Software Project Risks Management: Applying Extended Fuzzy Cognitive Maps with Reinforcement Learning

Ahmed Tlili¹, Salim Chikhi², Ajith Abraham³

¹ Modelling and Implementation of Complex Systems Labs (MISC Labs), Abdelhamid Mahri University, Constantine 25000, Algeria
a.tlli@univ-emir.dz

² Modelling and Implementation of Complex Systems Labs (MISC Labs), Abdelhamid Mahri University, Constantine 25000, Algeria
Salim.chikhi@univ-constantine2.dz

³ Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, Auburn, Washington 98071, USA
ajith.abraham@ieee.org

Abstract. During the last decade, risk management of Software projects has become a priority. Risk Management is defined as a whole process for identifying, analyzing and controlling risks in projects or organizations. It is used in all stages of project planning and control purposes during execution phase. The principal objective of research in this field is to be able to resolve conflicting problems through preventive intervention. We focus here on the adaptation of the organization to its environment by endowing it with the means that help’s to face to all unexpected in an intelligent way. Fuzzy Cognitive Maps emerged as a powerful tool for studying dynamic interactions in complex systems. There are two manners to construct them, the first one by experts of domain and the second by learning methods. In this paper, we develop a learning extended fuzzy cognitive maps based on a reinforcement learning algorithm so called Q-learning and we give an improve formulation of Kosko causality principle. This connection allows us to choose, based on learning historical data process, the best and the most important connections between concepts. In this work, we illustrate the effectiveness of the proposed approach by modeling and studying project risk management as an economic decision support system.

Keywords: Extended Fuzzy Cognitive Maps, Complex System, Reinforcement Learning, Software Project, Risk Management

I. Introduction

In last years, the software engineering industry has experienced many software crises induced by the lack of good support for specifically features and characteristics as budget shortfall or overruns, fuzzy objectives, schedule time delay etc. In the Standish Group International report, ‘CHAOS Summary 2015’, of all studied software projects from 2011 to 2015, per example for 2015 year’s, only 29% of software projects are successful, 19% of software projects have failed, and the other 55% are debatable. These statistical mentioned in Table 1 described The used Modern Resolution (OnTime, OnBudget, with a satisfactory result) of all software projects within the new CHAOS database and this report of CHAOS resolution will refer to the modern resolution definition not the traditional resolution definition.

<table>
<thead>
<tr>
<th></th>
<th>SUCCESSFUL</th>
<th>CHALLENGED</th>
<th>FAILED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>29</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>2012</td>
<td>27</td>
<td>56</td>
<td>17</td>
</tr>
<tr>
<td>2013</td>
<td>31</td>
<td>50</td>
<td>19</td>
</tr>
<tr>
<td>2014</td>
<td>28</td>
<td>55</td>
<td>17</td>
</tr>
<tr>
<td>2015</td>
<td>29</td>
<td>52</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 1. CHAOS Summary 2011-2015

Software risk analysis and management is very popular in software engineering as it helps failures prediction and to reduce project’s loss by predicting the defect at early steps. Risks represent a major challenge for organizations and more particularly for organizations developing applications. In general all activities present risks and the objective of risk management method is to better understanding of the factors that contribute to risk and to propose an approach and tools to deal them. This approach is no longer reserved for the space or nuclear fields; it has become one of the crucial elements of project management, especially with the advent of the technological revolution such as Internet of Things (IoT) which gives physical objects the ability to communicate and interact with each other such as autonomous cars, drones...etc., whose complexity of these systems continuous to increase which calls into question the analysis and management of risks, because the integration of software failures in the risk analysis by traditional mathematical models is currently difficult [1].

Today, the success of a project is strongly conditioned by the
way its leaders know how to recognize the risks. Software risk analysis and defects prediction is very popular in software engineering as it helps to reduce the cost by predicting the defect at early stages. We find in the literature that when developing software for organizations, failure prediction uses different machine learning techniques based on mathematical models where the information’s absorbed by humans; quite complex processes are usually imprecise or approximate [2][3].

While we can never predict the future with certainty, we can apply structured risk management practices to peer over the horizon at the traps that might be looming, and take actions to minimize the likelihood or impact of these potential problems’ [4].

The strategy adopted is usually imprecise in nature with no or partial knowledge of the problem, and generally possible to be expressed in linguistic terms. Thus the main problem with risk estimation is that the input data is imprecise or uncertain in nature and it is difficult to accurately represent them in mathematical models [5]. Usually and naturally, the risk analyst is specified in language terms as high, very high, medium, low… etc., rather than in exact statistical terminology. Therefore, the use of the Fuzzy Inference System (FIS) theory to risk analysis seems suitable because it deals with inaccurate and ambiguous information and the basic idea of this approach is to allow an element to belong to a set with membership degrees within the continuous real interval [0,1], rather than in the set {0,1}.

