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Abstract: The Group Decision Making (GDM) is a problem 

that gives a synthetic choice from various assessments of some 

evaluators. It is the complexity of the problem that is the 

difference among the qualitative evaluations of evaluators. 

Apparently, this depends on many factors as well as the 

credibility of each evaluator. The final synthetic decision to make 

must ensure accuracy and contain all opinions from all 

evaluators. In this paper, we have proposed a new computational 

algorithm for assessments using the comparative linguistic 

expressions that use hedge algebras. Under this approach, we can 

easily calculate the semantic value of language terms. The 

proposed algorithm also ensures the logical and simple rigor of 

execution. We have applied the proposed algorithm on a specific 

application that is taking the group decision-making from the 

reviewers to choose the highest rated article to award the author. 

The calculation results showed the correctness and efficiency of 

the algorithm. 

 
Keywords: group decision-making, comparatively linguistic 

expression, hedge algebra, semantic value of the linguistic. 

I. Introduction 

In recent years, the group decision problem has been widely 

researched for its application in many fields such as 

economics, society, science. The group decision problem can 

be expressed as follows: A group of m experts evaluate and 

evaluates n objects according to k criteria and then, based on 

evaluations, uses a determining method to select the most 

suitable object. Problems can become complex for two 

common reasons. Firstly, a clear assessment (such as scoring) 

is not always easy due to uncertainty in the expert's comments. 

Secondly, conventional experts rarely achieve a consensus in 

the assessment, so compromises must be made to achieve the 

most consistent results based on a number of determining 

criteria. 

For the first problem, through solving simple problems such 

as experts’ evaluation based the scores on a specific scorecard 

(for example, from 1 to 100), more research have been done 

on the change direction of this restriction appropriate with 

human’s thinking. For example, this allows experts to evaluate 

in terms of natural language (in a given set of elements or 

more broadly, any familiar natural words can be used). 

Moreover, in difficult cases, experts can use a set of words to 

evaluate, for example, these are the “good” or “quite good” 

words [1], or uses conjugated words to form a new phrase. 

Tang [2] introduced a linguistic model that manages the 

linguistic explanation constructed by the logical join (∧, ∨,→
,…) and the fuzzy relation, using the comparative form to 

evaluate each pair of objects, for example, “A is much better 

than B” and so on. This development is indispensable in 

practice, but obviously makes the problem more complex as it 

is associated with computation with the computing with word 

(CWW). 

In additions, there are often solutions to interact directly 

with the experts, changing the assessment to the final, after 

some rounds of compromise, the highest consensus can be 

based on some given consent measurement [3], [4]. 

In [5], the authors have introduced a new concept of 

comparison, which is a range comparison. Based on that, we 

proposed algorithm of Group Decision Making with 

testimonials by comparing each pair. However, the 

comparison with the existing algorithms has not been studied. 

When solving a decision problem with linguistic information, 

the steps that are commonly used are, 

1) Choose the set of linguistic words to be used for the 

evaluation and the method for processing this set 

2) Select the method for aggregating the comments 

3) Choose the best option by an implementation phase 

and exploitation phase. 

In this paper, we focus on the first issue of choosing the 

linguistic term sets (LTS) for the evaluation and method of 

processing this term set. There are a number of key methods 

to choose, 

• Select the given LTS, this way is simple but limited 

experts’ opinion. 

• Allows selection of either the given LTS or the LTS-

generated expression (usually in the grammatical form of 

a context-free language) [4]. 

• Allows selection of a  hesitant fuzzy linguistic term set 

with its possible distribution. For example, evaluating a 

football player in a season is “very good/30%”, 

“good/50%”, “average/20%”. 
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The methods are relatively diverse and have obtained good 

results. However, the problem arises when converting from 

natural language to digital, so that it can be processed on a 

computer. Most current methods use the order index of the 

term in LTS as the basis for the conversion, whether it is direct 

or indirect. For example, using set 2 (2-tuple) [3], despite the 

addition of a variable parameter to calculate the deviation 

from the exact position of the index, is the approximation of 

the ordinal number. This allows for relatively simple 

processing and gives good results in cases which the scale is 

distributed fairly evenly in the specified domain. However, 

this is not always obvious in reality. For example, on a scale 

of 10 at a school, the point 1 or 2 is quite far from the rest. 

Hedge algebra has been proposed by the group of authors in 

[14] which is an algebraic approach on semantic domain of 

linguistic terms, allowing to represent and calculate on 

problems that are stated by linguistic models. 

Studies on hedge algebras are extended and applied, such 

as automatic classification problem [16], [17], [18]. In [19], 

the authors also point out its superiority of hedge algebra in 

real-world representation through fuzzy systems, which is the 

premise for the application of HA in many different fields. 

In this paper, the approach based on hedge algebra is used. 

This approach partly relieves the above weakness due to the 

rather strict math structure set on the item's defined domain 

and the flexibility of determining the range between the scores 

which are set by the elements of the hedge algebras on this 

identified domain. Specifically, it is our focuses on the 1st step 

in the three-step process mentioned above that is our new 

approach. The remaining steps can now use known methods 

[4]. In addition, we particularly study the evaluation of 

comparative language expressions, a more complex form of 

evaluation which uses only single language terms. 

II. Some basic concepts 

Decision-making is a frequent process for human activities in 

many areas. The complexity of decision-making encompasses 

different perspectives. To achieve this, an effective solution is 

needed from the knowledge provided by a team of experts. 

The decision made has to ensure accuracy and contain 

comments from all members of the group. GDM is often quite 

complex. This complexity derives from the qualitative 

evaluation of the experts, but not from uncertain one as well 

as their different opinions. 

There has been a lot of research developed based GDM 

related issues. One of them is GDM from experts when 

evaluating subjects from a comparative point of view using 

natural language words. A model of computation should be 

constructed from a set of expert opinions given in the form of 

comparison expressions in natural language to obtain the most 

common alternative. Through a qualitative point of view using 

the language, after entering, we can quantify to choose the best 

option with the highest rating. 

A. GDM problem with expert opinion by comparative 

linguistic expressions 

Suppose there are 𝑚  experts 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}, (𝑚 ≥ 2) 

that evaluate 𝑛 objects or solutions 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, (𝑛 ≥
2)  and are expressed by the natural language comparison 

between an object 𝑎𝑖  to 𝑎𝑗  [4]. For example, “𝑎𝑖  is a little 

more than 𝑎𝑗”, “𝑎𝑖 a little more than 𝑎𝑗”, “compared 𝑎𝑖 to 𝑎𝑗 

in very small to moderate range”. Each expert 𝑒𝑘 will give a 

matrix 𝑃𝑘 that notes the result of the comparison for 𝑛(𝑛 +
1)/2 objects. 

𝑃𝑘 =

[
 
 
 
 
𝑝11

𝑘 𝑝12
𝑘 … 𝑝1𝑛

𝑘

𝑝21
𝑘 … … 𝑝2𝑛

𝑘

… … 𝑝𝑖𝑗
𝑘 …

𝑝𝑛1
𝑘 𝑝𝑛2

𝑘 … 𝑝𝑛𝑛
𝑘 ]

 
 
 
 

;  𝑖, 𝑗 = 1. . 𝑛; 𝑘 = 1. .𝑚  (1) 

 

Each evaluation 𝑝𝑖𝑗
𝑘  represents the degree of appreciation of 

the “more satisfied” relationship between the alternative 𝑎𝑖 

versus 𝑎𝑗  according to the expert 𝑒𝑘 . The problem is to 

synthesize, or aggregate these ideas to some extension to 

arrange the given object (s). Therefore, we can choose the best 

evaluation options. 

