

sigmoid function, but with the R between (-1, 1).  The 

equation for a tanh function is given in equation (9). 

 

 𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  (9) 

 

The concept of approximating a curve can be applied to tanh 

function also.  The error deviation of 0.43% with PWL and 

0.018% with SOI at non-uniform distance is noted.  The 

results of approximation are shown in Figure 8.  Other 

activation functions like reLu and softmax are quite straight 

forward and they can be directly implemented without much 

of a problem.  

 
Figure 8. Result of approximating tanh curve at non-

uniform distance using (a) PWL and (b) SOI 

C. Multiplier 

The workload handled by neural networks is very different 

than that of conventional processors.  As the neural networks 

deal with massively parallel operations, we need thousands of 

processor cores to perform the same task at a time.  To 

appreciate the design parameters for neural network 

processors, we need to understand various types of 

hierarchically organized, data driven deep learning neural 

network architectures [29], [30], [31].  

Multiplication and addition are the most frequently used 

operations in neural computations.  Among these, 

multiplication is considered as the most complicated 

operation as it takes several clock cycles to complete.  To 

speed-up the computation time required for multiplication, 

parallel multipliers were introduced with an additional 

overhead of complexity.  Considering Multi Layer 

Perceptron, there are about 10-20M multiplications required.  

Thousands of multipliers would be required to implement 

such large number of operations.  As the number of parallel 

multipliers increases, it would be inefficient to use parallel 

multipliers in massively parallel environment.  Multiplication 

is area, power and time consuming operation, therefore 

special care must be taken for the design of multiplier.  We 

have studied the performance of both serial and parallel 

multipliers in such massively parallel environment, result of 

which is shown in Figure 9.  As the number of operations 

cross 30, serial multiplier will perform better in terms of 

speed and Silicon area.  
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Figure 9. Performance comparison of Serial and Parallel 

multiplier in massively parallel environment. 

As the performance of serial multiplier is better than the 

parallel multiplier, we have considered serial multiplier for 

all our further implementations.  The implementation details 

of serial parallel are available in our earlier publication [31].  

It is noticed that, for N-bit multiplication serial multiplier will 

require N+1 clock cycles and the accuracy of up-to 3 

fractional digits is obtained with the 16-bit number format.  

Many researchers are working on the design of multipliers for 

neural network hardware [33], [34].  Lotric et al. have 

designed approximate multiplier for use in feed forward 

networks.  The exact multipliers require large resources and 

consume more power and time.  It is reported that, the exact 

multipliers can be replaced by approximate multipliers to 

increase the energy efficiency.   

D. Multi-Operand Adder 

Hardware implementation of neural network operations is 

inefficient on conventional processors.  When massively 

parallel operations of DNNs are implemented using 

conventional processors, they require large number of 

memory transfers that tend to clog the buses and consume a 

lot of power and computation time.  Most of the modern 

neural network implementations use Graphic Processor Units 

(GPUs) to speed-up the computation time.  A typical neuron 

in an ANN, will have N-inputs, which are multiplied by the 

synapse weight, followed by an adder and an activation 

function.  So to generalize, for N-input neuron, N-1 number 

of additions would be required.  As it is mentioned in the 

earlier sections neural networks are data-intensive and 

involve massively parallel operations on a huge amount of 

data.  Therefore, increase in the number of inputs will in-turn 

increase the number of operations.   

The traditional processor architectures, involve two-

operand instructions.  In order to speed-up the computation, 

it would be appropriate to increase the number of operands 

for each instruction.  The number of operands required for an 

operation will depend on the type of the neural network and 

the end application for which it is being used.  It is necessary 

to identify such operations and make a provision in the 

instruction for flexible number of operands.  For example, 

MNIST image recognition using ARN [35] has 49 inputs in 

the first layer and 16 inputs in the second layer.  Therefore, a 

16 and 49-operand adder would be required for that 

implementation.  Alexnet [23] has 363 inputs in the first layer, 

and therefore 363-operand adder will be required for 

application built using Alexnet.  Therefore, the number of 

operands in a network will vary depending on the requirement 

of the application.   

There are some important observations need to be noted in 

the design of multi-operand adder; (a) Number of bits 

required to represent sum and carry, (b) computation time and 

area optimization, (c) number of operands, (d) complexity of 

the implementation etc.  A 2-operand, N-bit adder will 

produce 1-bit carry and N-bit sum.  However, this will not 

hold good for multi-operand addition.  We need to look at, 

how the multi-operand addition will affect the sum and carry 

bits as compared to the 2-operand addition.  The following 

theorem will give the details on this. 

Theorem: An upper bound on value of the carry is 

numerically equal to the number of operands minus one, 

irrespective of the number of digits or the number system used; 

i.e., if there are N operands, the upper bound on the value of 

carry is N-1. 

For example, the upper bound on carry for 4-operand 

addition is 3, which can be represented using 2-bits in binary 

(112).  For 7-operand addition, carry is 6 (1102) and so on.  

This upper bound holds for all number systems and number 

of operands.  Some examples of N-operand addition are 

shown in Figure 10.  Formal proof of the theorem will be 

published elsewhere. 

 

 

Figure 10. An illustrative examples of multi-operand 

addition. 

The upper bound on the carry is given in Figure 10, N 

represents the number of operand and C represents the carry.  

Based on this theorem, a basic module of 4x4 adder designed.  

Further, this module can be used to design for any operand 

addition without much difficulty.  In our earlier publication 

we have presented the design of 16x16 adder using this 

module [36].   

  

Figure 11. 4-Operand, 4-bit adder block. 

 

Figure 11 shows basic working of a 4bit 4 operand adder 

which constitutes the basic building block for implementation 

of adders with more number of operands.  As illustrated in 

Figure 10, a look-up table for 1 bit 4 operand adder is built 

and stored in 4x3 LUT.  LSB of the LUT represents the 

column sum and other two bits represent carry to higher 

columns.  These units can be arranged in a daisy chain to add 

multiple operands.  One such implementation for 16 bit 16 

operand adder is shown in Figure 12.  Both of these adder 

blocks have been implemented in Xilinx verilog. 
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Figure 12. 16-Operand, 16-bit adder block. 

IV. Conclusion 

Hardware implementation of DNNs will pose multiple design 

challenges.  They are massively parallel and their 

implementation is best done with data-flow architectures 

rather than conventional program flow.  As the number of 

possible parallel computation is very large, serial execution 

would be extremely inefficient.  Many modifications to 

instruction set are being made to bring the performance gap 

between conventional processors and massively parallel 

GPUs used to implement DL structures.  The necessity to 

build special purpose hardware and challenges therein is 

discussed in section II.  We have implemented basic building 

blocks for Deep Neural Network architectures, details of 

which have been presented in this paper.  
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