In risk analysis and management (RAM), the most important factors contributing to the risk of failure for any type of socio-economic organization are related to the different criteria as: time constraints, high cost, weak operating resources, poor performance… etc., and the identification of the relationships between the risks and the ones that cause them remains a major challenge for experts in this field because they are in most cases very complex [6]. In this paper, we took, for the validation of our proposal, as a case study the RAM in software project management (SPM). The comparison is done under Matlab R2014a between proposed Reinforcement Learning Extended FCMs and classical FCMs.

II. Literature Review

Several methods can be found in literature review for the risks management mainly classified in deterministic and stochastic approaches: what-if analysis, task analysis, Hazard and Operability (HAZOP), Quantitative Risk Assessment (QRA), the Critical Risk and Error Analysis (CREA), Fault Tree Analysis (FTA), the Event Tree Analysis (ETA), Failure Mode and Effects Analysis (FMEA), Probability Distribution of Failure and Reliability (PDEA), Petri networks, Bayesian networks,… etc. Samantra et al. [7] explained that the risk associated with a specific risk factor is expressed as a combination of two parameters: the probability of occurrence and the effect. The concept of risk matrix is here to categorize different risk factors at each levels of occurrence to create a plan of actions. Taylan et al. [8] illustrated risk assessment using AHP and fuzzy TOPSIS where many construction projects were studied according to these main criteria: time, cost, quality, safety, and environmental sustainability. Authors showed that these methods are able of evaluating the overall risk factors of projects and selecting a project with the lowest risk with a relative weight matrix.

Dziadosz & Rejment [9] illustrated that risk and risk factor are a measurable part of uncertainty and can be estimated from the probability of occurrence. This risk and risk factor represent a deviation from the desired level, which can be positive or negative. Consequently, risk analysis is very important for selecting a win project.

The main idea in the paper related by Muriana & Vizzini [10] is that total weight method is used to calculate the current risk level of the project and the risk of the whole project is reduced taken preventive measures.

III. Research Method

A. Risk and risk management

Risk is an uncertain event that may have positive or negative impact on project and, risk management is the process of identifying and prevents risk. Risk analysis and management is more important because it affects all aspects of the project as schedule, budget, delay… etc.

In [11], taxonomy-based questionnaires to identify the risk factors are used. In this way, software taxonomy is classified in three classes:

1. Product engineering, this includes technical aspects of the work to be accomplished.
2. Development environment, which includes the methods, procedures, and tools to produce the product;
3. Program constraints, which include contractual, organizational, and operational factors within which the software is developed but which are generally outside the direct control of the local management.

One of the main difficulties of risk management is that it is not "an exact science", and by definition, a risk is a probability of a loss; in this way:

- It is not possible to predict in the long term without admitting a part of the uncertainty,
- Risks are present at all stages of a project and can take a variety of forms with internal and/or external origins,
- We can reduce the risks of a project, but we cannot eliminate them completely,
- Due to the diversity of the risks and their management, in particular according to the size of the project, the mobilized resources and the sector of activity concerned, there is a difficulty in invariant identifications.

Research in RAM using fuzzy sets [12], have provided several models in recent years. However, we have found, there are very few sufficiently representative approaches to be used for complex problems in this area.

Risk identification is the first and most step of the process that involves listing out potential risks and there factors. Quantifying or assessing risk and its factors consists in measuring the linguistic probability of occurrence by
defining a scale of linguistic values associated with it as follows:
- Frequent risk with high probabilities of realization, very high.
- Occasional or average risk, can be realize,
- Rare, unlikely or low.
- Very unlikely or high.

B. What-If Analysis method

What-If Analysis is defined as a structured brainstorming method of determining what things can go wrong and estimate the likelihood and consequences of those situations occurring. The answers to these questions are not evident and form the basis for determining a recommended course of action for those risks or risk factor. Our proposed method here constitute an automatic alternative to expert review team and can effectively and productively discern major issues concerning a software project or with any other risks project. Lead by an energetic and focused facilitator, each member of the review team participates in assessing what can go wrong based on their past experiences and knowledge of similar situations.

After the “What-If” answers are generated by different simulation, the review manager then makes judgments regarding the probability and severity of the risk. If the risk is judged unacceptable then a recommendation is made by the manager for further action. The template form in Table 2 is used after that the analysis is completed.

<table>
<thead>
<tr>
<th>What-if?</th>
<th>Answer</th>
<th>Likelihood</th>
<th>Consequence</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong function?</td>
<td>Quality issue</td>
<td>Possible serious</td>
<td>Require 2nd control</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. What-if analysis form

C. Fuzzy Cognitive Maps

The cognitive maps were studied by computer scientists from the 80s when Bart Kosko (1986) [13] chooses to provide a new formalization of Axelrod's cognitive maps [14] aiming to give people a scientific and realistic way to express their point of view on systems, especially political systems, and to provide a basis for calculating possible scenarios based on this system.