Figure 1. Overview of the group decision model 

 

In Figure 1, the process of collecting, processing, and 

decision-making options in the group decision problem is 

shown. In the above schema, it can be seen that it is necessary 

to perform the following two major phases for GDM: 

• Aggregation phase: Collect expert’s opinions (evaluation 

matrices 𝑃𝑘; Convert comparison expression in languages 

to the representation by language intervals for 

computational models; Incorporate evaluations from 

experts 𝑒𝑘. 

• Exploitation phase: Calculate the degree of evaluation for 

each alternative by the experts 𝑒𝑘; Sort, choose the option 

with the best alternative. 

B. Overview of hedge algebra 

Hedge algebra (HA) is a new approach  to the set of natural 

linguistic terms. Unlike the fuzzy set theory, which extends 

the classic set of concepts, the hedge algebra is derived from 

the construction of a hedge algebraic structure on the set of 

elements of a linguistic variable. This algebraic structure is 

based on the inherent natural linguistic order of the set of 

linguistic terms. For example, with the linguistic variable “age” 

we can get a set of terms whose value of that variable is AGE 

= {“very young”, “young”, ... “middle aged”, “quite old”, 

“old”, “very old” ...}, in which in natural semantics, there is 

always an order “very young” < “young” <…< “middle aged” 

< “quite old” < “old” < “very old” … If we consider the two 

words “young” and “old” as 2 generating elements and the 

highlight words that act on them are “very”, “quite” … Then 

we have the new elements which are “very old”, “quite old”. 

This can be considered the result of unary operator between 

the hedge “very” and the element “old”. This unary operator 
can be repeated several times. For example, if we continue to 

act, we get “very very old” or “very old”. We then have an 

algebraic structure on the domain of the linguistic variable, 

defined by the set of 4-tuple) 𝐴𝑋 = (𝑋, 𝐺, 𝐻,). 

Definition 1. [14]. Hedge Algebra is denoted by the 𝐴𝑋 =
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(𝑋, 𝐺,𝐻, ) which is the set of 4-tuple, where: 

• 𝑋 the domain of the linguistic variable, 

• 𝐺 is the set of generating elements and constant, 

• 𝐻 is set of hedges which unary operators act the elements 

of 𝑋, 

• “” is the semantically induced relation on 𝑋.  

 

Suppose that in 𝐺  there are elements of constants 0, 1, W 

whose meaning is the smallest element, the largest element, 

and the neutral element in 𝑋. We call each linguistic value 

𝑥𝑋 a term in hedge algebra. 

It is always assumed that the hedges in 𝐻 are sequential 

operators. It means ( ∀ℎ ∈ 𝐻, ℎ: 𝑋 → 𝑋) , (∀𝑥 ∈ 𝑋) {ℎ𝑥 ≤
𝑥 𝑜𝑟 ℎ𝑥 ≥ 𝑥} . The two hedges ℎ, 𝑘 ∈ 𝐻  called reverse if 

(∀𝑥 ∈ 𝑋){ℎ𝑥 ≤ 𝑥 if and not if 𝑘𝑥 ≥ 𝑥} and they are called 

compatible if (∀𝑥 ∈ 𝑋){ℎ𝑥 ≤ 𝑥 if and not if 𝑘𝑥 ≤ 𝑥}. 
We can denote ℎ ≥ 𝑘 if ℎ, 𝑘 are compatible (∀𝑥 ∈ 𝑇) {ℎ𝑥 ≤
𝑘𝑥 ≤ 𝑥 or ℎ𝑥 ≥ 𝑘𝑥 ≥ 𝑥}. 

In addition, the set of 𝐻 can also be partitioned into two sets 

𝐻+  and 𝐻−  where the hedges in the set 𝐻+  or 𝐻−  are 

compatible, each element in 𝐻+ is reverse to any elements in 

𝐻− and vice versa. 

Suppose that in the set of 𝐻+  there is the element 𝑉 

(implicitly 𝑉𝑒𝑟𝑦) and in the set of 𝐻− there is the element 𝐿 

(implicitly 𝐿𝑖𝑡𝑡𝑙𝑒 ) which is the largest element, then the 

generating element 𝑐 ∈ 𝐺 is positive if 𝑐 ≤ 𝑉𝑐 (denoted as 𝑐+) 

and it is positive if 𝑐 ≥ 𝑉𝑐 (called 𝑐−) (or 𝑐 ∈ 𝐺 is positive if 

𝑐 ≥ 𝐿𝑐 and positive if 𝑐 ≤ 𝐿𝑐). 

The hedge ℎ  is positive (or negative) to one hedge 𝑘 

if  (∀x ∈ 𝑋) {ℎ𝑘𝑥 ≤ 𝑘𝑥 ≤ 𝑥 𝑜𝑟 ℎ𝑘𝑥 ≥ 𝑘𝑥 ≥ 𝑥} (𝑜𝑟 (∀𝑥 ∈
𝑋){𝑘𝑥 ≤ ℎ𝑘𝑥 ≤ 𝑥 𝑜𝑟 𝑘𝑥 ≥ ℎ𝑘𝑥 ≥ 𝑥}). 

𝑇 is generated from 𝐺 by the hedges in 𝐻. Therefore, each 

element of T will have the form of representation  𝑥 =
ℎ𝑛ℎ𝑛−1 … ℎ1𝑐, 𝑐 ∈ 𝐺. 

If the set 𝑋  and 𝐻  are linear sequential sets, then 𝐴𝑋 =
(𝑋, 𝐺,𝐻, )  is the linear HA. Moreover, usually in 

applications, the value domain of a linguistic variable consists 

of elements that are generated from two symmetric generating 

elements (such as “young” vs “old”, “far” vs “near”, “tall” vs 

“short”. Therefore, in this paper, hedge algebra means that the 

linear hedge algebra which has two symmetry generating 

elements, denoted as 𝑐− and 𝑐+. Thus, 𝐺 is the set which has 

the order 𝐺 = {0 < 𝑐− < 𝑊 < 𝑐+ < 1}. 
When impacting the hedge ℎ𝐻  on the term x  X, the 

element ℎ𝑥  is obtained. For every 𝑥X, the notation 𝐻(𝑥) is 

the set of all terms 𝑢𝑋 that are generated from x by applying 

the hedges in 𝐻 𝑎𝑛𝑑 𝑢 = ℎ𝑛 …ℎ1𝑥, where ℎ𝑛 … ℎ1𝐻, n is 

the length of u, denoted as l(u). The set H consists of positive 

hedges 𝐻+  and the negative one 𝐻−. Positive hedges increase 

the semantics of a term which it affects, and negative hedges 

decrease the semantics of the element. In this paper, we limit 

the study of the two hedges, the corresponding denoted V ∈
𝐻+ and L ∈ 𝐻−(V-Very, L-Little). To represent the positive, 

the negative of a hedge to a term x, we have the Sign function. 

If the hedge h is positive to x then Sign (hx) = 1; otherwise, 

Sign (hx) = - 1. 

To solve real problems using the theory of fuzzy set, a fuzzy 

concept must be quantified through membership functions. In 

HA, linguistic values can also be quantified. The difference is 

that due to the properties of the HA, this quantification 

preserves the orderly relations that exist between the 

categories and allows to retain the semantics of the terms and 

the result of the integration while performing some 

transformations. This is almost impossible for the use of 

membership functions based on Zadeh. The quantification of 

terms of HA is carried out through the concept of blurring of 

the linguistic values. 

