
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 12 (2020) pp. 239-247

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 5 April, 2020; Accepted: 23 May, 2020; Published: 20 June, 2020

Towards a Decision Support System for the

Automatic Detection of Asian Hornets and Removal

Planning

Diogo Braga1,2 and Ana Madureira1,2

1,2 Interdisciplinary Studies Research Center, Institute of Engineering - Polytechnic of Porto

R. Dr. António Bernardino de Almeida 431, 4200-072

Porto, Portugal

{1140499, amd}@isep.ipp.pt

Abstract: The rapid expansion of Asian hornets poses a high

threat for the honey bee survival, as these invaders pray on them.

Furthermore, they also pose a threat to people who are allergic,

whose sting can lead to death. This study proposes a Decision

Support System that uses Computer Vision techniques to

automatically detect signs of Vespa velutina through images from

GPS equipped camera. The goal of the system is to provide timely

information about the presence of these invaders, allowing park

managers and beekeepers to act quickly in removing the

Vespidae. The proposed methodology obtained an 85% accuracy

in the detection of V. velutina using the Mask RCNN architecture,

enabling the system to perform detection at 3 FPS.

Keywords: Vespa velutina, Decision Support System, Computer

Vision.

I. Introduction

On average, 13% of all floral visits belong to honey bees (i.e.,

western honey bees Apis mellifera), who are currently the

world’s most frequent pollinators of crops. There are around

200 economically important plants that require bee pollination

for reproduction, and around 5% of plant species worldwide

are exclusively visited by honey bees [1]. As stated by the UN

Food and Agriculture Organization [2], more than 75% of the

world’s food crops rely to some extent on pollination for yield

and quality. The European Commission highlights that

pollinators provide vital ecosystem services to crops and wild

plants, forming a key component of European biodiversity [3].

Yet, several threats to honey bees still exist worldwide [2],

[4]–[7], of which the most recent one is the yellow-legged

hornet (Vespa velutina), commonly referred to as the Asian

Hornet. These were accidentally introduced into regions such

as Europe from Asia [8], and their biological invasion raises

significant problems for several sectors of Europe. V. velutina

prey mainly on domestic and commercial honey bees, and just

their presence is enough to increase mRNA expression of

oxidative stress-related genes, catalase activity and lipid

peroxidation, impacting honey bees negatively [9]. Not only

this added stress can contribute to events such as Colony

Collapse Disorder, but V. velutina can also be deadly to

allergic people, and the invaders have rapidly risen an

impressive size, especially in the west of Europe [8]. Even

though signs of these invaders date to records as early as 2003,

their expansion to countries such as Portugal, France and the

UK was only registered starting from 2012 [10].

The western honey bees pollinate crop species that compose

up to one-third of the average diet, worldwide [11]. Since the

world population is expected to rise in the upcoming years,

creating a demand for higher food production for a sustainable

growth, the significant threat that the V. velutina pose to both

bees and humans creates a demand for the development of

solutions that can help experts to quickly and efficiently deal

with these Vespidae. There is also special need for solutions

that provide help regarding the destruction of early-stage nests

[8], since these play a vital role in the produces provided to

humans by ecosystem services.

Recent advances in Deep Learning (DL) and Computer

Vision (CV) have shown potential applications in the

automatic detection of bees and their respective health, such as

detecting environment conditions and signs of varroa

destructor, among others [11]–[16]. Furthermore, there have

been recent developments in CV [17] which show interesting

potential applicability for systems that can help with the

detection of Asian Hornet presence.

The goal of this study is to provide and develop an

architecture of a Decision Support System (DSS) that can help

decision makers effectively deal with this Vespidae invasion.

The architecture has the goal to detect the presence of V.

velutina through images from GPS equipped cameras, where

the DSS uses this data to provide insightful information about

the time and location of the detected V. velutina, as well as

suggestions for the effective removal of the invaders.

Furthermore, the DSS must also be able to perform this

detection as close to real-time as possible, with enough

accuracy to reduce the efforts of alert revision and inspection

by its users. The system is aimed to be used by park managers

who want to ward off V. velutina and beekeepers who want to

protect their hives from potential threats.

The remainder of this paper is structured as follows: section

Towards a Decision Support System for the Automatic Detection of Asian Hornets and Removal Planning

241

II provides an overview of DL and CV, as well as a review of

the most relevant and recent frameworks and work in the

context of this study’s scope; section III describes this study’s

methodology, including the data sets used, architectures and

any design decisions towards the development of the proposed

DSS; section IV details the results obtained in the trials

conducted for the development of the object detection model,

as well as a discussion and comparison of these results with the

state-of-the-art; section V summarizes the major findings of

this study and highlights future work to be conducted.