Kosko (1986) notes that Axelrod's cognitive maps applied to fields such as politics, history, international relations, contain concepts and influences between concepts that are by nature fuzzy. He thus formalizes the model of fuzzy cognitive maps using the theory of fuzzy sets [15].

Fuzzy cognitive map is a directed graph in the form \(<X, W> \) where \(X = \{X_1, ..., X_n\} \) is the set of the concepts, \(W \) is the connection matrix describing weights of the connections, \(w_{ji} \) is the weight of the direct influence between the j-th concept and the i-th concept, taking on the values from the range \([-1, 1]\). A positive weight of the connection \(w_{ji} \) means \(X_j \) causally increases \(X_i \). A negative weight of the connection \(w_{ji} \) means \(X_j \) causally decreases \(X_i \) and a null weight of the connection \(w_{ji} \) means there is no causality between \(X_j \) and \(X_i \).

Fuzzy cognitive maps can be used for modeling behavior of dynamic systems. The state of the FCM model is determined by the values of the concepts at the t-th iteration. The simulation of the FCM behavior requires an initial state vector. Next, the values of the concepts can be calculated according to the selected dynamic model. Simulations show the effect of the changes in the states of the map and can be used in a what-if analysis [13].

\[
X_i^{k+1} = f(\sum_j X_j^k \cdot \omega_{ji})
\]

Where \(X_i(k) \) is the value of the i-th concept at the k-th iteration, \(i = 1, 2, ..., n \), \(n \) is the number of concepts. Transformation function \(f(x) \) normalizes values of the concepts to a proper range. A logistic function is most often used [14]:

\[
f(x) = \frac{1}{1 + e^{-\beta x}}
\]

Where \(\beta > 0 \) is a parameter

Other alternatives are taking into account the past history of concepts and jointly proposed a popular dynamic model which was used in this work summarized in the following equation [16]:

\[
X_i^{k+1} = f(X_i^k + \sum_j X_j^k \cdot \omega_{ji})
\]

D. Extended Fuzzy Cognitive Maps

Hagiwara [17] in 1992 years mentions three weaknesses of FCMs:
1. Relationship of two events should be linear;
2. Lack of time in all developing stage;
3. Causes are independent and managed separately.

In Hagiwara proposed Extended Fuzzy Cognitive Maps E-FCMs, total input to node \(C_j \) at each time \(t \) can be expressed by Equation 3 as follows:

\[
input_j = \sum_{i=1}^{n} w_{ij} \left(C_i(t - delay_{ij}) \right) C_j(t - delay_{ij})
\]

Where the \(C_i(t) \) is a causal concept at time \(t \), \(w_{ij} \) is a weight function from concept \(C_i(t) \) to concept \(C_j(t) \), and \(delay_{ij} \) is a time delay from concept \(C_i(t) \) to concept \(C_j(t) \).

In this paper we exploit the improvements of features made by Hagiwara to the classic FCMs, we consider that the three introduced corrections, namely the absence of time, the nonlinearity of weights and the interdependence between concepts, are justified by the nature of the complex systems found in this domain.

For more details about Extended FCMs please refer to [17].
E. Reinforcement Learning

Reinforcement Learning (RL) is one effective method in the solution of multi stage decision making problems. For a comprehensive study of the subject, refer to [18][19] [20]. The Markov Decision Processes (MDP) defines the formal framework of reinforcement learning [14]. More formally, an MDP process is defined by:

- S, a finite set of states. \(s \in S \)
- A, a finite set of actions in state \(s \). \(a \in A(s) \)
- \(r(s,a) \), a reward function.
- \(P(s',a|s) \), the probability of transition from one state to another depending on the selected action. \(P(s'|s,a) = P_k(s,s') \).

The problem is to find an optimal policy of actions that achieves the goal by maximizing the rewards, starting from any initial state. At each iteration, the agent being in the state chooses an action, according to these outputs the environment sends either award or a penalty to the agent shown by the following formula: \(r_k = h(s_k, a_k, s_{k+1}) \).

