
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 11 (2019) pp. 046-054

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 16 Dec, 2018; Accepted: 16 March, 2019; Publish: 17 April, 2019

Hardware Accelerators for Neural Processing

Shilpa Mayannavar1 and Uday Wali2

1 C-Quad Research, KLE Dr M S Sheshgiri College of Engineering & Technology,

Belagavi-590008, Karnataka, India

mayannavar.shilpa@gmail.com

2 Department of EEE, KLE Dr M S Sheshgiri College of Engineering & Technology,

Belagavi-590008, Karnataka, India

udaywali@gmail.com

Abstract: There has been a great change in the computing

environment after the introduction of deep learning systems in

every day applications. The requirements of these systems are

so vastly different from the conventional systems that a complete

revision of the processor design strategies is necessary.

Processors capable of streamed SIMD, MIMD, Matrix and

systolic arrays do offer some solutions. As many new neural

structures will be introduced over next years, new processor

architectures need to evolve. In spite of the variability of

Artificial Neural Network (ANN) structures, some feature will

be common among them. We have tried to implement the

hardware components required for most of the ANNs. This

paper highlights some of the key issues related to hardware

implementation of neural networks and suggests some possible

solutions. However, the arena remains very open for innovation.

Low precision arithmetic and approximation techniques

suitable for acceleration of computational load of neural

networks have been implemented and their results have been

presented. We also show that for a given ratio of area occupied

by serial multiplier to that of a parallel multiplier, a threshold

exists beyond which the serial multipliers have a distinct

performance advantage over parallel multipliers. Need for

multi-operand operations and methods to implement them have

been discussed.

Keywords: Artificial Intelligence, Artificial Neural Networks,

Deep Learning, Hardware Accelerators, Low Precision Arithmetic,

Neural Network Processor.

I. Introduction

Development of commercial applications using Deep

Learning (DL) has set a pace of technological advancements

that is unprecedented in history of computing. Artificial

Neural Networks (ANNs) used in DL, generally called Deep

Neural Networks (DNNs) process data in massively parallel

slow low precision streams in contrast to single (or few)

processor, linear memory, fast computation of high precision

arithmetic used by conventional computers. When ANNs are

implemented on conventional processors, data transfer over

limited bus bandwidth becomes a bottleneck. Data flow

structures with large number of compute cores would be more

suitable for ANN implementations. However, data sharing

among thousands of compute cores and their synchronization

poses challenges in computer architecture. The non-linear

activation functions that limit the computational output to a

small numeric range, precision and accuracy also need

attention. Therefore, DNN implementations present a

completely different computational environment which needs

to be addressed by new hardware architectures to achieve

better performance.

Neural computing demands availability of special purpose

processors with thousands of compute cores. To some extent,

this need has been met by use of Graphics Processing Units

(GPUs) [1], [2], [3], [4]. They have been used in variety of

applications including image processing, robotics, image

interpretation, natural language processing and in many other

intelligent use cases. Operations like scaling, rotation and

transformations frequently used in GPUs are also useful in

neural computations. Hardware capable of vector, matrix and

tensor representations of data can exploit massive parallelism

of these architectures and provide a method to speed up the

computations. However, several differences do exist: e.g.,

non-linear activation functions like sigmoid, hyperbolic

tangent (tanh), reLu and softmax are regularly required in

neural computations. Interconnections in neural network can

be more varied than in case of GPU operations. Clearly, there

are several features in neural computations that have no

equivalent in graphics processing. Many research

organizations including ARM [5], Imagination Technologies,

Google [6], Intel [7], Apple, Cadence Tensilica, Cambricon

[8], IBM [9] et al. are developing hardware to implement

neural architectures. These processors were designed to

address requirements of specific neural networks e.g., Google

TPU is best suited for TensorFlow implementations,

TrueNorth from IBM is suited for Multi Layer Perceptron

implementations, Cambricon AI chip used in Huawei’s Kirin-

970 mobile processors are suitable for vector and matrix

operations, etc.

While special purpose chips are being developed for DL

applications, traditional processors are implementing

extended instructions to support such applications. Notably,

Intel’s Advanced Vector Instructions (AVX), broadcast

instructions, Fused Multiply Accumulate (FMA) Packed

Single Precision and streaming SIMD instructions have

reduced the performance gaps between CPU and GPUs.

These instructions reduce the need to transfer data between

memory and registers during repeated computation of

Hardware Accelerators for Neural Processing

47

multiply-add cycles used in many DL architectures. Further

developments in DL architectures will require redesign of

processors and accelerators There are new types of DL

structures available viz., Auto Resonance Network (ARN)

[10], Generative Adversarial Networks (GAN) [11],

Explainable Neural Networks [12], [13], that have been

useful in various applications. As expected, it is necessary to

identify and redesign hardware units that can accelerate the

processing while using such networks.

We discuss some of the issues relevant to design of

hardware accelerators and processors for neural

computation. Section II gives a brief overview of the

computational needs of contemporary neural networks.

Some of the issues discussed include implementation of a

new low precision number format, approximation of

activation functions using piece-wise-linear (PWL) and

second order interpolation (SOI), effect of precision on

accuracy of result, multiplier, multi-operand addition, etc

are presented in section III. Conclusion and references for

further research are given at the end.