II. Literature Review

In this section, an overview of recent contributions in CV, ML

and honey bee monitoring systems will be performed, with

special focus to systems and solutions that aim to detect bees.

At the time of writing, it was not possible to find any relevant

literature regarding the automatic detection of V. velutina. As

such, due to the resemblances between bees and wasps, the

review mentioned previously will be used to assess the

different approaches that can be used for the detection of asian

hornets.

On the topic of bee health systems, recent contributions

have been made involving ML algorithms and bee health

monitoring. The work done by Kulyukin et al. [12] used 9110

audio samples, equally distributed by “Bee Sound”, “Noise

Sound” and “Cricket Sound”, in order to monitor a bee hive.

The approach used a Convolutional Neural Network (CNN)

based architecture, was tested on the BUZZ1 and BUZZ2 [18]

data sets and compared with other types of ML & DL

algorithms. The authors concluded that DL can be used to

monitor bees in a beehive and the CNN-based approach

obtained an accuracy of 95.21% and 96.53% on the BUZZ1

and BUZZ2 data sets, respectively. The study in [19] used

video and CNN for the automatic detection of honey bees in a

hive. The data set consisted of approximately 11 hours of video

footage, where a tag was placed on bees. The best F1-score

value achieved in the study was of 0.686 and the authors

concluded that the manual labeling provided by the tags may be

insufficient for bee detection. Aiming at the detection of mites

and varroa destructor, both [13] and [15] used CNN and ML

algorithms to perform bee hive monitoring. The first study

obtained an accuracy of 93% detection of varroa destructor

using a training data set of 5000 artificially generated images,

tested with different CNN configurations [13]. The second

study used different light settings and a special camera setup,

recording 1920x1080 images at 50-60FPS. The authors

highlighted the challenge in detecting mites on moving bees or

on bees where wings occlude the mites [15]. The work done in

[20] provides a thorough explanation and exploration of the

data set publicly available in [21]. In the approach, 2 CNN

models were used to perform the classification of a bee’s health

and subspecies. The author of [20] provides a solid pipeline for

modular training of the CNN models, including several

methods to analyze and remove bias from the data set. Using

the data set provided in [21], the author was able to obtain a

best accuracy of 84.92% and 86.54% on the health and

subspecies models, respectively.

In ML, DL concerns the development of computational

models that are composed of multiple processing layers, which

can learn representations of data with multiple levels of

abstraction [22]. Each processing layer is composed by a set

amount of non-linear modules that transform a specific

representation at one level. Since DL can discover intricate

structures in high-dimensional data, it can be applied in many

domains of science, business and government [22].

Computer Vision can be defined as the field of science which

relates to the automation of tasks that the human visual system

can do [23]. CV comprises fields such as image segmentation,

which concerns the partitioning of an image into a set of

regions that cover it, obtaining meaningful information from

the regions. The former differs slightly from object detection,

as the latter’s regions are bounding shapes (usually boxes),

whereas image segmentation’s regions can be composed from

pixel-by-pixel representations [24]. From the literature review

conducted for this study, the most promising architectures to

be used in the development of the DSS are Mask-RCNN and

Single Shot MultiBox Detector (SSD).

In the last decade, advances have been made to the CNN

architecture, depending on the goal of its application (i.e.,

image classification, object detection, image segmentation).

Some of the most significant contributions are as follows [17]:

AlexNet, which won the 2012-ILSVRC competition (one of

the most difficult challenges for image detection and

classification, at the time); GoogleNet, which won the

2014-ILSVRC competition (introduced the concept of split,

transform and merge blocks); ResNet, proposed by Microsoft,

for the net training of 150 layers deep networks and DenseNet,

which uses the idea of cross-channel connectivity. One of the

most significant contributions is the Mask-RCNN architecture,

which is a Recurrent Convolutional Neural Network that

extends the Faster R-CNN – one of the best architectures for

object detection and image segmentation [25]. Mask-RCNN

implements a branch for predicting an object mask in parallel

with the branch that performs bounding box recognition. With

this architecture, Mask-RCNN can perform faster and simpler

training, with only a 5 Frames Per Second (FPS) loss [25].

The SSD architecture was inspired by the anchors adopted

in Multibox, RPN and multi-scale representation [26]. SSD

functions similarly to You Only Look Once (YOLO). However,

instead of fixed grids, SSD uses a set of default anchor boxes

with different aspect ratios and scales. This approach is used to

discretize the output space of the bounding boxes. By fusing

predictions from multiple feature maps with different

resolutions, the network can handle objects of various sizes

[26], [27]. Comparing SSD to YOLO applied to images of

300x300, SSD outperforms YOLO with better accuracy at 59

FPS. With tuned settings, SSD can even outperform Faster

R-CNN. However, SSD cannot handle small objects by default,

requiring a better feature extractor backbone (such as a

ResNet101) in order to achieve this goal [27].