To find the total cost, which is represented by the formula \(\Sigma h(s_k, a_k, s_{k+1}) \), the costs are accumulated at each iteration of the system. In [21] the expected reward is weighted by the parameter \(\gamma \) and becomes \(\Sigma \gamma h(s, a, s_{k+1}) \) with \(0 \leq \gamma \leq 1 \). The RL is to find a policy or an optimal strategy \(\pi^* \), among the different \(\pi \) possible strategies in the selection of the action. Considering that an optimal policy \(\pi \) exists, then the Bellman [21] optimality equation is satisfied:

\[
V^* = V^*(s) = \max \left\{ R(s, a) + \gamma \Sigma P(s'|s, a)V^*(s') \right\} \forall s \in S
\]

Eq. (4) sets the value function of the optimal policy that reinforcement learning will seek to assess:

\[
V^*(s) = \max_{a} V^\pi(s,a)
\]

In Q-Learning algorithm technique [19], the agent, For any policy \(\pi \) and any state \(s \in S \), the value of taking action \(a \) in state \(s \) under policy \(\pi \), denoted \(Q^\pi(s, a) \), is the expected discounted future reward starting in \(s \), taking \(a \), and henceforth following \(\pi \). In this case the function (4) can also be expressed for a state-action pair:

\[
Q^*(s,a) = \max_{\pi} Q^\pi(s,a)
\]

Q-learning is one of the most popular reinforcement learning methods developed by Watkins in 1989 years and is based on TD (0). It involves finding state-action qualities rather than just state values. Q-Learning algorithm technique is to introduce a quality function \(Q \) represents a value for each state-action pair and \(Q^\pi(s, a) \) is to strengthen estimate when starting from state \(s \), executing action \(a \) by following a policy \(\pi \): \(Q^\pi(s, a) = E \Sigma \gamma r_a \) and \(Q^\pi(s, a) \) is the optimal state-action pair by following policy \(\pi^* \) if \(Q^\pi (s, a) = \max Q^\pi(s, a) \) and if we reach the \(Q^\pi(s, a) \) for each pair state-action then we say that the agent can reach the goal starting from any initial state. The value of \(Q \) is updated by the following equation:

\[
Q^*(s,a) = Q^*(s,a) + \alpha [h(s,a,s_{k+1}) + \gamma \arg \max \{ Q^*(s',a) \} - Q^*(s,a)]
\]

IV. Software Project Risks and Risk Management Perception

Risk perception is the trend for people to have different estimates of risk probability given the same information. Recent perceptions about risk management from majority of software project organizations contributes to the lack of project stability in addition to the inherent challenges posed by the nature of software projects. Ilbs and Kwak in [22] identified risk management as the least practiced discipline among different project management knowledge areas. Boehm and DeMarco [23] mentioned that “our culture has evolved such that owning up to risks is often confused with defeatism”. In many organizations, the tendency to ‘shoot the messenger’ often discourages people from bringing imminent problems to the attention of management. This attitude is the result of a misunderstanding of risk management. Boehm in [24] identified 10 software risk items to be addressed by software development projects:

1. Developing the wrong user interface
2. Personnel shortfalls.
3. Real-time performance shortfalls
4. Unrealistic schedules and budgets.
5. Developing the wrong functions and properties.
6. Gold plating (adding more functionality/features than is necessary).
7. Straining computer-science capabilities.
8. Shortfalls in externally furnished components.
9. Shortfalls in externally performed tasks.
10. Continuing stream of requirements changes.

Jones in [25] further presented three key software risk factors and concerns of both executives and software managers. Risk factors always generate a loss, i.e. an event or situation that causes the occurrence of a loss. The risk factor therefore constitutes the origin of a risk or a set of risks.

1. Risks associated with inaccurate estimating and schedule planning.
2. Risks associated with incorrect and optimistic status reporting.
3. Risks associated with external pressures, which damage software projects.

However, most software developers and project managers perceive risk management processes and activities as extra work, not part of their job, and more expense. Risk management tasks are therefore to be removed from project activities when the project schedule is operational. Jones always in [26] mentioned that "complex computer systems can be built with a very low level of control by intelligent and motivated people." Many software development professionals believe that risk management and control prevent creativity.

A. Software Project Management Modeling case study

In the software project management (SPM), one of the main issues is the consistency of the project in terms of cost, completion time, quality, performance, etc. but not limited to because in other cases we can found that many functions and features of software are not used. These additional features
increase risk, cost and decreases quality but without value provided. However, the most significant risk factors are of external natures and are part of the third argument of the risk factors cited by [21]. Among these, there are five main risk factors:

- **Fuzzy objectives**: in [27] Boehm and Ross argue that the different stakeholders in a software project have individual objectives and can often conflict with the objectives of another stakeholder. These differing expectations, according always to Boehm and Ross create fundamental conflicts when simultaneously approached, resulting in unclear or fuzzy objectives of the project.

- **Deficient developers**: [Keil et al. [28] mentioned that Project personnel may not have adequate knowledge of the technology related to development tools, or may just not have the necessary experience to participate to the project.

- **Bad task scheduling**: Ropponen and Lyytinen [29] stated that the ‘Bad Task scheduling’ risk is the principal complicating factor as it is difficult to estimate schedules with acceptable accuracy and consistency. Very often, organizations embark on a large project having underestimated its size and complexity. This risk leads to the difficulties in scheduling the project correctly and they believe that performance with scheduling risk can be improves with project experience.