II. Computations in Contemporary Deep

Learning Networks

Several Deep Neural Network structures like Recurrent

Neural Networks (RNNs), Auto-encoders, Restricted

Boltzmann Machines, Radial Basis Functions, word2vec, etc

have contributed to the modern rush in DL but two structures

that stand tall are Convolutional Neural Networks (CNNs)

[14],[15] and Long Short-Term Memory (LSTM) [16].

Several implementations of CNNs are presently available.

They all have multiple Convolution layers, pooling layers,

activation layers like Softmax and ReLU, Fully connected

layers and decision layers at the output. Combining them in

a particular order to address data specific requirements gives

them varying recognition and classification capabilities.

LSTM networks are derived from RNN but have additional

types of nodes, e.g. the central carousal, forget gates

(remember gates), etc. LSTM networks also use

conventional activation functions like hyperbolic tan (tanh)

and sigmoid (1/(1+e-x)). CNNs have been useful in image

classification while LSTM networks are useful in time series

classification tasks. There are several other types of networks

like Generative Adversarial Networks (GAN) that are capable

of not just understanding but synthesis of creative products

like digital paintings and music, that are very much like the

ones produced by practicing artists [11].

Several DL development platforms are available for

development and deployment. Few popular ones are Eclipse

DL4J Java libraries, Theano [17] from Univ. of Montreal

(2007), Caffe [18] from Univ. of California at Berkeley (Dec

2013), TensorFlow [19] from Google (Nov 2015), PyTorch

by Facebook (Oct 2016), etc. Most of these platforms

implement low level code in C or C++ and provide Python

API for easy implementation. Most of them can run on CPU

or use GPU for faster operations. Nvidia CUDA GPUs have

contributed to the developments in many of these libraries.

Recently pre-trained networks have been made available as

web services. In fact, some of the progress in AI has been

due to availability of these web services. AWS from Amazon,

Microsoft Azure and Google Cloud Platform, Google

Collaboration are significant. Most of the DNNs require

millions of data records, images, audio patches, etc to be

processed to train the networks. This presents a critical

bottleneck for development. Therefore, availability of special

purpose hardware is necessary for further development in this

field. Some of the key issues to be considered while

designing accelerators for neural computing are discussed

here below.

A. Instruction set

Instruction set of conventional processors implement

procedure flow, while neural networks are best implemented

as data-flow machines. Current GPU implementations use

Multiple Instruction Multiple Data (MIMD) or streamed

SIMD (Single Instruction Multiple Data) where a continuous

stream of data is presented to the data-flow machine with

implicit or programmed computational chain. Most of the

operations in neural networks can be performed in parallel.

Therefore, scalar, vector and tensor operations must be

included as the part of the instructions. Introduction of newer

instructions like Intel AVX hint at the changes necessary to

move forward. DL and AI workloads require computational

chains to be implemented without intervening memory calls

to be computationally efficient. Otherwise, the memory–

register data transfer overhead will dominate the

computational time. Streamed-data instructions persist over

long data sets, performing the same operation over the entire

data set. This reduces the time required to perform fetch-

decode steps to be performed at every unit of data. Similarly,

systolic arrays and data flow architectures can be used to

perform Fused Multiply Accumulate instructions.

B. Training and Runtime Environments

In a conventional processor, an algorithm works the same

way during development time (debug) and run time

environments. However, the scenario is very different when

handling DL systems: They require computationally

intensive training, which has no equivalence in conventional

algorithms. Training process actually builds the ‘program.’

Training DL systems is a slow process as millions of weights

have to be computed and adjusted to reduce the overall error

in classification or recognition. The run time environment of

DL systems is largely feed forward and hence fast.

Building processors with additional hardware to facilitate

training will make the chip area-inefficient and hence

expensive. Tuning the hardware to runtime will deteriorate

already slow training time. Implementing a trained network

has different set of constraints from those present during

training. We need to explore if there are any DL architectures

where the training and run-time are not very different.

Otherwise, the task would be to make the processor efficient

during training as well as during runtime.

C. On chip CPU count

Conventional processors have a single CPU per chip. More

modern processor chips may have Quad-cores or Octa-cores

or may be Hexa-cores. These architectures are excellent for

running multi-threaded applications. But, the number of

parallel computations possible in DNNs can run into millions.

Some of the contemporary special purpose processors and

GPUs have thousands of ‘compute cores.’ For example,

NVidia Tesla V100 GPU [20] contains 84 streaming

Mayannavar and Wali

48

multiprocessors, each with 64 32 bit floating point units, 64

integer units, 8 tensor units, etc bringing the throughput to

125 TFLOPS (Tera Floating Point Operations per Second).

This is only a beginning of the ramp expected ahead. With

such a large number of compute cores on chip, many design

challenges can be anticipated.

D. Core Instructions

We have come a long way in device density from the days

when RISC/CISC classification was relevant to the area of

chip. MIMD and streaming SIMD designs rule the

contemporary GPU designs. As the processors design has to

specifically address the computational load of DL

implementations, attention has to be given to reusable

partitions. Most of the DNNs contain vector/tensor operations

that can be implemented as trees of compute cores. Networks

like CNN use specific operations like convolution and

pooling, both of which can be implemented as a combined

sum of product operation. Similarly weighted sum of Multi-

Layer Perceptron (MLP) can also be implemented using

multiply and accumulate units.