The study in [27] has a particularly detailed and exhaustive

comparison of several object detection frameworks such as

Mask-RCNN, SSD, YOLO and Faster R-CNN, as well as

insights on how these were implemented.

Table 1 summarizes the authors’ findings when comparing the

models on the VOC 2007, VOC 2012 and Microsoft COCO

data sets.

Architecture VOC 2007

Ranking

VOC 2012

Ranking

Microsoft

COCO

Faster 3rd/4th/5th 7th 13th

Braga and Madureira

242

R-CNN

Mask-RCNN 8th 12th 3rd/4th

SSD 1st/2nd 2nd/3rd 2nd/10th/11th

YOLO N/A 4th 12th

Table 1. Comparison of different object detection architectures.

The table depicts the ranking of each architecture in the tested

data set. Multiple rakings represent different configurations of

the architecture [27]

As can be seen in Table 1, it can be stated that SSD seems to

be the overall best architecture when compared to the

remaining architectures, having achieved top rankings.

Likewise, it can be stated that although Mask-RCNN had poor

performance in the VOC data sets, it seems to have a

satisfactory performance in the Microsoft COCO data set.

III. Methodology

A. DSS Workflow and Dynamics

As stated previously, the goal of this work is to develop a DSS

for the monitoring of Asian Hornet presence, which can

provide insightful information to its users, such as park

managers or beekeepers. To develop the DSS, the architecture

defined in Figure 1 is proposed. The main logic of the DSS

consists in using a camera’s image feed to detect signs of V.

velutina. Since multiple cameras can be used, the system

requires a scheduler that can determine which camera’s image

will be evaluated at a given time, like how an operative system

schedules a task to a CPU. After the image is fed onto the

classifier, an alert constructor (specific to each camera) will

store the result of the analysis in a buffer and begin evaluation.

If the alert constructor finds that the percentage of images

stored in the buffer is greater than a given threshold, then an

alert will be fired, and all images will be recorded in the

database until the percentage of images of V. velutina

decreases below the threshold value. Essentially, each alert

constructor’s detection buffer works like a sliding window,

allowing the system to know when an alert must be fired, as

well as when to start and stop recording detection footage.

Finally, when the alert is fired, a notification is sent to the

system’s dashboard so that its users can review the detected

footage and act accordingly.

Figure 1. Diagram of the proposed DSS. Camera images will be fed onto a predictive model, following a scheduler’s policy, to

detect V. velutina and provide beekeepers and park managers with timely information.

On the topic of the system’s scheduler, for this study, no needs

for the type of job scheduler were found. As such, the

implemented scheduler follows a First-In, First-Out (FIFO)

approach, where each camera is inserted at the end of the

queue after it’s done processing, in a rotating fashion.

Furthermore, since the classifier will always take a set amount

of time generating the masked image, the detection buffer’s

length of each alert constructor is calculated by computing an

estimate of the classification time. For the system to work

properly, its administrator must specify the following

constants:

 Sequence_seconds: the amount of time, in seconds, for

which a camera must be detecting V. velutina signs until

it is considered a valid alert. The previous is required

because of the following constraint: if one were to be

using a classifier with 90% accuracy, on footage

recorded at 30 FPS, it would mean that roughly 3 out of

30 frames would have an incorrect prediction. As such,

Towards a Decision Support System for the Automatic Detection of Asian Hornets and Removal Planning

243

to account for imprecision in the classifier, the alert is

only fired if V. velutina signs are detected for a set

amount of time.

 Global_alert_threshold: the percentage of images of

which an alert constructor signals an alert. Similarly to

the above, when accounting for the imprecision of a

classifier, if in 10 frames only 1 does not have signs of

V. velutina, then such case might have happened

because of a classifier’s inaccuracy (or even the wasp

briefly being out-of-reach of the camera). However, as

the alert should still be fired in such case, the possibility

to configure the system’s sensitivity to outlier data is

also needed.

With the constants defined above, calculating an estimate for

the detection buffer’s length is possible using the formula

described in (1).

 (1)

Furthermore, when the system starts, it will run the detection

mechanism for a set amount of time (default of 7 seconds) in

order to get the average amount of time taken by the classifier

for each detection (seconds_per_frame). As such, obtaining

the desirable buffer length for a given system’s configuration,

in an automatic fashion, is possible.