The set of terms derived from x  by the action of the hedges 

will represent the fuzziness of x, denoted by H(x), which 

denotes the fuzziness of x. The size of the set H(x) is the 

measure of the fuzziness of x. We can construct the fuzzy 

measure function fm as a mapping from X to [0,1], mapping 

the set H (x) to fm (x), satisfying some properties as axioms. 

Next, we construct the intervals (x) of length fm(x) and 

range in the segment [0,1] (which is the normalized semantic 

value of X) in the corresponding order with the order of x. 

Relying on the characters of the HA, for all sets of xi with a 

given length k, we have a partition of the segment [0,1] into 

the fuzzy spaces (xi). Next, in each fuzzy interval (xi) we 

can choose a point that represents both the linguistic values xi, 

called the semantic quantifier value -(xi), in a defined 

formula through a recursive calculation, derived from given 

parameters of HA. 

These are parameters fm(c-), fm(c+), μ(hj), hjH, where 

μ(hj) is the fuzzy measurement of hj. Moreover, according to 

the properties of HA, it is easy to see the semantic quantitative 

value (x) of the element x is the common endpoint of the two 

fuzzy ranges (Lx) and (Vx). This value divides the fuzzy 

distance (x) by the ratio : if Sign(Vx)=1, or : if 

Sign(Vx)=-1, where ,  are respectively the fuzzy 

measurement μ(L) and μ(V). 

The important character of these fuzzy ranges is that they 

are orderly arranged and with elements of the same length, 

they form a partition on the specified domain of linguistic 

variables. Since creating a partition, any element that is the 

value of a linguistic variable must belong to one of these fuzzy 

ranges. In addition, if further consideration is made, the fuzzy 

distance of the term k may be further partitioned by fuzzy 

distances of length k+1 (with the same root, shown in Figure 

2). Therefore, when finishing the constructing of the HA 

structure, we consider having a complete LTS set. In fact, of 

course, there is no infinite number of words of this HA, but 

we are usually limited to word of length k<4, then we always 

have a good approximation to any word that is the value of 

linguistic variables. In other words, a certain element of any 

expert uses the attribute of an object, for example, it can 

always be approximated by an element of HA with a given 

proximity. 

For example, we consider HA 𝐴𝑋 = (𝑋, 𝐺, 𝐻, ≤)  with 

𝐻− = {𝑅, 𝐿}  and 𝐻+ = {𝑉, 𝐸} . A segment of the fuzzy 

distance system associated with X is shown in Figure 2. We 

can see {(𝑉𝑦): ℎ𝐻} =
{3(𝐸𝑉𝑦),3(𝑉𝑉𝑦),3(𝑅𝑉𝑦),3(𝐿𝑉𝑦)}  constitutes a 

partition of level three of the fuzzy ranges 2(𝑉𝑦) at level 2.  

The value of (𝑉𝑦) is the end of the two fuzzy ranges of 

level 3 3(𝑉𝑉𝑦) và 3(𝑅𝑉𝑦), and (𝑦) is the tip of the fuzzy 

interval of level 3 3(𝐿𝑉𝑦)  and 3(𝐸𝑉𝑦)  and of the two 

fuzzy ranges of level 2 2(𝑉𝑦) and 2(𝑅𝑦). 
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Figure 2. Fuzzy range 

 

According to the above properties, we have a recursive 

definition of the sign function as follows: 

 

Definition 2. [14]. The function 𝑠𝑔𝑛: 𝑋 → {−1, 0, 1} 
Where 𝑘, ℎ ∈ 𝐻, 𝑐 ∈ 𝐺, 𝑢 ∈ 𝑋: 

• 𝑠𝑔𝑛(𝑐+) = +1 and 𝑠𝑔𝑛(𝑐−) = −1 

• {ℎ ∈ 𝐻+|𝑠𝑔𝑛(ℎ) = +1} and {ℎ ∈ 𝐻−|𝑠𝑔𝑛(ℎ) = −1} 

• 𝑠𝑔𝑛(ℎ𝑐+) = +𝑠𝑔𝑛(𝑐+)  if ℎ𝑐+ ≥ 𝑐+  or 𝑠𝑔𝑛(ℎ𝑐−) =
+𝑠𝑔𝑛(𝑐−)  if ℎ𝑐− ≤ 𝑐−  and 𝑠𝑔𝑛(ℎ𝑐+) = −𝑠𝑔𝑛(𝑐+)  if 

ℎ𝑐+ ≤ 𝑐+  or 𝑠𝑔𝑛(ℎ𝑐−) = −𝑠𝑔𝑛(𝑐−)  if ℎ𝑐− ≥ 𝑐− . Or 

𝑠𝑔𝑛(ℎ𝑐) = 𝑠𝑔𝑛(ℎ)𝑠𝑔𝑛(𝑐). 

• 𝑠𝑔𝑛(𝑘ℎ𝑢) = +𝑠𝑔𝑛(ℎ𝑢) if 𝑘 is positive if ℎ (𝑠𝑔𝑛(𝑘, ℎ) =
+1 ) and 𝑠𝑔𝑛(𝑘ℎ𝑢) = −𝑠𝑔𝑛(ℎ𝑢)  if 𝑘  is positive if ℎ 

(𝑠𝑔𝑛(𝑘, ℎ) = −1). 

• 𝑠𝑔𝑛(𝑘ℎ𝑢) = 0 if 𝑘ℎ𝑢 = ℎ𝑢. 

 

Proposition 1. [14]: 𝑥 ∈ 𝑋, 𝑥 = ℎ𝑛ℎ𝑛−1 … ℎ1𝑐, ℎ𝑗 ∈ 𝐻, 𝑐 ∈

𝐺. Then: 

𝑠𝑔𝑛(𝑥) = 𝑠𝑔𝑛(ℎ𝑛, ℎ𝑛−1)… 𝑠𝑔𝑛(ℎ2, ℎ1)𝑠𝑔𝑛(ℎ1)𝑠𝑔𝑛(𝑐) 
(𝑠𝑔𝑛(ℎ𝑥) = +1) ⇒ (ℎ𝑥 ≥ 𝑥)  and (𝑠𝑔𝑛(ℎ𝑥) = −1) ⇒
(ℎ𝑥 ≤ 𝑥) 

The sign function 𝑠𝑔𝑛  is used to determine the impact 

dimension if it increases or decreases the semantic value of a 

hedge to a linguistic value. 

An algebraic structure 𝐴𝑋 = (𝑋, 𝐺, 𝐻, )  with H is 

partitioned into 𝐻+ and 𝐻− inverse hedges are called a hedge 

algebra if it satisfies the following axiomatic: 

1. Each hedge is either positive or negative for any other, 

including itself. 

2. If the two concepts u and v are independent, i.e. 𝑢 ∉
𝐻(𝑣)  and 𝑣 ∉ 𝐻(𝑢) , then (∀𝑥 ∈ 𝐻(𝑢)) {𝑥 ∉ 𝐻(𝑣)} . 

Moreover, if 𝑢 and 𝑣 cannot be compatible the any 𝑥 ∈
𝐻(𝑢) will not be compatible if 𝑦 ∈ 𝐻(𝑣). (𝐻(𝑢) is the 

set of values generated by the impact of the hedges H 

on 𝑢). 