On the other hand implementing non-linear activation

functions can be a challenge. Using Taylor series expansion

for such functions is computationally wasteful. We may

observe that neural computations can tolerate small errors in

computation and hence use of low precision arithmetic is

often sufficient. Therefore, study of approximation methods

for implementation of activation function may be conducted.

Section III B presents implementation of piece-wise linear

and second order approximations for implementing activation

functions.

Many neural networks require weights to be updated

during training. Weights are calculated as matrix or tensor

equations, which are also implemented using multiply and

accumulate units. These calculations compute new values of

weights that need to be transferred to corresponding units

before starting the next round of computations. This bulk

transfer of data between computational units and memory

needs to be addressed at the instruction level as it is a basic

operation.

Several other candidates for hardware implementation of

instructions may exist, which need to be explored with

reference to the type of network being implemented.

E. Efficiency in Massively Parallel Operations

Operations like multiplication can be performed serially or in

parallel. Parallel implementations will run several times

faster than serial implementations, but at the cost of silicon

area. Given the area of a parallel unit, it is possible to

implement several serial units in the same area. As the

number of parallel units increases, the number of serial units

increases faster. Therefore, a threshold/cross-over of area

efficiency vs. speed of operation will exist. When the number

of parallel units is small, as in case of conventional processors,

the parallel units have a performance advantage.

However, .as the number of parallel units exceeds a threshold,

throughput of combined serial units will exceed that of

parallel units. Such situations will be present in

implementation of processors for DNNs. A sample study is

presented in section III C.

F. Re-configurability

Section II B, presented a case where the computational

demands during training and runtime are different. Does re-

configurability of hardware holds the key to training –

runtime dilemma? One of the strong applications of

reconfigurable hardware is Software Defined Radio (SDR),

where modulation type and parameters can be changed when

requirements change. For example, same SDR board may be

used to transmit signals with different types of modulation

schemes like AM, FM, FSK, etc depending on the end user

requirements. Similar situation exists in case of DL also. The

type of network to be used depends very strongly on the type

of input, e.g., CNN for image classification and LSTM for

audio or time series classification. If the processor is

designed with only one type of DNN in mind, it may become

very inefficient to implement other type of DNN. So there is

a need to estimate common needs of DNNs and define a

maximal but ‘functionally complete’ implementation that

allows easy re-configurability. It will be interesting to study

how much of the DL hardware can be reconfigured with

respect to functionality and reconfiguration overhead.

G. Memory Bottleneck and Computation in Memory

As the number of compute cores in DL hardware tends to be

large, the need to transfer bulk data between heap memory,

local memory and registers get complex. The number of

busses that can be realized on a chip will be a limiting factor.

Small number of busses means larger memory latency. Large

number of busses will not only occupy space on chip but

partition the chip area into isolated sections. We have to

make two observations here: (a) Linear Memory organization

is inefficient for DNN implementations and (b) use of

traditional bus oriented architecture becomes a bottleneck.

Currently, transfer rates on NVidia Tesla V100 with a matrix

type of organization achieves a transfer rate of 900GB/s to 82

streaming multiprocessor units using 4096bit HBM2 memory

interface. There is a need to rethink of memory design as well

as transfer mode. A good hierarchical memory organization

may use high speed serial transfer between heap and core but

use multiple buses within complex compute cores. Actual

organization depends on the processor design, intended

application, etc but much like the hierarchical memory (flash,

heap, L1 cache, L2 cache, …), the data transfer also needs to

be hierarchical. Again, high speed serial transfers may be

more feasible than parallel bus transfers.

H. Numerical Precision and Accuracy of Computation

Most of the ANNs will use limiting activation functions. That

means the output of a neuron is always bound to an

asymptotic limit. Successive transfer of data between nodes

will encounter these limiting activation functions multiple

times and the output will be limited to a small value.

Multiplication or addition has very little effect on the output

of a node once it reaches the asymptotic limit. Note that the

derivate of the activation functions approaches zero when the

output is approaching asymptotic limits. The derivative is

significant only in a limited range of the number scale.

Therefore, the range of input values where the output will

significantly change is limited to a small range of values. This

effect is generally called as the problem of vanishing or

exploding gradient.

Further, neural networks should produce useful output

Hardware Accelerators for Neural Processing

49

even in presence of noisy environments or input. In fact noise

tolerance is a hallmark of neural networks. That is why they

are expected to produce correct results even when the applied

input has no precedence. These conditions imply that

precision of input or of computation will have a small bearing

on the decision taken by a neural network. The accuracy of

digital systems comes at high cost of precision, which is not

necessary to achieve correctness of output using neural

computations. Many of the modern DL processors use a low

precision arithmetic to achieve speed. For example, Intel uses

a format called flexpoint [7] for AI applications. We have

been using a low precision number format for DL for some

time now [22]. Section III A has some details on this format

and justification for its use.