The system was developed using Python, as the language

possesses high versatility and compatibility with DL and

software development frameworks, as opposed to R, which

has some implementation incompatibilities due to third-party

packages [28]. For the development of the DSS and respective

dashboard, a web application approach was used, as it easily

allows multiple users to view data without requiring any

additional installation on computers.

Hardware Specification

GPU Nvidia Geforce GTX 1050 ti 4GB

CPU Intel Core i7-8700 Hexa-Core 3.2GHz

Disk
540 MB/sec read speed

520 MB/sec write speed

RAM 32GB 2666 Mhz

Software

Python 3.6

Keras with Tensorflow GPU backend;

tensorflow v1.13.1; keras v2.2.4;

mask-rcnn v2.1; cuda v10.0.130;

cudnn v7.6.0;

Table 2. Hardware specification of the environment used to

develop the classifier and the DSS.

For this development, Django was chosen as the web

development framework, since it is implemented in Python,

reducing any overheads that could exist when calling models

from frameworks of other languages such as Spring, .NET and

Laravel. Table 2 provides the hardware specifications of the

development environment of the DSS and the predictive model.

Django can be considered as a high-level, free and open source

Python web framework which encourages rapid development

and clean, pragmatic design [29]. Django is used in production

by companies such as Bitbucket, NASA, Udemy and Mozilla

[30].

B. Accuracy Evaluation

For the purposes of evaluating the accuracy of a given model, it

is important to discuss the topic of assessing a ‘hit’ or ‘miss’ of

a given example. In object detection, the output of a given

model is considered correct it the area of the predicted mask

overlaps a desirable amount of the truth mask. The IoU

provides the intersection of the masks (between 0 and 1), and

the threshold commonly used is 0.5. However, the complex

part of the evaluation algorithm resides in choosing the

predicted mask that should be compared with the truth mask,

as well as the expected behavior in the case of multiple

overlapping predicted masks. For these reasons, a custom

algorithm was implemented to evaluate the accuracy of the

model. On the context of choosing the best candidate predicted

mask, the custom algorithm chooses the predicted mask

closest to the truth mask, using the Euclidean distance. The

position used for the distance computation is obtained from the

calculation of the center of the mask. Furthermore, on the case

of the expected behavior in the case of multiple overlapping

predicted masks, the following two alternatives were

identified:

 Consider multiple predicted masks as TP if their

IoU is above the desirable threshold, which

translates to considering that the model predicted

“correctly” that the detected object was in the given

area, but did so multiple times (possibly meaning that

the model fails to remember a given prediction);

 Consider only one predicted mask as a TP, with the

rest being FP, which translates to considering that

the model incorrectly predicted the extra masks and

assumed that other objects/information close to the

TP were the target object, when they shouldn’t be

(e.g. considering that a bee’s leg is a bee).

Comparing both alternatives, the first alternative was

concluded to provide a more optimistic assessment of the

model’s quality performance, albeit possibly less realistic.

Likewise, the second alternative was considered to provide a

less optimistic assessment, but more realistic. Taking into

consideration the differences between the approaches and the

potential impacts (both positive and negative) in obtained

results, the second alternative was implemented in the custom

algorithm, as to minimize benefits to the evaluated model’s

accuracy. Table 3 shows the pseudo-algorithm, where, for

each target class, the custom algorithm compares the predicted

mask closest to the truth mask and, if the IoU is higher than the

threshold, the mask is considered a true positive. This process

is repeated until there are no remaining truth masks. Any

remaining predicted masks are automatically labelled as a false

positive.

1. def compute_confusion_matrix_image_data(self,truth_class_array,truth_mask_array,pred_class_array,pred_mask_array):

2. ground_truths = self.pair_class_names_masks(truth_class_array,truth_mask_array)

3. predictions = self.pair_class_names_masks(pred_class_array,pred_mask_array)

4.

Braga and Madureira

244

5. unique_classes = unique_list(truth_class_array)

6. for clazz in unique_classes:

7. has_gt_masks = False

8. if clazz not in ground_truths:

9. if clazz in predictions: #If mask does not exist in ground truths, but predictions has it, then it's a false positive

10. self.matrix.add_value(clazz, 'fp', float(len(predictions[clazz])))

11. else:

12. #If not, then it is a true negative

13. self.matrix.add_value(clazz,'tn',1.0)

14. else:

15. masks = ground_truths[clazz]

16. if clazz not in predictions:

17. #If predictions do not have any class, then it's a false negative

18. self.matrix.add_value(clazz, 'fn', float(len(masks)))

19. else:

20. pred_masks = predictions[clazz]

21. for i in range(0,len(masks)):