- **Budget limitation**: Abdel-Hamid et al. [30], argued that a limited budget may lead to schedule pressures and people under pressure do not necessarily work better, resulting in the inability to produce satisfactory results.

- **Technological aspect**: Ropponen and Lyytinen [29], explained that Incorrect evaluation of performance requirements related to technological aspects can result in an inability to implement the solution system as a result of inappropriate technical solutions in computing area.

From these risk factors cited above emerge the four risks that we consider in our case study and which are described as follows [31][32]:

- **Low performance** deficiency of project management methodology: This risk involves the inability of the team to employ necessary skills in project management methodology as project planning or other.

- **Low Quality** key user involvement: Lack of key user involvement is one of the major risks where failure to do so, will lead to software low quality and they are incomplete, inconsistent, and not satisfy meeting user expectations.

- **The high cost** issue: In another way in the software engineering industry. It is understood that the changes in technological aspects can involves unreasonably high cost. Furthermore, the software project is unable to recognize these changes. to set improbable restrictions on the software project budget.

- **Poor/inadequate time delay** risk management: Among the objectives of risk management in software projects is to monitor the success of the project in terms of temporal planning, analyzing the potential damages that can be submerged from time delay risk.

In the model schematized in Figure 1, the rectangles are used to represent the risks, the circles to represent the risk factors and arcs to represent the links between risk factors and the risks.

![Figure 1. Main different risks, risk factors and influence links of the SPM model](image)

The links schematized in Figure 1 have specificities that characterize them. Among these specific links, we quote:

- The Technological Aspect risk factor, generally, will not necessarily have an immediate effect on the Time Delay risk concept, but it will affect it after a certain time or duration. Indeed, if, for example, the operating system is slow that is used, the immediate effect on the Time Delay concept will not be so obvious, but in the long run, it will certainly cause an increase in the risk of time delay and low quality. We denote this weights by weighted links with duration:

 - To respect deadlines, we can play on the risk factor developers deficient by increasing the number of developers and this can help in the first place. But if we increase more than necessary can become useless and leads to an opposite result. We therefore find that this link is a non-linear link.

 - An enviable situation is that when there is a lack of budget and if there is also a bad schedule, these two risk factors will simultaneously affect the concept of Risk Time delay and risk concept High Cost. We categorize them as conditional links, because they affect only if they both occur. For example, if the scheduling of tasks is not optimal, but on the other hand, the organization is very experienced in its field to handle this type of frequent situations, the effect would certainly be different. We call this link by conditional link.

Once the influences between the risks and the factors are identified, we move on to the second stage, which consists in defining the fuzzy rules by considering the three attributes of the prototype schematized in Figure 1, namely the temporal delay and its conditional links. It remains to be noted here
that the construction of fuzzy rules in a general way requires a detailed and complete knowledge of the field studied. The three fuzzy rules above reflect an influence or a linear link between the time delay risk and the risk factor deficient developers.

- If the risk factor deficient developer is low Then the time delay risk is low.
- If the risk factor deficient developer is Medium Then the time delay risk is medium.
- If the risk factor deficient developer is high Then the time delay risk is high.

For relationships with time weights, we define an additional input delay variable parameter in fuzzy inference rules. For our example application, two fuzzy rules indicating the existence of the delay parameter can be as follows:

- If the technological aspect risk factor is high and the delay is short Then the high cost risk is Low.
- If the technological aspect risk factor is high and the delay is long then the high cost risk is high.

The without learning FCM that model the SPM of Figure 1 is shown in Figure 2 with Table 3 as an initial matrix.

![Figure 2. Without learning FCM model of SPM](image)

<table>
<thead>
<tr>
<th>Concept</th>
<th>Initial Value</th>
<th>Final Values</th>
<th>Activation Function</th>
<th>Transfert Function</th>
<th>Num. of Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>1.00</td>
<td>Sigmoid</td>
<td>A + A.W</td>
<td>56</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>1.00</td>
<td>Sigmoid</td>
<td>A + A.W</td>
<td>56</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>1.00</td>
<td>Sigmoid</td>
<td>A + A.W</td>
<td>56</td>
</tr>
<tr>
<td>C6</td>
<td>0</td>
<td>0.69586237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0</td>
<td>0.83569675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>0</td>
<td>0.72975341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>0</td>
<td>0.90204315</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Concept's final values without learning FCMs

As evident from Table 4 and Figure 3, the risk factors C_1, C_4 and C_5 that activated the high cost concept C_6 and time delay concept C_9 risks are still active despite the convergence of the non-learning FCM after 46 step. For the organization this implies that the risk remains active.