I. Multi-Operand Instructions

Most of the DNNs use sum of product computation to

generate neuronal outputs. The number of inputs (synapses)

to these nodes can be of the order of hundreds. For example,

first convolution layer in Alexnet [23] uses nodes with 363

synapses, ConvNet uses 3072 synapses in first convolution

layer as well as the pooling layer. TrueNorth analog AI chip

from IBM [9] supports 256 synapses per neuron. Each such

computational node has to perform as many multiplications

per neuron followed by an addition. Therefore, performing

two operand operations on such computation would be very

inefficient in terms of throughput; most of the time would be

spent moving the data between partial sum storage elements.

Therefore, use of multi-operand operations would be

preferable. Systolic arrays could be used to implement

successive multiplication and addition. Modern instruction

sets include operations like ‘Fused Multiply and Accumulate

Single Precision’ to address this problem. Streamed SIMD

architecture may also be used to compute the sum of multiple

products operation. A multi-operand adder is presented in

section III D.

It is interesting to note that the number of synapses of a

neuron in human brain is of the order of 100,000 and that in

mice is about 45,000. While the current range of processors

for DNNs has an amazing complexity, we are at least three to

four orders of magnitude behind the natural intelligence. This

shows the complexity of processors to come.

J. Explainable Neural Networks and other Networks

One of the bottlenecks to improving the performance of deep

neural networks is the ambiguity in explaining the decision

the network took. Largely DNNs are seen as a black box

because of the large number of inputs and synapses

connecting to individual nodes in the network. Similar

problems were also present in classical neural networks using

gradient descent and back propagation. This problem was

highlighted by [24] as the inability to assign a state or node

of a network to how and why a network took a specific

decision. More modern networks like CNN work on parts of

the input and merge the components in successive layers of

neurons. However, the association is not recorded or

remembered explicitly. Therefore, it becomes difficult to

express a causal relation between the input and output [25].

Newer DNNs will store such information about relations and

causes as an associated part of the network. This again is

similar to the semantic net of the classical AI networks. Some

networks like ARN address the issue of explainable DNNs

better than others. Fast implementation of tunable ARN

nodes is discussed in our earlier publication [26].

III. Hardware Implementations

This section contains discussion on some of the experiments

with implementation of some of the hardware modules

required for various Deep Neural Network Architectures.

A. Number Representation

The accuracy and speed of computation in neural networks

depend on the numerical representation. The performance of

a neural network is largely dependent on how the inputs,

weights and output of a neuron are represented. The output

of ARN nodes is limited to a small range. The input that

produces output is also limited to a small range of numbers

around resonance. Therefore, it is possible to translate the

input range to a smaller range. The spread of input around

the resonance point is limited to plus or minus 1. Therefore,

it was sufficient to use a 16 bit fixed point number with 12

bits to represent the fractional part. Figure 2 shows that using

12 bits is enough to limit the accuracy of number to 3

fractional digits after calculations.

Figure 1. Number format

Figure 2. Selection of 12 fractional bits to achieve 3-

fractional digit accuracy

It is worth noting that the Silicon area required for

implementing a design with 16-bit representation is

considerably less as compared to 32-bit design. Due to the

noise tolerant nature of neural networks, some loss in

precision is acceptable. Therefore, use of 16-bit was

preferred to any other higher bit width. The proposed 16-bit

number format is shown in Figure 1. The reason behind

choosing 12 bits for fraction is to get the accuracy up to 3

fractional digits is illustrated in Figure 2.

Recently, Intel has announced its numerical format called

flexpoint, designed for deep learning systems [7], [21]. It is

reported that, performance of a network with 16-bit flexpoint

closely matches with that of 32-bit floating point. Most of the

current research work on accelerators is focusing on the

numerical format [27], [28] because the performance depends

Mayannavar and Wali

50

on the speed of computation rather than precision and

accuracy of calculation. As the number of modules to be

realized on the accelerators is large, saving in silicon area due

to reduced precision gains importance.

B. Activation Functions

In Artificial Neural Networks (ANNs), an activation function

is defined as the action potential required for firing of a

neuron. The response of a neuron is non-linear function of the

applied stimulus. The output of a neuron in ANN is calculated

as a weighted sum of inputs followed by the activation

function. Several types of activation functions are used in

ANNs, viz., sigmoid, tanh, reLu and softmax, each with

different capabilities. The non-linear curves for these

activation functions are shown in Figure 3.

Figure 3. Activation functions in ANN

Sigmoid is an activation function having an ‘S’ shaped curve

as shown in Figure 3. It is defined as

 y =
1

1+e−x (1)

Equation (1) involves an exponent, which may be expanded

using Taylor series as

 y =
1

1+1−x+
x2

2!
−

x3

3!
+ …

 (2)

It can be seen from Equation (2) that, it is computationally

expensive and hence direct implementation of this is

inefficient. To address this challenge we have used two

approximation methods namely Piece Wise Linear (PWL)

and Second Order Interpolation (SOI). Implementing the

sigmoid function using direct method and using

approximation methods is discussed and compared in our

earlier publication [20].

Figure 4. Approximation methods (a) PWL (b) SOI

Consider the approximation curve shown in Figure 4(a), two

points on the curve (x1, y1) and (x2, y2) are assumed to be

known and they are stored in the look-up-table (LUT).

Intermediate values are approximated by a straight line.