22. has_gt_masks = True

23. # if predictions has no targets for a class but there are still ground truths, then it's a FN

24. if len(pred_masks)==0:

25. #False Negative

26. self.matrix.add_value(clazz,'fn',float(len(masks)-i-1))

27. else:

28. index = self.closest_prediction_to_truth(masks[i],pred_masks)

29. pred_mask = pred_masks.pop(index)

30. iou = self.compute_intersection_over_union(masks[i],pred_mask)

31. if iou>self.iou_threshold:

32. #True Positive

33. self.matrix.add_value(clazz,'tp',1.0)

34. else:

35. #False Negative

36. self.matrix.add_value(clazz,'fn',1.0)

37. #if predictions still has masks (extra), but ground-truths hasn't: FP

38. if has_gt_masks and len(pred_masks)>0:

39. # False Positive

40. self.matrix.add_value(clazz,'fp',float(len(pred_masks))) #pred_masks should have the remaining masks

Table 3 - Pseudo-algorithm, in Python, for the assessment of an object detection model's accuracy.

C. Classifier Development

From literature review, it was concluded that both

Mask-RCNN and SSD would be good candidates for the

development of a classifier for this task. However, it was not

possible to find a valid and working SSD architecture that

would be robust enough to work on data sets that differ from

its implementation. The only valid architecture found was the

one contained in Tensorflow’s Object Detection API [31], but

the latest instructions for the correct implementation are dated

and produce errors. Even after manual revision and correction,

the training and evaluation trials of the SSD returned a 0%

accuracy model. Due to time constraints and the complexity of

the SSD architecture, it was not possible to perform a custom

implementation of the architecture. Therefore, in this paper,

the implementation, and trials of the SSD architecture will not

be described.

For the development of the classifier, the data set was

composed of images with and without bees and V. velutina.

Since bees have a similar appearance to an Asian Hornet, a data

set of these images was included, as to make sure the classifier

would distinguish a V. velutina from a honey bee, therefore

ensuring the usage of the DSS in environments with bee hives.

The bee data set was extracted from Explore’s honey bee live

streams [32] and [33], which contain images from the

perspective of the landing pad of two different apiaries and

from inside a bee hive, respectively. For both live streams,

images were extracted every 5 frames, totaling 2,750 images of

honey bee footage for object detection. The wasp data set was

obtained through manual search of V. velutina footage in

documentaries and recording, such as in [34], as images of

asian hornets aren’t widely available, mainly due to the threat

they pose (usually, there is an urge to remove them as fast as

possible). In total, 130 hornet images were obtained. All

images used were resized to 990x504 pixels. The images were

manually annotated, in accordance to the following criteria:

only bees and wasps that are at least 50% visible and whose

quality is high (i.e., there is no blur associated to the bee) are

annotated for object detection. Figure 2 and Figure 3

showcase an example of the annotations made following the

previously mentioned criteria, using a custom-made tool for

annotation.

Towards a Decision Support System for the Automatic Detection of Asian Hornets and Removal Planning

245

Figure 2. Example of annotations for object detection. In the

image, bees whose quality is too low (e.g., blurry) are not

annotated.

Figure 3. Example of an annotated V. velutina.

To maximize the performance of the algorithm, only 386

images were used for the object detection phase, which were

manually annotated, instead of using an automated approach

(i.e., Silver Standard). Of these, 49 correspond to

nature-themed images with no bees. The empty images have

the goal to further refine the model with examples of scenes

where bees normally are present. Due to computational

restrictions, all images and respective annotations were scaled

down to 576x290 pixels. The evaluation metric used for the

object detection task was the accuracy and average

Intersection over Union (aIoU), which corresponds to the

intersection of the predicted mask and ground-truth mask, over

the union of the two masks. The accuracy was measured using

IoU, with a threshold of 0.5 (i.e., an IoU higher than 0.5 is

considered a true positive). The cross-validation technique

chosen was the train/test split, as it still provides reliable results

in low volume data, since, regarding object detection,

cross-validation techniques provide minimal differences in

accuracy [35]. Moreover, other cross-validation methods are

impractical to use due to resource constraints. The train/test

split was of 0.7/0.3. All splits were balanced in accordance to

class distribution.

Regarding the Mask-RCNN, in order to perform the object

detection of bees, the default configuration was used as a base

and the changes stated in Table 3 were added to the training

configuration.

Parameter Value

NUM_CLASSES 3

IMAGE_MAX_DIM 576

IMAGE_MIN_DIM 320

IMAGES_PER_GPU 1

TRAIN_ROIS_PER_IMAGE 32

STEPS_PER_EPOCH 200

Table 4 - Mask-RCNN configuration for training the object

detection model.