3. If 𝑢 ≠ ℎ𝑢 then 𝑢 ∉ 𝐻(ℎ𝑢) and if ℎ ≠ 𝑘 and ℎ𝑢 < 𝑘𝑢 

then ℎ’ℎ𝑢 ≤ 𝑘’𝑘𝑢, with every hedge ℎ, 𝑘, ℎ’ 𝑎𝑛𝑑 𝑘’. In 

additions, ℎ𝑢 ≠ 𝑘𝑢 where hu and kuare independent. 

4. If 𝑢 ∉ 𝐻(𝑣)  and 𝑢 ≤ 𝑣  (or 𝑢 ≥ 𝑣 ) then 𝑢 ≤  𝑣  (or 

𝑢 ≥ ℎ𝑣) to every hedge ℎ. 

 

In terms of the hedge algebra 𝐴𝑋, there are just two generating 

elements: negative, positive and a neutral element 𝑤 between 

two generating elements and ℎ𝑤 = 𝑤 , with any ℎ ∈ 𝐻. An 

element 𝑣  is called the inverse element of the element  𝑢  if 

there exists a representation of 𝑢  represented as 𝑢 =
ℎ𝑛ℎ𝑛−1 … ℎ1𝑐 , 𝑤 ≠ 𝑐 ∉ 𝐺 , where 𝑣 = ℎ𝑛ℎ𝑛−1 …ℎ1𝑐′ , with 

𝑤 ≠ 𝑐′ ∉ 𝐺  and 𝑐’ ≠ 𝑐  (in other words: two generating 

elements of the hedge algebra are called contradictory if they 

are represented by the same sequence of hedges but their 

generating element is different, one is positive and one is 

negative). 

Particularly, the opposite part of 𝑤  is defined as 𝑤 . The 

opposite element of 𝑢  is denoted by −𝑢  with an index if 

necessary. In general, an element can have many opposing 

elements. 

If each element of 𝑋 has only one opposing element, then 

𝐴𝑋 is called a symmetric hedge algebra. 

The following theorem demonstrates the semantic ordering of 

the linguistic elements in the hedge algebra. 

 

Theorem 1. [14]. Let the set 𝐻− and 𝐻+ be the linear ordering 

sets of hedge algebra 𝐴𝑋 = (𝑋, 𝐺, 𝐻, ). Then we have the 

following assertions: 

For each 𝑥 ∈ 𝑋, 𝐻(𝑥) is a linear sequential set. 

If 𝑋 is derived from 𝐺 by hedges and 𝐺 is a linear order, 𝑋 is 

also a linear order. Furthermore, if 𝑢 < 𝑣 , and 𝑢 , 𝑣  are 

independent of each other, i.e. 𝑢 ∉ 𝐻(𝑣) and 𝑣 ∉ 𝐻(𝑢), then 

𝐻(𝑢) ≤ 𝐻(𝑣). 

 

Theorem 2. [14]. A hedge algebra 𝐴𝑋 is symmetric if any 𝑢, 

𝑢 is a stopping point if and only if −𝑢 is also a stop. 

The above theorem demonstrates that the hedge algebra is 

symmetric, though only based on the natural properties of the 

concept of language, it has properties which are very 

important and sufficient to build and develop a logical basis 

for the approximate reasoning. Obviously, it would be a non-

classical logic. Moreover, it can also be seen that 𝐺  is the 

symmetrical hedge algebra of 𝐴𝑋 and satisfies the properties 

of algebra for 3-valued logic. For that reason it is possible to 

view each symmetric syllabus as an algebraic base for a logic 

of linguistic values. The next theorem deals the relationship 

with the domain [0,1]. 

 

Theorem 3. [14]. If the set of 𝐻+  and 𝐻−  are linearly 

arranged, there exists an isomorphic φ from the symmetric 

hedge algebra 𝐴𝑋 = (𝑋, 𝐺, 𝐻, −,∪,∩,⇒, )  into the multi-

valued logic structure on the [0, 1]  such that: 

1. Assure order relations 

2. 𝜑(𝑢 ∪ 𝑣) = 𝑚𝑎𝑥{𝜑(𝑢), 𝜑(𝑢 ∪ 𝑣)} =
𝑚𝑖𝑛{𝜑(𝑢), 𝜑(𝑣)}. 

3. 𝜑(𝑢 ⇒ 𝑣) = 𝑚𝑎𝑥{1 − 𝜑 (𝑢), 𝜑(𝑣)}  and 𝜑(−𝑢) =
1 − 𝜑(𝑢). 

C. Measuring functions on hedge algebra 

According to Theorem 3, there exists an isomorphic 𝜑 

between an extension symmetrical hedge algebras and a multi-

valued logical structure based on the domain [0, 1] . This 

allows us to set up a measuring function on the hedge algebra 

to convert a value of the symmetric extended hedge algebra 

(the class of hedge algebra interested in this subject) into a real 

value in the domain [0, 1] . To construct the measuring 

function, we assume that the basis ℎ𝑥  can be compared. If 

they do not match, we consider it synonymous and there is 

only one representative in the hedge algebra. This assumption 

turns the hedge algebra into a linear sequential set. 

 

Definition 3. [14]. Measuring function on hedge algebra 
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Suppose the symmetrical extended hedge algebras 𝒜𝒯 =
(𝑇, 𝐺, 𝐶,𝐻, ≤), 𝑓: 𝑇 →  [0, 1] is a measuring function on 𝑇 if 

it meets the demand: 

1. ∀𝑢 ∈ 𝑇: 𝑓(𝑢) ∈ [0, 1], 𝑓(𝑐+) = 1, 𝑓(𝑐−) = 0 ; where: 

𝑐+, 𝑐− ∈ 𝐺 , are positive and negative generating 

elements. 

2. ∀𝑢, 𝑣 ∈ 𝑇, if 𝑢 < 𝑣 then 𝑓(𝑢) < 𝑓(𝑣). 

 

Definition 4. [14]. Reverse function of the measuring function  

Let a hedge algebra 𝐴𝑋 = (𝑋, 𝐺, 𝐻, ) , 𝑓  is a measuring 

function on 𝑋 , 𝑓−1: [0, 1] → 𝑋  is a reverse function of the 

measuring function 𝑓 if it satisfies as follows: 

∀𝑎 ∈ [0, 1], 𝑓−1(𝑎) ∈ 𝑋  where |𝑓(𝑓−1(𝑎)) − 𝑎| ≤ |(𝑓(𝑥) −
𝑎|, ∀𝑥 ∈ 𝑋.  

Based on the above definitions, we have the following 

theorem: 

 

Theorem 4. [14]. Let the symmetrical extended hedge algebra 

𝒜𝒯 = (𝑇, 𝐺, 𝐶, 𝐻, ≤), 𝑓 is a measuring function on 𝑇, 𝑓−1 is 

the inverse of the measuring function 𝑓, we have: 

1. ∀𝑢 ∈ 𝑇, 𝑓−1(𝑓(𝑢))  =  𝑢 

2. ∀𝑎, 𝑏 ∈ [0, 1], if 𝑎 ≤ 𝑏 then 𝑓−1(𝑎) ≤ 𝑓−1(𝑏) 

Each symmetrical hedge algebra can define the measuring 

function and its inverse one because of the coexistence 

between the hedge algebras and the domain [0, 1]. Assuming 

that the hedges in 𝐻 are the same, it makes the definition of 

the function easier. 

 

Definition 5. [14]. Given a hedge algebra 𝐴𝑋 = (𝑋, 𝐺, 𝐻, ). 