Therefore, we can use a simple linear equation to calculate

the sigmoid of any given value x as

 𝑦 = 𝑚 (𝑥 − 𝑥1) + 𝑦1 (3)

Where, m is the slope of the curve defined by;

 𝑚 = (
𝑦2−𝑦1

𝑥2−𝑥1
) (4)

The accuracy of this method varies depending on the distance

between the known points. We have experimented this with

uniform and non-uniform distances. The accuracy increases

by decreasing the distance between two known points but it

will also increase the size of LUT and hence more Silicon

area is required. To balance this trade-off, non-uniform

distance is introduced between the points where the error is

maximum.

The accuracy can further be improved by Second Order

Interpolation using three point approximation. The second

order curve as shown in Figure 4(b) is taken for this

approximation. In this method, three points (x1, y1), (x2, y2)

and (x3,y3) are assumed to be known. The second order

coefficients a, b, c are calculated using the formula given in

equations (5) to (7).

 𝑎 =
((𝑥2−𝑥1)(𝑦3−𝑦1))−((𝑥3−𝑥1)(𝑦2−𝑦1))

(𝑥2−𝑥1)(𝑥3−𝑥1)(𝑥3−𝑥2)
 (5)

 𝑏 =
(𝑦2−𝑦1)− 𝑎(𝑥2

2−𝑥1
2)

(𝑥2−𝑥1)
 (6)

 𝑐 = 𝑦1 − 𝑎𝑥1
2 − 𝑏𝑥1 (7)

When the new input is entered, it will be compared with the

stored values from LUT to fetch the values of coefficients a,

b and c. The output is calculated using the equation (8).

 𝑦 = (𝑎𝑥 + 𝑏)𝑥 + 𝑐 (8)

The structure of LUT for both the methods is shown in Figure

5. With non-uniform distance, the size of a look up table for

PWL is 60 bytes and for SOI is 80 bytes. Table 1 summarizes

the computation complexity involved in the implementation

of a sigmoid function using direct and the proposed

approximation methods. It can be noticed that, the number of

operations (addition, multiplication and fetch) required for

sigmoid function using approximation methods is very less

compared to Taylor series expansion given in equation (2).

Hardware Accelerators for Neural Processing

51

Figure 5. Structure of a look-up-table for (a) PWL, (b) SOI

approximation methods

Method Operations No. of

clock

cycles Look

up

Add Sub Mul Div

Eq.(2) 0 6 6 65 10 N/A

PWL 3 1 1 1 0 16

SOI 3 2 0 2 0 28

Table 1. Computational complexity of sigmoid function.

It is also important to note here that, the gradient of sigmoid

curve is significant only for few values of x. It can be easily

seen from the sigmoid curve that, for any values of x<-5, the

output is 0 and for any values of x >5, the output is 1. As the

input values can be between -5 to 5 and the output value can

be between 0 and 1, our number format shown in Figure 1

supports this requirement and therefore, we have used this

number format to represent input and output in all our

implementations.

The PWL method involves few numbers of operations as

compared to SOI, therefore, it will require less clock cycles.

However, with SOI it is possible to obtain greater accuracy

than with PWL method. There is a trade-off between speed

and the area. The simulation result of sigmoid

implementation using PWL and SOI method is shown in

Figure 6 and Figure 7 respectively.

Figure 6. Simulation result for sigmoid using PWL

approximation

Figure 7. Simulation result for sigmoid using SOI

approximation

A hyperbolic tangent (tanh) is another activation function

used in neural networks. It also has an S-shaped curve like a

sigmoid function, but with the R between (-1, 1). The

equation for a tanh function is given in equation (9).

 𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (9)

The concept of approximating a curve can be applied to tanh

function also. The error deviation of 0.43% with PWL and

0.018% with SOI at non-uniform distance is noted. The

results of approximation are shown in Figure 8. Other

activation functions like reLu and softmax are quite straight

forward and they can be directly implemented without much

of a problem.

Figure 8. Result of approximating tanh curve at non-

uniform distance using (a) PWL and (b) SOI

C. Multiplier

The workload handled by neural networks is very different

than that of conventional processors. As the neural networks

deal with massively parallel operations, we need thousands of

processor cores to perform the same task at a time. To

appreciate the design parameters for neural network

processors, we need to understand various types of

hierarchically organized, data driven deep learning neural

network architectures [29], [30], [31].

Multiplication and addition are the most frequently used

operations in neural computations. Among these,

multiplication is considered as the most complicated

operation as it takes several clock cycles to complete. To

speed-up the computation time required for multiplication,

parallel multipliers were introduced with an additional

overhead of complexity. Considering Multi Layer

Perceptron, there are about 10-20M multiplications required.

Thousands of multipliers would be required to implement

such large number of operations. As the number of parallel

multipliers increases, it would be inefficient to use parallel

multipliers in massively parallel environment. Multiplication

is area, power and time consuming operation, therefore

special care must be taken for the design of multiplier. We

have studied the performance of both serial and parallel

multipliers in such massively parallel environment, result of

which is shown in Figure 9. As the number of operations

cross 30, serial multiplier will perform better in terms of

speed and Silicon area.

Mayannavar and Wali

52

Figure 9. Performance comparison of Serial and Parallel

multiplier in massively parallel environment.