The TRAIN_ROIS_PER_IMAGE and IMAGES_PER_GPU

were reduced due to computational constraints, as to lower the

amount of VRAM required to train the model. Table 4 shows

the different values tested in trials for each configuration, with

the goal of obtaining the best hyper-parameters for the object

detection task. All trials conducted used the value of 500 as the

random seed, for reproducibility purposes.

Parameter Values

IMAGE_MAX_DIM [576,460]

IMAGE_MIN_DIM [320,256]

IMAGES_PER_GPU [1,3]

TRAIN_ROIS_PER_IMAGE [16,32,48,64]

BACKBONE [‘resnet101’,’resnet50’]

Table 5 - Listing of all different values used for Mask-RCNN.

Each trial tested a combination of the values specified in the

table.

IV. Results & Discussion

Regarding the Mask-RCNN trials, each unique configuration

was run for 40 epochs, since past this limit, the classifier did

not seem to improve, as can be seen from Figure 4. From the

trials conducted, the best results obtained for Mask-RCNN are

the ones shown in Table 6, which corresponds to the

configuration present in Table 5.

Figure 4. Evolution of train and testing accuracy over learning

epochs. The accuracy change is approximately stagnant past

epoch 40, as well as between epochs 20 and 40.

Parameter Values

IMAGE_MAX_DIM 576

IMAGE_MIN_DIM 320

IMAGES_PER_GPU 1

TRAIN_ROIS_PER_IMAGE 64

BACKBONE ‘resnet101’

EPOCHS 40

Braga and Madureira

246

Table 6 - Best configuration for the Mask-RCNN model.

Data set aIoU Accuracy

Train (Bee) 0.4444 47.44%

Test (Bee) 0.4512 53.75%

Train (Wasp) 0.5719 63.63%

Test (Wasp) 0.6827 85.00%

Train (All) 0.4614 49.60%

Test (All) 0.4975 60.00%

Table 7 - Best configuration's metric results. The metrics for all

labels was obtained by combining the individual IoU of each

sample and performing the test IoU>0.5

Using the best configuration obtained, the average time for the

classification process, including the compositing of the

resulting masked image, is approximately 0.36 seconds, which

averages at 2-3 FPS. During trials, changes to the

configuration were performed (e.g., changing resolution of the

input image) to obtain a faster model, at the expense of the

quality of the prediction. However, the increase in FPS was of

1-2 (totaling 4-5 FPS), with severe classification accuracy loss

(of around 20%). As such, it can be stated that with

Mask-RCNN, it is currently not possibly to obtain a faster

classification process at the expense of accuracy, unless a more

powerful hardware is used.

Comparing to related work, it can be stated that the

approach defined in this study has interesting results.

Regarding the bee detection, the developed classifier seems to

have the same accuracy as other approaches. Regarding Asian

Hornet detection, a direct comparison cannot be made, as there

is no work found in the literature regarding the subject.

However, when compared to bee detection accuracy, it can be

stated that the classifier has a high accuracy in detecting signs

of V. velutina through images, as evidenced by the 85%

accuracy. The classifier exhibits satisfactory results, making its

implementation in the DSS viable.

V. Conclusion

In sum, it can be stated that V. velutina can provide a great

negative impact in both humans and bees, which in turn can

cause a negative impact in the global economy and food

production.

In this study, a methodology for the development of a DSS

that can detect signs of V. velutina through cameras was

proposed. The accuracy of the classifier in detecting asian

hornets is satisfactory (85%), making the model and DSS

viable for the automatic detection of signs of V. velutina. The

model can still be improved since the detection accuracy for

bees is still unsatisfactory (53%). Even though bee detection is

not the scope of this study, the model could benefit from an

improved detection process that can distinguish bees from V.

velutina.

Future work consists in improving the classifier by providing

more annotated data, as well as the further implementation of

the SSD architecture, in order to ensure if the algorithm can

generate a model that performs object detection with

satisfactory results, at a higher frame rate.

References

[1] K.-L. J. Hung, J. M. Kingston, M. Albrecht, D. A.

Holway, and J. R. Kohn, “The worldwide importance of

honey bees as pollinators in natural habitats,” Proc R

Soc B, vol. 285, no. 1870, p. 20172140, Jan. 2018, doi:

10.1098/rspb.2017.2140.

[2] Food and Agriculture Organization of the United

Nations, “FAO - News Article: Bees must be protected

for the future of our food,” May 20, 2018.

http://www.fao.org/news/story/en/item/1132329/icode/

(accessed Nov. 21, 2018).