The function 𝑓𝑚: 𝑋 → [0, 1] called the fuzzy measurement of 

the elements in 𝑋 if: 

1. 𝑓𝑚(𝑐−) + 𝑓𝑚(𝑐+) = 1 and ∑ 𝑓𝑚(ℎ𝑢) = 𝑓𝑚(𝑢)ℎ∈𝐻 , 

where ∀𝑢 ∈ 𝑋              (2) 

2. 𝑓𝑚(𝑢) = 0  where ∀𝑢 , 𝐻(𝑢) = {𝑢} , 𝑓𝑚(0) =
𝑓𝑚(𝑊) = 𝑓𝑚(1) = 0           (3) 

3. ∀𝑢, 𝑣 ∈ 𝑋, ℎ ∈ 𝐻,
𝑓𝑚(ℎ𝑢)

𝑓𝑚(𝑢)
=

𝑓𝑚(ℎ𝑣)

𝑓𝑚(𝑣)
      (4) 

 

This rate is independent on 𝑢, 𝑣, but represents for the fuzzy 

measurement of the hedge ℎ, denoted by 𝜇(ℎ). 

Where, the condition 1 express the completeness of the 

generating elements and the hedges for the semantic 

representation of the real domain for the variables. Condition 

2 demonstrates the clarity of the terms and conditions 3 can be 

accepted because we have accepted the assumption that the 

hedges are context-independent, so when applying a hedge ℎ 

to elements, relatively affected effects in changing the 

semantics of those terms are the same. 

The properties of the fuzzy measurement of the elements 

and hedges are shown in the following proposition: 

 

Proposition 2. [14]. Let 𝑓𝑚  be the function of the fuzzy 

measurement on 𝑋. With 𝑢 ∈ 𝑋, 𝑢 = ℎ𝑛ℎ𝑛−1 … ℎ1𝑐, ℎ𝑗 ∈ 𝐻, 

𝑐 ∈ 𝐺. We have: 

1. 𝑓𝑚(ℎ𝑢) = 𝜇(ℎ)𝑓𝑚(𝑢)          (5) 

2. ∑ 𝑓𝑚(ℎ𝑖𝑐) = 𝑓𝑚(𝑐)−𝑞<𝑖<𝑝,𝑖≠0        (6) 

3. ∑ 𝑓𝑚(ℎ𝑖𝑢) = 𝑓𝑚(𝑢)−𝑞<𝑖<𝑝,𝑖≠0        (7) 

4. 𝑓𝑚(𝑢) = 𝑓𝑚(ℎ𝑛ℎ𝑛−1 … ℎ1𝑐) =
𝜇(ℎ𝑛)𝜇(ℎ𝑛−1)… 𝜇(ℎ1)𝑓𝑚(𝑐)        (8) 

5. ∑ 𝜇(ℎ𝑖)
−𝑞
𝑖=−1 = 𝛼 and ∑ 𝜇(ℎ𝑖)

𝑝
𝑖=1 = 𝛽, where ,  > 0 

and  +  = 1              (9) 

 

Normally, the semantics of elements are purely qualitative. 

However, in many applications, it is essential to have the 

quantitative value of these elements for computation and 

processing. According to the approach of fuzzy sets, the 

quantification of fuzzy concepts is done through 

defuzzification. For the hedge algebras, the quantitative value 

of the elements is defined based on the semantic order 

structure of the value domain of the linguistic variables, 

namely the fuzziness measurement of the elements and hedges. 

With a defined set of fuzzy parameters, quantitative 

semantic values are recursively defined by Semantically 

Quantifying Mapping (SQM) 𝒗 as follows: 

 

Definition 6. [14]. Function of Semantically Quantifying 

Mapping 𝑣: 𝑋 → [0, 1] 
1. 𝑣(𝑊) = 𝜃 = 𝑓𝑚(𝑐−)           (10) 

2. 𝑣(𝑐−) = 𝜃 − 𝛼𝑓𝑚(𝑐−) = 𝛽𝑓𝑚(𝑐−)     (11) 

3. 𝑣(𝑐+) = 𝜃 + 𝛼𝑓𝑚(𝑐+) = 1 − 𝛽𝑓𝑚(𝑐+)    (12) 

4. 𝑣(ℎ𝑗𝑢) = 𝑣(𝑢) + 𝑠𝑔𝑛(ℎ𝑗𝑢) {[∑ 𝑓𝑚(ℎ𝑖𝑢)𝑗
𝑖=𝑠𝑔𝑛(𝑗) ] −

𝜔(ℎ𝑗𝑢)𝑓𝑚(ℎ𝑗𝑢)}             (13) 

Where: 

𝜔(ℎ𝑗𝑢) =
1

2
[1 + 𝑠𝑔𝑛(ℎ𝑝 , ℎ𝑗)(𝛽 − 𝛼)] , 𝑗 ∈ [−𝑞^𝑝] =

[−𝑞, 𝑝]\{0} 
 

Function of Semantically Quantifying Mapping can be 

directly mapped from the linguistic value into the semantically 

quantifying value. Thus, based on SQMs, Computing With 

Words can be constructed, applied in many mathematical 

problems expressed in language. Forms of mathematics may 

include as follows: approximate reasoning based on linguistic 

rules, fuzzy control; fuzzy association rules; database 

summary in the form of linguistic rules; clustering problem, 

fuzzy classification; fuzzy database; regression, fuzzy time 

series. 

HA has the following advantages: 

• Always approximate, no need to limit he set of LTS, meet 

expert needs. 

• Converting to more basic numbers. The quantifying 

semantic value representing the element does not need to 

be evenly distributed as the order index of the other 

methods. The semantic quantitative values are always 

associated with the semantics of the linguistic labels, even 

after transformations and calculations because they are 

always within the fuzzy range of the linguistic labels. 

Therefore, this always ensures the natural order between 

these labels and makes it different from fuzzy set theory. 

• It is relatively simple to handle, especially when we are 

limited by HA two hedges (Little and Very). 

D. Comparatively linguistic expressions and computing 

methods  

First, we need to build the set X generated from the previously 

designed hedge algebra. Select the structure of hedge algebra 

𝐴𝑋 = (𝑋, 𝐺, 𝐻,≤)  with the following fuzzy sets and fuzzy 

parameters: 

𝐺 = {𝑛𝑒𝑖𝑡ℎ𝑒𝑟 < 𝑙𝑜𝑤 < 𝑚𝑒𝑑𝑖𝑢𝑚 < ℎ𝑖𝑔ℎ < 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒}, 
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𝐻 = {𝐻− = {𝐿𝑖𝑡𝑡𝑙𝑒} ∪ 𝐻+ = {𝑉𝑒𝑟𝑦}},  

𝑓𝑚(𝑙𝑜𝑤) = 0.5, 𝛼 = 𝜇(𝐿𝑖𝑡𝑡𝑙𝑒) = 0.5  

 

The set of linguistic elements generated from the hedge 

algebra can be used for evaluation: 

𝑋 = {𝑛𝑒𝑖𝑡ℎ𝑒𝑟 < 𝑉𝑒𝑟𝑦 𝑙𝑜𝑤 < 𝑙𝑜𝑤 < 𝐿𝑖𝑡𝑡𝑙𝑒 𝑙𝑜𝑤 <
𝑚𝑒𝑑𝑖𝑢𝑚 < 𝐿𝑖𝑡𝑡𝑙𝑒 ℎ𝑖𝑔ℎ < ℎ𝑖𝑔ℎ < 𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ < 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒}
  (14) 

Definition 7. Linguistic expression 𝑿𝒍𝒆 . Propose a set of 

semantically linguistic terms 𝑋 = {𝑥1 < 𝑥2 < ⋯ < 𝑥𝑔}, The 

structures of comparatively linguistic expression includes: 

𝑥𝑖|𝑥𝑖 ∈ 𝑋  (15) 

𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥𝑖 , 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥𝑖 , 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑥𝑖 ,  

𝑎𝑡 𝑚𝑜𝑠𝑡 𝑥𝑖|𝑥𝑖 ∈ 𝑋  (16) 

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗|𝑥𝑖 , 𝑥𝑗 ∈ 𝑋, 𝑥𝑖 ≤ 𝑥𝑗  (17) 

Note: The unary operators “𝑎𝑡 𝑙𝑒𝑎𝑠𝑡”, “𝑎𝑡 𝑚𝑜𝑠𝑡” can be 

understood as the relationship between “𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜” 

and “𝑙𝑜𝑤𝑒𝑟 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜”. 