As the performance of serial multiplier is better than the

parallel multiplier, we have considered serial multiplier for

all our further implementations. The implementation details

of serial parallel are available in our earlier publication [31].

It is noticed that, for N-bit multiplication serial multiplier will

require N+1 clock cycles and the accuracy of up-to 3

fractional digits is obtained with the 16-bit number format.

Many researchers are working on the design of multipliers for

neural network hardware [33], [34]. Lotric et al. have

designed approximate multiplier for use in feed forward

networks. The exact multipliers require large resources and

consume more power and time. It is reported that, the exact

multipliers can be replaced by approximate multipliers to

increase the energy efficiency.

D. Multi-Operand Adder

Hardware implementation of neural network operations is

inefficient on conventional processors. When massively

parallel operations of DNNs are implemented using

conventional processors, they require large number of

memory transfers that tend to clog the buses and consume a

lot of power and computation time. Most of the modern

neural network implementations use Graphic Processor Units

(GPUs) to speed-up the computation time. A typical neuron

in an ANN, will have N-inputs, which are multiplied by the

synapse weight, followed by an adder and an activation

function. So to generalize, for N-input neuron, N-1 number

of additions would be required. As it is mentioned in the

earlier sections neural networks are data-intensive and

involve massively parallel operations on a huge amount of

data. Therefore, increase in the number of inputs will in-turn

increase the number of operations.

The traditional processor architectures, involve two-

operand instructions. In order to speed-up the computation,

it would be appropriate to increase the number of operands

for each instruction. The number of operands required for an

operation will depend on the type of the neural network and

the end application for which it is being used. It is necessary

to identify such operations and make a provision in the

instruction for flexible number of operands. For example,

MNIST image recognition using ARN [35] has 49 inputs in

the first layer and 16 inputs in the second layer. Therefore, a

16 and 49-operand adder would be required for that

implementation. Alexnet [23] has 363 inputs in the first layer,

and therefore 363-operand adder will be required for

application built using Alexnet. Therefore, the number of

operands in a network will vary depending on the requirement

of the application.

There are some important observations need to be noted in

the design of multi-operand adder; (a) Number of bits

required to represent sum and carry, (b) computation time and

area optimization, (c) number of operands, (d) complexity of

the implementation etc. A 2-operand, N-bit adder will

produce 1-bit carry and N-bit sum. However, this will not

hold good for multi-operand addition. We need to look at,

how the multi-operand addition will affect the sum and carry

bits as compared to the 2-operand addition. The following

theorem will give the details on this.

Theorem: An upper bound on value of the carry is

numerically equal to the number of operands minus one,

irrespective of the number of digits or the number system used;

i.e., if there are N operands, the upper bound on the value of

carry is N-1.

For example, the upper bound on carry for 4-operand

addition is 3, which can be represented using 2-bits in binary

(112). For 7-operand addition, carry is 6 (1102) and so on.

This upper bound holds for all number systems and number

of operands. Some examples of N-operand addition are

shown in Figure 10. Formal proof of the theorem will be

published elsewhere.

Figure 10. An illustrative examples of multi-operand

addition.

The upper bound on the carry is given in Figure 10, N

represents the number of operand and C represents the carry.

Based on this theorem, a basic module of 4x4 adder designed.

Further, this module can be used to design for any operand

addition without much difficulty. In our earlier publication

we have presented the design of 16x16 adder using this

module [36].

Figure 11. 4-Operand, 4-bit adder block.

Figure 11 shows basic working of a 4bit 4 operand adder

which constitutes the basic building block for implementation

of adders with more number of operands. As illustrated in

Figure 10, a look-up table for 1 bit 4 operand adder is built

and stored in 4x3 LUT. LSB of the LUT represents the

column sum and other two bits represent carry to higher

columns. These units can be arranged in a daisy chain to add

multiple operands. One such implementation for 16 bit 16

operand adder is shown in Figure 12. Both of these adder

blocks have been implemented in Xilinx verilog.

Hardware Accelerators for Neural Processing

53

Figure 12. 16-Operand, 16-bit adder block.

IV. Conclusion

Hardware implementation of DNNs will pose multiple design

challenges. They are massively parallel and their

implementation is best done with data-flow architectures

rather than conventional program flow. As the number of

possible parallel computation is very large, serial execution

would be extremely inefficient. Many modifications to

instruction set are being made to bring the performance gap

between conventional processors and massively parallel

GPUs used to implement DL structures. The necessity to

build special purpose hardware and challenges therein is

discussed in section II. We have implemented basic building

blocks for Deep Neural Network architectures, details of

which have been presented in this paper.

Acknowledgment

The authors would like to thank C-Quad Research, Belagavi,

Karnataka, India for all the support provided.