[3] European Comission, “Final Report Summary - STEP

(Status and Trends of European Pollinators) | Report

Summary | STEP | FP7,” CORDIS | European

Commission, Jan. 2015.

https://cordis.europa.eu/result/rcn/176061_en.html

(accessed Nov. 21, 2018).

[4] FarmMeetsTable, “Are Honey Bees Really Dying out? –

Farm Meets Table,” 2016.

https://www.farmmeetstable.com:443/en/protecting-ou

r-environment/2018/are-honey-bees-really-dying-out

(accessed Nov. 21, 2018).

[5] A. Jacques et al., “A pan-European epidemiological

study reveals honey bee colony survival depends on

beekeeper education and disease control,” PLOS ONE,

vol. 12, no. 3, p. e0172591, Mar. 2017, doi:

10.1371/journal.pone.0172591.

[6] S. Milius, “The mystery of vanishing honeybees is still

not definitively solved,” Science News, Feb. 13, 2018.

https://www.sciencenews.org/article/mystery-vanishing

-honeybees-still-not-definitively-solved (accessed Nov.

21, 2018).

[7] R. M. Underwood and D. vanEngelsdorp, “Colony

Collapse Disorder: Have We Seen This Before?,” p. 8,

2008.

[8] K. Monceau, D. Thiery, and O. Bonnard, “Vespa

velutina: A new invasive predator of honeybees in

Europe,” Mar. 2014, Accessed: Nov. 12, 2019. [Online].

Available:

https://www.researchgate.net/publication/258769112_

Vespa_velutina_A_new_invasive_predator_of_honeyb

ees_in_Europe.

[9] M. Leza, C. Herrera, A. Marques, P. Roca, J.

Sastre-Serra, and D. G. Pons, “The impact of the

invasive species Vespa velutina on honeybees: A new

approach based on oxidative stress - ScienceDirect,” vol.

689, Nov. 2019, Accessed: Nov. 12, 2019. [Online].

Available:

https://www.sciencedirect.com/science/article/pii/S004

8969719330839.

[10] Coloss, “Velutina – COLOSS,” 2019.

https://coloss.org/task-forces/velutina/ (accessed Nov.

12, 2019).

[11] A. Tiwari, “A Deep Learning Approach to Recognizing

Bees in Video Analysis of Bee Traffic,” Grad. Theses

Diss., Aug. 2018, [Online]. Available:

https://digitalcommons.usu.edu/etd/7076.

[12] V. Kulyukin, S. Mukherjee, and P. Amlathe, “Toward

Audio Beehive Monitoring: Deep Learning vs. Standard

Machine Learning in Classifying Beehive Audio

Samples,” ResearchGate, Sep. 2018.

Towards a Decision Support System for the Automatic Detection of Asian Hornets and Removal Planning

247

https://www.researchgate.net/publication/327478653_

Toward_Audio_Beehive_Monitoring_Deep_Learning_

vs_Standard_Machine_Learning_in_Classifying_Beehi

ve_Audio_Samples (accessed Nov. 21, 2018).

[13] L. Chazette, M. Becker, and H. Szczerbicka, “Basic

algorithms for bee hive monitoring and laser-based mite

control,” Dec. 2016, pp. 1–8, doi:

10.1109/SSCI.2016.7850001.

[14] I. Nolasco and E. Benetos, To bee or not to bee:

Investigating machine learning approaches for beehive

sound recognition. 2018.

[15] S. Schurischuster, S. Zambanini, and M. Kampel,

“Sensor Study for Monitoring Varroa Mites on Honey

Bees (Apis mellifera),” 2016.

[16] P. Amlathe, “Standard Machine Learning Techniques in

Audio Beehive Monitoring: Classification of Audio

Samples with Logistic Regression, K-Nearest Neighbor,

Random Forest and Support Vector Machine,” p. 57,

May 2018.

[17] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A

Survey of the Recent Architectures of Deep

Convolutional Neural Networks,” p. 62, 2019.

[18] Utah State University, “BeePi_Audio_Classification,”

2019. https://usu.app.box.com/v/BeePiAudioData

(accessed Aug. 15, 2019).

[19] M. Florea, “Automatic detection of honeybees in a

hive,” Sep. 2013.

http://uu.diva-portal.org/smash/get/diva2:645634/FUL

LTEXT01.pdf (accessed Nov. 21, 2018).

[20] D. Pukhov, “Honey Bee health detection with CNN,”

Oct. 2018.

https://kaggle.com/dmitrypukhov/honey-bee-health-det

ection-with-cnn (accessed Aug. 13, 2019).

[21] J. Yang, “The BeeImage Dataset: Annotated Honey Bee

Images,” 2018.

https://kaggle.com/jenny18/honey-bee-annotated-image

s (accessed Aug. 13, 2019).