Linguistic expressions can be the form of 𝑥𝑖 ∈ 𝑋  or 

combined by a form of comparison with 𝑥𝑖 ∈ 𝑋. Both types of 

expressions define a range of linguistic values and symbols as 

the set of 𝑋𝑙𝑒 .  

The expert 𝑒1  can describe “better satisfaction” of books 

with comparative linguistic expressions (15) - (17) and 

linguistic terms in (14), such as: 

 

 𝑃1 = [

− 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ
𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙𝑜𝑤 − ℎ𝑖𝑔ℎ
𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙𝑜𝑤 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤 𝑎𝑛𝑑 𝑙𝑜𝑤 −

] 

 

Definition 8. Domain of linguistic elements 𝑹𝑿. Assuming 

a set of linguistic terms = {𝑥1 < 𝑥2 < ⋯ < 𝑥𝑔}, the range of 

linguistic terms 𝑅𝑥 is a continuous subdomain of elements in 

X. 

 𝑅𝑋 = [𝑥𝑖 < 𝑥𝑖+1 < ⋯ < 𝑥𝑘], 𝑥1 ≤ 𝑥𝑖 , 𝑥𝑘 ≤ 𝑥𝑔 (18) 

 

Definition 9. Function of linguistic conversion 𝑬𝑹𝑿
. 

Propose a set of linguistic terms 𝑋 = {𝑥1 < 𝑥2 < ⋯ < 𝑥𝑔}, 

𝑙𝑒 ∈ 𝑋𝑙𝑒 is the comparatively linguistic expressions. The 

function 𝐸𝑅𝑋
: 𝑋𝑙𝑒 → 𝑅𝑋 is a function of converting each 

comparatively linguistic expression 𝑙𝑒 ∈ 𝑋𝑙𝑒  into the ranges 

of linguistic terms 𝑅𝑋. 

𝐸𝑅𝑋
(𝑥𝑖) = [𝑥𝑖 , 𝑥𝑖], 𝑥𝑖 ∈ 𝑋  (19) 

𝐸𝑅𝑋
(𝑎𝑡 𝑚𝑜𝑠𝑡 𝑥𝑖) = [𝑥𝑗 . . 𝑥𝑖], 𝑗 ≤ 𝑖, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑗) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖)  (20) 

𝐸𝑅𝑋
(𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥𝑖) = [𝑥𝑗 . . 𝑥𝑖], 𝑗 < 𝑖, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑗) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖) 

  (21) 

𝐸𝑅𝑋
(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑥𝑖) = [𝑥𝑖 . . 𝑥𝑗], 𝑖 ≤ 𝑗, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑗) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖) (22) 

𝐸𝑅𝑋
(𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥𝑖) = [𝑥𝑖 . . 𝑥𝑗], 𝑖 < 𝑗, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑗) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖)

  (23) 

𝐸𝑅𝑇
(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗) = [𝑥𝑖 . . 𝑥𝑗], 𝑖 < 𝑗  (24) 

 

Definition 10. The semantically linguistic domain of 𝑹𝑿 . 

The function 𝑣: 𝑅𝑋 → [𝑅𝑋− , 𝑅𝑋+] , define the range of 

language which 𝑅𝑋−  is the semantic value of the element 

“adjacent left” and 𝑅𝑋+ is the semantic value of the element 

“adjacent right”. 

𝑣(𝑅𝑋) = [𝑅𝑋− , 𝑅𝑋+] = [𝑣(𝑅𝑋(𝑥𝑙)), 𝑣(𝑅𝑋(𝑥𝑟))] (25) 

Thus, applying functions in definitions 9 and 10 can convert 

comparatively linguistic expressions to their semantic value 

range. Then, it is possible to perform calculations on this 

semantic value range such as aggregation, comparison. 

III. Algorithm to solve GDM Problem 

The algorithm to solve the GDM problem with the experts’ 

evaluation by the expression of comparatively linguistic 

expression based HA approach is proposed as follows: 

 

Algorithm GDM_HA; 

1) Ax = Make(G,H,fuzziness parameters); 

// Make the structure of hedge algebra  

2) X = Make(Ax,k=2); // Make a set of   

             // linguistic 

              // elements with 

              // length k (k=2) 

Repeat 

3) Collect 𝑃𝑘 from 𝑒𝑘, 𝑝𝑖𝑗
𝑘 ∈ 𝑋𝑙𝑒; 

4)𝑅𝑋 = [𝑥𝑙 , 𝑥𝑟] = 𝐸𝑅𝑋
(𝑋𝑙𝑒);  // Definition 9 

𝑣(𝑅𝑋) = [𝑅𝑋− , 𝑅𝑋+] = [𝑣(𝑅𝑋(𝑥𝑙)), 𝑣(𝑅𝑋(𝑥𝑟))]; 
// Definition 10 

5) 𝑃𝐶 = [𝑃𝑖𝑗
𝐶] = Φ(𝑃𝑖𝑗

𝑘), 𝑖, 𝑗 = 1. . 𝑛, 𝑘 = 1. .𝑚; 

Where: 𝑃𝑖𝑗
𝐶 = [𝑃𝑖𝑗

𝐶−, 𝑃𝑖𝑗
𝐶+], 

6) Aggregate: 

• 𝑃𝑖𝑗
𝐶− = Φ(𝑝𝑖𝑗

1−, 𝑝𝑖𝑗
2−, 𝑝𝑖𝑗

3−), 𝑃𝑖𝑗
𝐶+ = Φ(𝑝𝑖𝑗

1+, 𝑝𝑖𝑗
2+, 𝑝𝑖𝑗

3+) 

• 𝑉𝑅 = [𝑉𝑖
𝑅]

𝑇
= [𝜑( 𝑃𝑗

𝐶)
𝑖
]𝑇, 𝑖, 𝑗 = 1. . 𝑛; 

Where: 𝑉𝑖
𝑅 = [𝑉𝑖

𝑅−, 𝑉𝑖
𝑅+],  

𝑉𝑖
𝑅− = 𝜑( 𝑃𝑗

𝐶−)
𝑖
, 𝑉𝑖

𝑅+ = 𝜑( 𝑃𝑗
𝐶+)

𝑖
 

• 𝑉𝑆 = [𝑉1
𝑆, 𝑉2

𝑆, … 𝑉4
𝑆]; 

Where: 𝑉𝑖
𝑆 =

1

2
(𝑉𝑖

𝑅− + 𝑉𝑖
𝑅+)] 

7) Sort(𝑉𝑖
𝑆), select alternative has the 

highest “satisfied” degree. 