References

[1] John Nickolls, William J Dally, “The GPU computing

era.”, IEEE Micro, 30(2), 56-69, DOI

10.1109/MM.2010.41 (March-April 2010)

[2] Shuai Che, Jiayuan Meng, Jeremy W Sheaffer, Kevin

Skadron, “A performance study of general purpose

applications on graphics processors.”, Journal of

Parallel and Distributed Computing, 68(10), 1370-

1380 DOI (Oct. 2008).

[3] Jose R Herrero, “Special issue: GPU computing.”,

Concurrency and Computation: Practice and

Experience, 23(7), 667-668 (2011)

[4] Stephen W Keckler, William J Dally, Brucek Khailany,

Michael Garland, David Glasco, “GPUs and the future

of parallel computing.”, IEEE Micro, 31(5), 7-17, (Oct

2011)

[5] Robert Elliott and Mark O’Connor, “ Optimizing

Machine Learning Workloads on Power-efficient

Devices.”, White paper, ARM, (2018).
[6] Norman P. Jouppi, Cliff Young, Nishant Patil, David

Patterson, Gaurav Agarwal, Raminder Bajwa et.al. “In-

Datacenter performance analysis of a Tensor Processing

Unit.”, In 44th International Symposium on Computer

Architecture (ISCA), pp. 1-12, ACM, Toronto, ON,

Canada (June 2017)
[7] Urs Koster, Tristan Webb, Xin Wang, Marcel Nassar,

Arjun Bansal, William Constable, et.al, “Flexpoint: An

adaptive numerical format for efficient training of Deep

Neural Networks.”, arXiv:1711.02213v2 [cs.LG],

Cornell University, (Dec. 2017).

[8] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo,

Yuan Xie, et.al, “Cambricon: An Instruction Set

Architecture for neural networks.” ACM/IEEE 43rd

Annual International Symposium on Computer

Architecture, pp. 393-405, (2016).
[9] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo

Alvarez-Icaza, John Arthur, Paul Merolla et.al.,

“TrueNorth: Design and tool flow of a 65mW 1 million

neuron programmable neurosynaptic chip.”, IEEE

Transactions on Computer Aided Design of Intergrated

Circuits and Systems, 34(10), 1537-1557, DOI:

10.1109/ TCAD.2015.2474396, (Oct. 2015).

[10] V M Aparanji, Uday Wali and R Aparna, “A Novel

Neural Network Structure for Motion Control in

Joints.”, In 1st International Conference on Electronics,

Communication, Computer Technologies and

Optimization Techniques, Mysore, pp. 227-232, IEEE

Xplore Digital Library, (2016).

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Hendi Mirza,

Bing Xu, Davide Warde-Farley et.al, “Generative

Adversarial Nets.” arXiv:1406.2661vl [stat.ML] (10

June 2014).

[12] Joel Vaughan, Agus Sudjianto, Erind Brahimi, Jie Chen

and Vijayan N Nair, “Explainable Neural Networks

based on Additive Index Models”, arXiv:1806.01933v1

[stat.ML] Cornell University Library, (June 2018).

[13] Zebin Yang, Aijun Zhang and Agus Sudjianto,

“Enhancing explainability of Neural Networks through

architecture constraints”, arXiv:1901.03838v1 [stat.ML]

Cornell University Library, (Jan 2019).

[14] Kunihiko Fukushima, “Neocognitron: A Self-

organizing Neural Network Model for a Mechanism of

Pattern Recognition unaffected by Shift in Position”,

Biological Cybernetics 36, 193-202, Springer Verlag

(1980).

[15] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey

Hinton, Kiyohiro Shikane, Kevin J Lang, “Phoneme

Recognition using Time-Delay Neural Networks”,

IEEE Trans. On Acoustics, Speech and Signal

Processing. 37(3) (Mar. 1989)

[16] Sepp Hochreiter, Jurgen Schmidhuber, “Long Short-

Term Memory”, Neural Computation 9(8):1735-1780.

(1997).

[17] James Bergstra, Olivier Breuleux, Frédéric Bastien,

Pascal Lamblin, Razvan Pascanu, Guillaume

Desjardins, Joseph P. Turian, David Warde-Farley,

Yoshua Bengio, “Theano: A CPU and GPU Math

Compiler in Python.”, Proceedings of the 9th Python in

Science Conf. (SCIPY) (2010).

[18] Yangqing Jia, Evan Shelhammer, et al, “Caffe,

convolutional architecture for fast feature embedding.”,

arXiv: 1408.5093v1 [cs.CV], Cornell University, (Jun.

2014).

[19] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene

brevdo, Zhifeng Chen, Craig Citro et.al, “Tensor Flow:

https://doi.org/10.1109/MM.2010.41
https://dblp.org/db/journals/concurrency/concurrency23.html#HerreroQS11
https://dblp.org/db/journals/concurrency/concurrency23.html#HerreroQS11
https://www.semanticscholar.org/author/Olivier-Breuleux/1967465
https://www.semanticscholar.org/author/Fr%C3%A9d%C3%A9ric-Bastien/3227028
https://www.semanticscholar.org/author/Pascal-Lamblin/3087941
https://www.semanticscholar.org/author/Razvan-Pascanu/1996134
https://www.semanticscholar.org/author/Guillaume-Desjardins/2755582
https://www.semanticscholar.org/author/Guillaume-Desjardins/2755582
https://www.semanticscholar.org/author/Joseph-P.-Turian/34999784
https://www.semanticscholar.org/author/David-Warde-Farley/1923596
https://www.semanticscholar.org/author/Yoshua-Bengio/1751762

Mayannavar and Wali

54

Large-Scale Machine Learning on Heterogeneous

Distributed Systems.”, arXiv:1603.04467v2 [cs.DC],

Cornell University, (Mar. 2016)

[20] NVidia, “NVidia Tesla V100 GPU Architecture.”,

white paper, NVidia (Aug. 2017).