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi:

10.1038/nature14539.

[23] RSIP Vision, “Difference Between Computer Vision

and Image Processing,” RSIP Vision, Jul. 27, 2015.

https://www.rsipvision.com/defining-borders/ (accessed

Oct. 09, 2019).

[24] L. Shapiro and G. Stockman, CSE576: Computer

Vision - Chapter 10. 2000.

[25] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask

R-CNN,” ArXiv170306870 Cs, Mar. 2017, Accessed:

Aug. 15, 2019. [Online]. Available:

http://arxiv.org/abs/1703.06870.

[26] W. Liu et al., “SSD: Single Shot MultiBox Detector,”

ArXiv151202325 Cs, vol. 9905, pp. 21–37, 2016, doi:

10.1007/978-3-319-46448-0_2.

[27] Z.-Q. Zhao, P. Zheng, S. Xu, and X. Wu, “Object

Detection with Deep Learning: A Review,”

ArXiv180705511 Cs, Apr. 2019, Accessed: Nov. 12,

2019. [Online]. Available:

http://arxiv.org/abs/1807.05511.

[28] V. Kumar, “Python Vs R: What’s Best for Machine

Learning - Towards Data Science,” Sep. 11, 2019.

https://towardsdatascience.com/python-vs-r-whats-best

-for-machine-learning-93432084b480 (accessed Jan. 01,

2020).

[29] Django Project, “The Web framework for perfectionists

with deadlines | Django,” 2020.

https://www.djangoproject.com/ (accessed Jun. 04,

2020).

[30] Kalpit, “When To Use Django (And When Not To),”

Medium, Jun. 12, 2019.

https://medium.com/crowdbotics/when-to-use-django-a

nd-when-not-to-9f62f55f693b (accessed Jun. 04, 2020).

[31] L. Vladimirov, “Training Custom Object Detector —

TensorFlow Object Detection API tutorial

documentation,” 2018.

https://tensorflow-object-detection-api-tutorial.readthe

docs.io/en/latest/training.html (accessed Jan. 01, 2020).

[32] Explore, “Honey Bees Landing Zone Camera - live

video of bees,” May 2019.

https://explore.org/livecams/honey-bees/honey-bee-lan

ding-zone-cam (accessed Aug. 14, 2019).

[33] Explore, “Bee Cam - live camera inside of a honey bee

hive,” May 2019.

https://explore.org/livecams/honey-bees/honey-bee-hiv

e-cam (accessed Aug. 14, 2019).

[34] Animal and Plant Health Agency, “Close-up of Asian

Hornet on the ground - YouTube,” Mar. 24, 2015.

https://www.youtube.com/watch?v=vxvYhgLNZsY

(accessed Dec. 30, 2019).

[35] C. A. Ramezan, T. A. Warner, and A. E. Maxwell,

“Evaluation of Sampling and Cross-Validation Tuning

Strategies for Regional-Scale Machine Learning

Classification,” Remote Sens., vol. 11, no. 2, p. 185, Jan.

2019, doi: 10.3390/rs11020185.

Author Biographies

Diogo Braga was born in Oporto, in 1996. He got is

associate’ degree in Informatics Engineering in 2017, and

is expected to finish his Master’s degree on July 2020,

both at Institute of Engineering–Polytechnic of Porto

(ISEP/IPP). He is a member of the Interdisciplinary

Studies Research Center (ISRC) and has previously

conducted work in the field of neurodegenerative diseases.

 Ana Madureira was born in Mozambique, in 1969. She

got his BSc degree in Computer Engineering in 1993 from

ISEP, master’s degree in Electrical and Computers

Engineering–Industrial Informatics, in 1996, from FEUP,

and the PhD degree in Production and Systems, in 2003,

from University of Minho, Portugal. She became IEEE

Senior Member in 2010. She was Chair of IEEE Portugal

Section (2015-2017), and Chair/Vice-Chair of IEEE-CIS

Portuguese chapter. She was Chair of University

Department of IEEE R8 Educational Activities

Sub-Committee (2017-2018). She is IEEE R8 Secretary

(2019-2020). She is External Member Evaluation

Committee of the Agency for Assessment and

Accreditation of Higher Education - A3ES for the scientific

area of Informatics of Polytechnic Higher Education (since

2012). Currently she is Coordinator Professor at the

Institute of Engineering–Polytechnic of Porto (ISEP/IPP)

and Director of the Interdisciplinary Studies Research

Center (ISRC). In the last few years, she was author of

more than 100 scientific papers in scientific conference

proceedings, journals, and books.