Until(Have no new 𝑃𝑘); 

End GDM_HA. 

IV. Applying Problem 

A. Applying problems based the evaluation for the selection 

of scientific paper 

The content in this section presents an applying problem that 

is solicited from the review panel to select the “best” article 

published in an international journal. Based on the results of 

the assessment to give an award to the author of the paper [4]. 

In this particular GDM model, there are 3 evaluators 𝐸 =
{𝑒1, 𝑒2, 𝑒3}, in which f our articles were submitted for 

evaluation, namely: 

𝑋 =  {𝐽𝑜ℎ𝑛’𝑠 𝑝𝑎𝑝𝑒𝑟, 𝑀𝑖𝑘𝑒’𝑠 𝑝𝑎𝑝𝑒𝑟, 𝐷𝑎𝑣𝑖𝑑’𝑠 𝑝𝑎𝑝𝑒𝑟, 𝐹𝑟𝑎𝑛𝑘’𝑠 𝑝𝑎𝑝𝑒𝑟} . 

It can be briefly noted as 𝑋 =  {𝐽,𝑀, 𝐷, 𝐹}. 
 

B. Implement the algorithm to solve the GDM 

1) Construct computing model 

To create the convenience for the experts’ evaluations, we 

need to build a set of linguistic elements as suggestions for the 
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use in the evaluation. We select the structure of the hedge 

algebra and their fuzzy parameters as: 

𝐺 = {𝑛𝑒𝑖𝑡ℎ𝑒𝑟 < 𝑙𝑜𝑤 < 𝑚𝑒𝑑𝑖𝑢𝑚 < ℎ𝑖𝑔ℎ < 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒}, 

𝐻 = {𝐻− = {𝐿𝑖𝑡𝑡𝑙𝑒} ∪ 𝐻+ = {𝑉𝑒𝑟𝑦}},  

𝑓𝑚(𝑙𝑜𝑤) = 0.5, 𝛼 = 𝜇(𝐿𝑖𝑡𝑡𝑙𝑒) = 0.5  

 

2) The linguistic elements which have the maximum length of 

2 are generated from hedge algebra:  

𝑇 = {𝑛 < 𝑉𝑙 < 𝑙 < 𝐿𝑙 < 𝑚 < 𝐿ℎ < ℎ < 𝑉ℎ < 𝑎} 
Loop: 

3) Collect the evaluated options 𝑃𝑘 

The structure of matrix is evaluated as follows: 

𝑃𝑘 𝐽 𝑀 𝐷 𝐹 

𝐽 – 𝑃𝐽𝑀
𝑘  𝑃𝐽𝐷

𝑘  𝑃𝐽𝐹
𝐾  

𝑀 𝑃𝑀𝐽
𝑘  – 𝑃𝑀𝐷

𝑘  𝑃𝑀𝐹
𝑘  

𝐷 𝑃𝐷𝐽
𝑘  𝑃𝐷𝑀

𝑘  – 𝑃𝐷𝐹
𝑘  

𝐹 𝑃𝐹𝐽
𝑘  𝑃𝐹𝑀

𝑘  𝑃𝐹𝐷
𝑘  – 

 

Basing on the experts’ comments on “more satisfied” among 

the articles, we obtained the evaluated matrix as follows: 

 

𝑃1 = [

− 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑉𝑙 𝑉ℎ 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑉𝑙
𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑉ℎ − 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ 𝑎𝑛𝑑 𝑉ℎ 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑚

𝑙 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙 − 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 ℎ
𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 ℎ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑚 −

] 

𝑃2 = [

− 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚 − ℎ 𝑣𝑙

𝑎𝑡 𝑚𝑜𝑠𝑡 𝑉𝑙 𝑙 − 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 ℎ
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ 𝑎𝑛𝑑 𝑉ℎ 𝑣ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛 𝑎𝑛𝑑 𝑙 −

] 

𝑃3 = [

− 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ 𝑎𝑛𝑑 𝑉ℎ 𝑙
𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙 − 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 ℎ 𝑔𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑎𝑛 𝑚 

𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙 − 𝑉ℎ
ℎ 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑙 𝑣𝑙 −

] 

 

 

4) Convert the comparative evaluating expressions into the 

ranges of linguistic elements 𝑅𝑋 

We use the transformation function 𝐸𝑅𝑋
 (Definition 7) to 

convert. We have the evaluated matrices in which the 

evaluation options are expressed in terms of linguistic 

elements. 

𝑃1 = [

− [𝑛, 𝑉𝑙] [𝑉ℎ, 𝑉ℎ] [𝑛, 𝑉𝑙]

[𝑉ℎ, 𝑎] − [ℎ, 𝑉ℎ] [𝑙,𝑚]

[𝑙, 𝑙] [𝑛, 𝑙] − [𝑉ℎ, 𝑎]

[ℎ, 𝑎] [𝐿ℎ, 𝑉ℎ] [𝑙, 𝑚] −

] 

𝑃2 = [

− [𝑛, 𝑙] [𝐿ℎ, 𝑉ℎ] [𝑉𝑙, 𝐿𝑙]

[𝐿ℎ, 𝑉ℎ] − [ℎ, ℎ] [𝑉𝑙, 𝑉𝑙]

[𝑛, 𝑉𝑙] [𝑙, 𝑙] − [𝑉ℎ, 𝑎]

[ℎ, 𝑉ℎ] [𝑉ℎ, 𝑉ℎ] [𝑛, 𝑙] −

] 

𝑃3 = [

− [𝐿ℎ, 𝑉ℎ] [ℎ, 𝑉ℎ] [𝑙, 𝑙]

[𝑛, 𝑙] − [ℎ, 𝑎] [𝐿ℎ, 𝑉ℎ] 
[𝑉𝑙, 𝐿𝑙] [𝑛, 𝑙] − [𝑉ℎ, 𝑉ℎ]

[ℎ, ℎ] [𝑛, 𝑙] [𝑉𝑙, 𝑉𝑙] −

] 

 

5) Convert a range of linguistic elements into the semantic 

ranges 

Using the function of linguistic quantification (10) – (13), 

we can compute the quantitative value of the linguistic 

elements 𝑅𝑋 according to the Definition 8. As the result, we 

have [𝑅𝑋− , 𝑅𝑋+] respectively to each evaluation. 

𝑃1 = [

− [0,0.125] [0.875, 0.875] [0,0.125]

[0.875, 1] − [0.75, 0.875] [0.25, 0.5]

[0.25, 0.25] [0, 0.25] − [0.875, 1]

[0.75, 1] [0.625, 0.875] [0.25, 0.5] −

] 

𝑃2 = [

− [0, 0.25] [0.625, 0.875] [0.125, 0.375]
[0.625, 0.875] − [0.75, 0.75] [0.375, 0.375]

[0, 0.125] [0.25, 0.25] − [0.875, 1]
[0.75, 0.875] [0.875, 0.875] [0, 0.25] −

] 

𝑃3 = [

− [0.625, 0.875] [0.75, 0.875] [0.25, 0.25]
[0, 0.25] − [0.75, 1] [0.625, 0.875] 

[0.125, 0.375] [0, 0.25] − [0.875, 0.875]
[0.75, 0.75] [0, 0.25] [0.125, 0.125] −

] 

 

6) Combination 

• Step 1: Use the aggregator Φ to combine the value ranges 

of the quantifying semantics of the comparative 

expression by 3 experts. The selected aggregator is the 

weighted average operator. The result is a matrix 𝑃𝐶 , each 

element 𝑃𝑖𝑗
𝐶 = [𝑃𝑖𝑗

𝐶−, 𝑃𝑖𝑗
𝐶+]  is the range of quantifying 

semantics that is combined by the 3 ranges quantifying 

semantics corresponding to the evaluative expressions. 