Among the concepts mentioned in Figure 2, we will discuss the concept of high cost risk and see how based on the proposed approach the organization adapts to its environment by treating this risk.

The High Cost concept is affected by risk factor concepts bad schedule and fuzzy objectives. Adaptation is translated here by the action or actions (decisions) undertaken by the organization to deal with this type of risk. One can imagine that in order to stabilize costs, we must act on the risk factors that directly affect this concept. In other words, either improve the scheduling of tasks, or seek to clarify objectives related to its field or both in parallel. This search is guided by, on the one hand, the values associated with the pairs (state, action) found in the table of the function Q, and on the other hand by the probabilities of the actions as mentioned above.

If the possible or permissible actions are no longer able to meet the needs of the organization, it is called upon to look for other mechanisms that allow it to meet its needs. For
example, in our case, the organization can play on the risk factor deficient developers with which the concept High Cost has no direct influence link, this action results in the creation of a connection between concept risk high cost and the concept risk factor deficient developers. This last case is represented by Figure 4.

The rules that go along with the organization in the search for the optimal actions or decisions allowing it to adapt to the new environmental data in the proposed approach are of the form:
- If High Cost Risk is Active Then // depending on the factor that activated the risk
If state Q (state, a_i) already visited then executes action a_i (a_i action here is either the increase or the decrease link).
Otherwise select the a_i action that has the highest probability or choose any other actions.

$$r_{\text{max}} = \max (r_{\text{increase}}, r_{\text{decrease}})$$ (9)

therefore, definition 1 is written in our case study as follows:

Definition 2: principe of Kosko causality with reward

- $(C_i$ causally increases $C_j)$ iff $(Q_i \subset Q_j$ and $-Q_j \subset Q_j)$ and

$$r_{\text{Max}} = r_{\text{increase}}$$

- $(C_i$ causally decreases $C_j)$ iff $(-Q_i \subset Q_j$ and $Q_j \subset Q_j)$ and

$$r_{\text{Max}} = r_{\text{decrease}}$$

Based on the theoretical aspects described above, the pseudo code of Algorithm 1 summarizes our approach [33][34].

Algorithm 1: Pseudo code of the proposed approach

Step 1: Read the vector $A^{(k)}$ and weight matrix W

Step 2: Calculate the output vector

$$A^{(k+1)} = f(A^k + \sum A^k W)$$

Step 3: Depending on the response of the environment:

- If $r_{\text{action}} = 1$ // Award

(Updating by increasing the probability P_{ij} and the Q value function according reward r_{action} associated to action)

$$Q^{k+1}(s_i, a_i) = Q^k(s_i, a_i) + \alpha [1 - Q^k(s_i, a_i)]$$

$$p^{k+1}(a_i) = p^k(a_i) + \beta [1 - p^k(a_i)]$$

- If $r_{\text{action}} = 0$ // Penalty

(Updating by decreasing the probability P_{ij} and the Q value function according reward r_{action} associated to action)

$$Q^{k+1}(s_i, a_i) = (1 - \alpha) Q^k(s_i, a_i)$$

$$p^{k+1}(a_i) = (1 - \beta) p^k(a_i)$$

Step 4: If the termination conditions are realized Stop. Otherwise go to Step 2.

Thereafter, the organization evaluates its actions towards its environment by the feedbacks of the latter (in the form of positive or negative answers) by updating its decision-making policy that allows it to adapt and improve its behavior towards its economic and social partners.

The initial matrix of the reinforcement learning extended fuzzy cognitive maps RL-E-FCM that model the software project prototype studied in this paper shown in table 5, represents and summarizes the different weights between the concepts of the map. Especially the links that express the behavioral adaptation, in particular the concept High cost C_8 and its links with the concepts Bad schedule C_3 with weight $w_{k_{83}}=0.25$, Technological aspects C_4 with weight $w_{k_{48}}=0.05$ and deficient developers C_5 with weight $w_{k_{85}}=0.50$ if C_8 increases C_3 and with decreases weight $w_{k_{85}}=0.50$ in case where C_5 decreases C_3.

In the next paragraph 6, we discuss the results obtained after simulation of the SPM model in the proposed approach and in the conventional FCMs approach. This simulation is carried out under Matlab version R2014.a, but before we

![Figure 4. SPM Reinforcement learning extended fuzzy cognitive maps model.](image-url)
start the discussion, we show the three types of conditional, nonlinear, and temporal links used in this case study.