[21] Andres Rodriguez, Eden S, Etay Meiri, Evarist

Fomenko, Young Jin K, Haihao S, Barukh Z, “Lower

numerical precision Deep Learning inference and

training”, White paper, Intel AI Academy (Jan. 2018)

[22] Shilpa Mayannavar and Uday Wali, “ Hardware

Implementation of an Activation Function for Neural

Network Processor”, In International Conference on

Electrical, Electronics, Computers, Communication,

Mechanical and Computing, Vaniyambadi, Tamilnadu,

IEEE Xplore Digital Library (In press), (Jan. 2018).

[23] Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton,

“ImageNet Classification with Deep Convolutional

Neural networks”, In Advances in Neural Information

Processing Systems 25, pp. 1097-1105, (2012).

[24] D. Gunning, “Explainable Artificial Intelligence (XAI)”

Defense Advanced Research Projects Agency,

DARPA/I20 (DARPA, 2017).

[25] Von der Malsburg, “The What and Why of Binding:

The Modeler’s Perspective” Neuron, 24, 95–104,

Copyright ©1999 by Cell Press (Sep. 1999).

[26] Shilpa Mayannavar and Uday Wali, “ Fast

Implementation of Tunable ARN nodes ” , In 18th

International Conference on Intelligent System Design

and Applications (ISDA-2018), Vellore, Tamilnadu,

Springer Verlag (In press), (Dec. 2018).

[27] Parker Hill, Babak Zamirai, Shhengshuo Lu, Yu-Wei

Chao, Michael Laurenzano, Meharzad Samadi Marios

Papaefthymiou, Scott Mahlke, Thomas Wenisch, Jia

Deng, Lingjia Tang, Jason Mars, “Rethinking

Numerical Representations for Deep Neural Networks”,

arXiv:1808.02513v1 [cs.LG], Cornell Digital Library.

(Aug. 2018).

[28] Marc Ortiz, Adrian Cristal, Eduard Ayguada and Marc

Casa, “ Low-Precision floating-point schemes for

Neural Network training ” , arXiv:1804.05267v1

[CS.lg] (April 2018).

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre

Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, Andrew Rabinovich

“Going deeper with convolutions”, arXiv:1409.4842v1

[cs.CV], Cornell University (Sep. 2014).

[30] Min Lin, Qiang Chen, Shuicheng Yan, “Network in

Network”, arXiv:1312.4400v3 [cs.NE], Cornell

university, (Mar. 2014).

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,

“Deep Residual Learning for Image Recognition”,

arXiv:1512.03385v1 [cs.CV], Cornell University. (Dec.

2015).

[32] Shilpa Mayannavar and Uday Wali, “Performance

Comparison of Serial and Parallel Multipliers in

Massively Parallel Environment”, In 3rd International

Conference on Electronics, Communication, Computer

Technologies and Optimization Techniques, Mysore,

IEEE Xplore Digital Library (In press), (Dec. 2018).

[33] Uros Lotric, Patricio Bulic, “Applicability of

approximate multipliers in hardware neural networks”,

Neurocomputing Journal Elsevier, 96(1), 57-65 (Nov.

2012).

[34] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina,

Zdenek Vasicek, Kaushik Roy, “Design of Power-

Efficient Approximate Multipliers for Approximate

Artificial Neural Networks”, In International

Conference on Computer-Aided Design, Austin, TX,

USA, IEEE/ACM DOI:

http://dx.doi.org/10.1145/2966986.2967021

(November 2016).

[35] Shilpa Mayannavar and Uday Wali, “A Noise Tolerant

Auto Resonance Network for Image Recognition”, In

4th International Conference on Information,

Communication and Computing Technology, Delhi,

Springer Verlag, (May 2019).

[36] Shilpa Mayannavar and Uday Wali, “ Design of

Hardware Accelerator for Artificial Neural Networks

using Multi-Operand Adder ” , In 4th International

Conference on Information, Communication and

Computing Technology, Delhi, Springer Verlag, (May

2019).

Author Biographies

Shilpa Mayannavar is a Research Scholar at C-Quad
Research, Belagavi, Karnataka, India. She has obtained

Bachelor of Engineering in Electronics and

Communication Engg. (2012) and Master of Technology
in VLSI Design and Embedded System (2014) from

Visvesvaraya Technological University (VTU), Belagavi.

Her research interests are Processor design, Artificial

Intelligence and Neural Networks.

Uday Wali is a Professor in Dept. of EEE at KLE Dr M

S Sheshgiri College of Engineering. & Technology,

Belagavi, Karnataka India. He has obtained Bachelor of
Engineering in Electrical and Electronics Engg. from

Karnataka University Dharwad (1981) and Ph.D from IIT

Kharagpur (1986). He is a CEO of C-Quad Computers,
Desur IT Park, Belagavi. His research areas of interest

are Artificial Intelligence, Neural Networks, Cognitive

Radio, Processor Design and etc.