 

𝑃𝑖𝑗
𝐶− =

1

3
(𝑝𝑖𝑗

1− + 𝑝𝑖𝑗
2− + 𝑝𝑖𝑗

3−), 𝑃𝑖𝑗
𝐶+ =

1

3
(𝑝𝑖𝑗

1+ + 𝑝𝑖𝑗
2+ + 𝑝𝑖𝑗

3+) 

 

Where: 𝑝𝑖𝑗
𝑘− = 𝑅𝑋−

𝑖𝑗
𝑘 , 𝑝𝑖𝑗

𝑘+ = 𝑅𝑋+
𝑖𝑗
𝑘  

𝑃𝐶 = [

− [0.208, 0.417] [0.75, 0.875] [0.125, 0.25]
[0.5, 0.708] − [0.75, 0.875] [0.417, 0.58] 
[0.125, 0.25] [0.08, 0.25 ] − [0.875, 0.958]
[0.75,0.875 ] [0.5, 0.67] [0.125, 0.292] −

] 

 

𝑃21
𝐶 = [0.208, 0.417]  

𝑃21
𝐶− =

1

3
(0 + 0 + 0.625), 𝑃21

𝐶+ =
1

3
(0.125 + 0.25 + 0.875) 

 

• Step 2: Use the same aggregator 𝜑 ≡ Φ to combine the 

value range of the quantifying semantics corresponding to 

the evaluation of 𝑎𝑖  to 𝑎𝑙  ( 𝑖, 𝑙 = 1. .4, 𝑙 ≠ 𝑖 ). As the 

resulting, we have the vector 𝑉𝑅 = [𝑉1
𝑅, 𝑉2

𝑅 , … 𝑉4
𝑅]. 𝑉𝑖

𝑅 =

[𝑉𝑖
𝑅−, 𝑉𝑖

𝑅+] , the range of quantifying semantics 

summarized from 𝑚 experts’ judgment of option 𝑎𝑖 to all 

remaining options. 

 

𝑉𝑅 = [[0.361, 0.514], [0.556, 0.721], [0.360, 0.486], [0.458, 0.612]]  

𝑉1
𝑅− =

1

3
(0.208 + 0.75 + 0.125)  

𝑉1
𝑅+ =

1

3
(0.417 + 0.875 + 0.25)  

 

The results of 𝑉𝑅  indicate that quantitative semantics 

aggregated from the evaluation is “satisfied” by 3 experts to 

each article (compared to the other articles). 

 

 𝐽 𝑀 𝐷 𝐹 

𝑉𝑅 
𝑉1

𝑅 𝑉2
𝑅 𝑉3

𝑅 𝑉4
𝑅 

[0.361,0.514] [0.556,0.721] [0.360,0.486] [0.458,0.612] 

Table 1. Semantic range of the alternatives. 

Corresponding to the semantic range 𝑉𝑖
𝑅 = [𝑉𝑖

𝑅−, 𝑉𝑖
𝑅+], 𝑖 =

1. .4 , the semantic value 𝑉𝑖
𝑅−  shows the lowest degree of 

“satisfied” and 𝑉𝑖
𝑅+  is the highest degree of “satisfied” of 

option 𝑎𝑖 to all remaining options. It can be called optimistic 

and pessimistic for each article. Based on Table 1, 𝑉2
𝑅− =

0.556 is the lowest degree of “satisfied” and 𝑉2
𝑅+ = 0.721 is 

the highest degree of “satisfied”. This is average of experts to 

Mike’s article compared to all remaining articles. 

 

  𝐽 𝑀 𝐷 𝐹 
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Pessimistic 0.361 0.556 0.360 0.458 
Optimistic 0.514 0.721 0.486 0.612 

Table 2. The degree of satisfaction of each article. 

• Step 3: Compute the average value of the semantically 

quantitative value range for each article. 

The satisfaction of each article (Table 2) is aggregated into a 

semantic range. Looking at these values, we do not seem to 

have a specific evaluation “satisfied” order between the 

alternatives. To be able to quantify more specifically, we can 

compute the average value per interval of each article. We 

receive 𝑉𝑆. 

𝑉𝑆 = [𝑉1
𝑆, 𝑉2

𝑆, … 𝑉4
𝑆]. Where: 𝑉𝑖

𝑆 =
1

2
(𝑉𝑖

𝑅− + 𝑉𝑖
𝑅+)] 

 

 𝐽 (𝑉1
𝑆) 𝑀 (𝑉2

𝑆) 𝐷 (𝑉3
𝑆) 𝐹 (𝑉4

𝑆) 

Preference 0.4375 0.6358 0.423 0.535 

Table 3. The degree of average satisfaction of each article. 

7) Arrange and select the best option 

Basing on Table 3, we can arrange the “satisfied” degree in 

descending order of “satisfied” expressed by the semantic 

value as follows: 

𝑉2
𝑆 > 𝑉4

𝑆 > 𝑉1
𝑆 > 𝑉3

𝑆 

 

Corresponding to these alternatives, the descending “more 

satisfied” order of experts to articles is sorted as follows: 

𝑀𝑖𝑘𝑒’𝑠 𝑝𝑎𝑝𝑒𝑟 > 𝐹𝑟𝑎𝑛𝑘’𝑠 𝑝𝑎𝑝𝑒𝑟 > 𝐽𝑜ℎ𝑛’𝑠 𝑝𝑎𝑝𝑒𝑟
> 𝐷𝑎𝑣𝑖𝑑’𝑠 𝑝𝑎𝑝𝑒𝑟 

 

Result is Selection 2, Mike's article, has the highest “satisfied” 

degree summarized from experts’ opinion. 

• Quantitative semantics range represents the degree of 

“satisfied”: 

𝑉2
𝑅 = [0.556, 0.721] 

• The mean value of the quantitative semantics represents 

the degree of “satisfied”: 

𝑉2
𝑆 = 0.6358 

 

End loop 

Repeat steps 3th to 7th until there are no new or different 

evaluate from the experts. 

Discussion 

The article has achieved some main results and new 

contributions. 

• Define the comparatively linguistic conversion function to 

the ranges of linguistic elements (Definition 7) and the 

computation of the quantitative semantics values for these 

ranges (Definition 8). 

• Propose algorithms for solving group decision problems to 

comparative linguistic expressions based on hedge algebra. 

• Apply the proposed algorithm in order to solve the group 

decision problem and the peer reviewers’ comparative 

evaluation using natural language to select the posted 

article which is highest rated to award the author. 

 

The above results show that the applicability of the hedge 

algebra in fuzzy problems is expressed based on natural 

language. Through the problem solved, some 

recommendations for further study should be, 

• When collecting expert opinions, it is necessary to 

determine the inconsistency between the evaluations of 𝑞𝑖 

to 𝑞𝑗 and of 𝑞𝑗 to 𝑞𝑖 (i.e. 𝑝𝑖𝑗
𝑘  is an inconsistency to 𝑝𝑗𝑖

𝑘 ). 

• Select a weighted join to be able to meet the priority degree 

of the experts’ evaluation. That is, each evaluated expert 

carries a different weight. Important experts will carry 

heavy weight and vice versa. 

• Process the evaluation matrices which are lacked of 

evaluation expressions of experts. 
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