- **Conditional weight**: Risk factors Bad Schedule and Budget Limitation conditionally influence Time delay and High cost risks.

\[(C_1 \oplus C_2) \rightarrow (C_8 \oplus C_9) \quad (w_{18} = +0.7, \ w_{29} = +0.6) \]

- **Duration weight**: The risk factor Technological Aspect influences the concept of Time Delay risk with variable duration.

\[C_4 \rightarrow C_9 \quad (w_{49} = +0.8) \]

- **Nonlinear weight**: The risk factor Deficient developers influences the concept risks Low Performance and Time Delay in a nonlinear way as explained above

\[C_5 \rightarrow (C_6 \oplus C_9) \quad (w_{56} = +0.2, \ w_{59} = +0.2) \]

V. Results and Discussions

Simulation of the prototype associated with the SPM model of figure 4 is carried out under MATLAB R2014a. The two scenarios are represented by the results obtained in table 7 in the case where the concept C_8 decreases concept C_5 and in table 8 where the concept C_8 increases the concept C_5. It can be seen that the best result is obtained in the case where the C_8 concept decreases the C_5 concept.

V. Results and Discussions

Simulation of the prototype associated with the SPM model of figure 4 is carried out under MATLAB R2014a. The two scenarios are represented by the results obtained in table 7 in the case where the concept C_8 decreases concept C_5 and in table 8 where the concept C_8 increases the concept C_5. It can be seen that the best result is obtained in the case where the C_8 concept decreases the C_5 concept.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Initial Values</th>
<th>Final Values</th>
<th>Activation Function</th>
<th>Transfer Function</th>
<th>Number of Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>1</td>
<td>0.59937409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td>1</td>
<td>0.59937409</td>
<td>A+AW Sigmoid</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>C_5</td>
<td>1</td>
<td>0.69329384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_6</td>
<td>0</td>
<td>0.74556292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_7</td>
<td>0</td>
<td>0.76593465</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_8</td>
<td>1</td>
<td>0.78606504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_9</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Simulation Results with decrease weight from C_8 to C_5 as the best weight

<table>
<thead>
<tr>
<th>Concept</th>
<th>Initial Values</th>
<th>Final Values</th>
<th>Activation Function</th>
<th>Transfer Function</th>
<th>Number of Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>1</td>
<td>0.82352251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td>1</td>
<td>0.97252654</td>
<td>A+AW Sigmoid</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>C_5</td>
<td>1</td>
<td>0.85343066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_6</td>
<td>0</td>
<td>0.74556292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_7</td>
<td>0</td>
<td>0.76593465</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_8</td>
<td>1</td>
<td>0.78606504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_9</td>
<td>0</td>
<td>0.65904607</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Simulation Results with increase weight from C_8 to C_5

![Concept values evolution, the reinforcement learning E-FCM converge in 24 steps.](image)

Figure 5. Concept values evolution, the reinforcement learning E-FCM converge in 24 steps.

Table 6 gives the probability and the Q function quantity values before the simulation, the initial values, and after the
simulation, the final values, obtained by application of our algorithms while taking into account the natures of applied quickly. On behalf the firm to be able to make an adequate decision, it has to compare the simulation of its SPM model, in our case study, with two links (increase, decrease) from concept C_5 to concept C_8. Similarly, in our proposed approach, another’s situations can arise, in which concept influences another concept with two weights (increase, increase) or with two weights (decrease, decrease).

Initially the vector A is taken as follows $(1 0 0 1 0 1 0 1 0)$ where the value 1 means that the concept is active, otherwise it is inactive. The results for both the FCM and RL-E-FCM methodology and their comparison are presented in Table 9.

<table>
<thead>
<tr>
<th>Used Method</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical FCM</td>
<td>Final concept values are $C_1: 1.00$ $C_2: 0.65904607$ $C_3: 0.65904607$ $C_4: 1.00$ $C_5: 1.00$ $C_6: 0.69586237$ $C_7: 0.83569675$ $C_8: 0.72975341$ $C_9: 0.90204315$ This shows factors risk C_1, C_4 and C_5 are after simulation also active.</td>
<td>In classical FCMs, there is no consideration of the propriety of the links found in the studied systems such as: the notion of time, conditional relationship between concepts and the non-linearity of links.</td>
</tr>
<tr>
<td>RL-E-FCM with decrease weight</td>
<td>Final concept values are $C_1: 0.59937409$ $C_2: 0.65904607$ $C_3: 0.65904607$ $C_4: 0.59937409$ $C_5: 0.69329384$ $C_6: 0.74556292$ $C_7: 0.76593465$ $C_8: 0.78606504$ $C_9: 0.65904607$ In this case all the concepts are flattened and none of them is active, therefore the organization can judge that the problem will be solved if it performs the chosen actions.</td>
<td>In this simulation all the risk factors are inactive, which means that the decisions taken by the organization are just and optimal. The best connection retained is where the concept C_8 decreases the concept C_5.</td>
</tr>
<tr>
<td>RL-E-FCM with increase weight</td>
<td>Final concept values are $C_1: 1$ $C_2: 0.65904607$ $C_3: 0.65904607$ $C_4: 0.97232654$ $C_5: 0.8534066$ $C_6: 0.74556292$ $C_7: 0.76593465$ $C_8: 0.78606504$ $C_9: 0.65904607$ This shows factors risk C_1 after simulation also active and it means that the problem is not solved for the organization.</td>
<td>Here we have a C_1 concept that stays active and so the problem is not solved completely.</td>
</tr>
</tbody>
</table>

Table 9. FCMs and proposed RL-E-FCMs comparison results
V. Conclusions

The reinforcement learning extended fuzzy cognitive maps RL-E-FCMs proposed approach provides a flexible technique to process both objective and subjective input/output data. This approach provides a risk assessment and a highly best to respond methodology for a broad variety of project activities. However, the merit of using fuzzy inference systems to handle the uncertainty imposed by projects is largely advised. This approach helps managers to formulate a problem by using natural language as linguistic terms.

One of the reasons for the failure of software projects is the absence of risk management procedures or its improper application by managers. The nature of software projects generates many risks that must be managed carefully to avoid the project’s loss. In this paper we have presented E-FCMs improved by introducing of a connection between reinforcement learning and extended fuzzy cognitive maps for studying risk analysis and management in software projects. In this way we can summarize our contribution in relation to Axelrod and Kosko by a new cognitive map where a concept can increases and decreases another concept according to environmental conditions. Here we point out that in the proposed approach, if all the appropriate What-If questions are not intuitive, they can immerse from simulation and so the answers to these questions computer simulation results have demonstrated the effectiveness of the efficient connection between reinforcement learning paradigm and E-FCMs proposed in this article and will seriously improve the behavior of E- FCM and so FCM which are adapted to study of RAM system. We have also presented an improvement formulation of Kosko causality principle in which one concept increases or decreases another concept according to environmental conditions. The work is realized under MATLAB R2014.a platform version.

References

Author Biographies

Ahmed Tili was born in Constantine, Algeria. He received the Magister degrees from Elhadj Lakhdar University of Batna, Algeria, in 2007. In 2010, he joined the Department of Computer Science and its Applications, New Information Technologies and Communication Faculty, Abdelhamid Mehri Constantine 2 University., Constantine as a student researcher. His interesting areas are Artificial Intelligence, software engineering, Neural network, Fuzzy logic and Fuzzy Inference System.

Salim Chikhi received the degree of professor at the University of Abdelhamid Mehri, Constantine 2, Algeria. He received his Doctorate degree in Artificial Intelligence from Mentouri University, Constantine Algeria. He is currently the Director of Modeling and Implementation of Complex Systems Labs (MISC Labs). He has published more than two hundred articles. His Interested area includes artificial intelligence, wireless networks, computational intelligence optimization, social networks analysis natural language processing.

Ajith Abraham (Senior Member, IEEE) received the M.Sc. degree from Nanyang Technological University, Singapore, in 1998, and the Ph.D. degree in computer science from Monash University, Melbourne, Australia, in 2001. He is currently the Director of Machine Intelligence Research Labs (MIR Labs), a Not-for-Profit Scientific Network for Innovation and Research Excellence connecting Industry and Academia. The Network with Headquarters in Seattle, USA, he has currently more than 1000 scientific members from more than 100 countries. As an Investigator/Co-Investigator, he received research grants worth more than 100 Million U.S.$ from Australia, USA, EU, Italy, Czech Republic, France, Malaysia, and China. He works in a multidisciplinary environment involving machine intelligence, cyber-physical systems, the Internet of Things, network security, sensor networks, web intelligence, web services, data mining, and applied to various real-world problems. In these areas, he has authored or coauthored more than 1300 research publications out of which there are more than 100 books covering various aspects of computer science. One of his books was translated to Japanese and few other articles were translated to Russian and Chinese. About more than 1000 publications are indexed by Scopus and more than 800 are indexed by Thomson ISI Web of Science. Some of the articles are available in the ScienceDirect Top 25 hottest articles. He has more than 1,100 coauthors originating from more than 50 countries. He has more than 37,000 academic citations (h-index of 91 as per google scholar). He has given more than 100 plenary lectures and conference tutorials (in more than 20 countries). For his research, he received the seven best paper awards at prestigious International conferences held in Belgium, Canada Bahrain, Czech Republic, China, and India. Since 2008, he has been the Chair of the IEEE Systems Man and Cybernetics Society Technical Committee on Soft Computing which has more than 200 members and served as a Distinguished Lecturer for the IEEE Computer Society representing Europe from 2011 to 2013. He is currently the Editor in-Chief of Engineering Applications of Artificial Intelligence (EAAI) and serves/served the Editorial Board for more than 15 international journals indexed by Thomson ISI. He is actively involved in the organization of several academic conferences, and some of them are now annual events. More information at: http://www.softcomputing.net/.