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Abstract: The rapid expansion of Asian hornets poses a high 

threat for the honey bee survival, as these invaders pray on them. 

Furthermore, they also pose a threat to people who are allergic, 

whose sting can lead to death. This study proposes a Decision 

Support System that uses Computer Vision techniques to 

automatically detect signs of Vespa velutina through images from 

GPS equipped camera. The goal of the system is to provide timely 

information about the presence of these invaders, allowing park 

managers and beekeepers to act quickly in removing the 

Vespidae. The proposed methodology obtained an 85% accuracy 

in the detection of V. velutina using the Mask RCNN architecture, 

enabling the system to perform detection at 3 FPS.  

 
Keywords: Vespa velutina, Decision Support System, Computer 

Vision.  

 

I. Introduction 

On average, 13% of all floral visits belong to honey bees (i.e., 

western honey bees Apis mellifera), who are currently the 

world’s most frequent pollinators of crops. There are around 

200 economically important plants that require bee pollination 

for reproduction, and around 5% of plant species worldwide 

are exclusively visited by honey bees [1]. As stated by the UN 

Food and Agriculture Organization [2], more than 75% of the 

world’s food crops rely to some extent on pollination for yield 

and quality. The European Commission highlights that 

pollinators provide vital ecosystem services to crops and wild 

plants, forming a key component of European biodiversity [3]. 

Yet, several threats to honey bees still exist worldwide [2], 

[4]–[7], of which the most recent one is the yellow-legged 

hornet (Vespa velutina), commonly referred to as the Asian 

Hornet. These were accidentally introduced into regions such 

as Europe from Asia [8], and their biological invasion raises 

significant problems for several sectors of Europe. V. velutina 

prey mainly on domestic and commercial honey bees, and just 

their presence is enough to increase mRNA expression of 

oxidative stress-related genes, catalase activity and lipid 

peroxidation, impacting honey bees negatively [9]. Not only 

this added stress can contribute to events such as Colony 

Collapse Disorder, but V. velutina can also be deadly to 

allergic people, and the invaders have rapidly risen an 

impressive size, especially in the west of Europe [8]. Even 

though signs of these invaders date to records as early as 2003, 

their expansion to countries such as Portugal, France and the 

UK was only registered starting from 2012 [10].  

The western honey bees pollinate crop species that compose 

up to one-third of the average diet, worldwide [11]. Since the 

world population is expected to rise in the upcoming years, 

creating a demand for higher food production for a sustainable 

growth, the significant threat that the V. velutina pose to both 

bees and humans creates a demand for the development of 

solutions that can help experts to quickly and efficiently deal 

with these Vespidae. There is also special need for solutions 

that provide help regarding the destruction of early-stage nests 

[8], since these play a vital role in the produces provided to 

humans by ecosystem services.  

Recent advances in Deep Learning (DL) and Computer 

Vision (CV) have shown potential applications in the 

automatic detection of bees and their respective health, such as 

detecting environment conditions and signs of varroa 

destructor, among others [11]–[16]. Furthermore, there have 

been recent developments in CV [17] which show interesting 

potential applicability for systems that can help with the 

detection of Asian Hornet presence. 

The goal of this study is to provide and develop an 

architecture of a Decision Support System (DSS) that can help 

decision makers effectively deal with this Vespidae invasion. 

The architecture has the goal to detect the presence of V. 

velutina through images from GPS equipped cameras, where 

the DSS uses this data to provide insightful information about 

the time and location of the detected V. velutina, as well as 

suggestions for the effective removal of the invaders. 

Furthermore, the DSS must also be able to perform this 

detection as close to real-time as possible, with enough 

accuracy to reduce the efforts of alert revision and inspection 

by its users. The system is aimed to be used by park managers 

who want to ward off V. velutina and beekeepers who want to 

protect their hives from potential threats. 

The remainder of this paper is structured as follows: section 
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II provides an overview of DL and CV, as well as a review of 

the most relevant and recent frameworks and work in the 

context of this study’s scope; section III describes this study’s 

methodology, including the data sets used, architectures and 

any design decisions towards the development of the proposed 

DSS; section IV details the results obtained in the trials 

conducted for the development of the object detection model, 

as well as a discussion and comparison of these results with the 

state-of-the-art; section V summarizes the major findings of 

this study and highlights future work to be conducted. 

II. Literature Review 

In this section, an overview of recent contributions in CV, ML 

and honey bee monitoring systems will be performed, with 

special focus to systems and solutions that aim to detect bees. 

At the time of writing, it was not possible to find any relevant 

literature regarding the automatic detection of V. velutina. As 

such, due to the resemblances between bees and wasps, the 

review mentioned previously will be used to assess the 

different approaches that can be used for the detection of asian 

hornets. 

On the topic of bee health systems, recent contributions 

have been made involving ML algorithms and bee health 

monitoring. The work done by Kulyukin et al. [12] used 9110 

audio samples, equally distributed by “Bee Sound”, “Noise 

Sound” and “Cricket Sound”, in order to monitor a bee hive. 

The approach used a Convolutional Neural Network (CNN) 

based architecture, was tested on the BUZZ1 and BUZZ2 [18] 

data sets and compared with other types of ML & DL 

algorithms. The authors concluded that DL can be used to 

monitor bees in a beehive and the CNN-based approach 

obtained an accuracy of 95.21% and 96.53% on the BUZZ1 

and BUZZ2 data sets, respectively. The study in [19] used 

video and CNN for the automatic detection of honey bees in a 

hive. The data set consisted of approximately 11 hours of video 

footage, where a tag was placed on bees. The best F1-score 

value achieved in the study was of 0.686 and the authors 

concluded that the manual labeling provided by the tags may be 

insufficient for bee detection. Aiming at the detection of mites 

and varroa destructor, both [13] and [15] used CNN and ML 

algorithms to perform bee hive monitoring. The first study 

obtained an accuracy of 93% detection of varroa destructor 

using a training data set of 5000 artificially generated images, 

tested with different CNN configurations [13]. The second 

study used different light settings and a special camera setup, 

recording 1920x1080 images at 50-60FPS. The authors 

highlighted the challenge in detecting mites on moving bees or 

on bees where wings occlude the mites [15]. The work done in 

[20] provides a thorough explanation and exploration of the 

data set publicly available in [21]. In the approach, 2 CNN 

models were used to perform the classification of a bee’s health 

and subspecies. The author of [20] provides a solid pipeline for 

modular training of the CNN models, including several 

methods to analyze and remove bias from the data set. Using 

the data set provided in [21], the author was able to obtain a 

best accuracy of 84.92% and 86.54% on the health and 

subspecies models, respectively.  

In ML, DL concerns the development of computational 

models that are composed of multiple processing layers, which 

can learn representations of data with multiple levels of 

abstraction [22]. Each processing layer is composed by a set 

amount of non-linear modules that transform a specific 

representation at one level. Since DL can discover intricate 

structures in high-dimensional data, it can be applied in many 

domains of science, business and government [22]. 

Computer Vision can be defined as the field of science which 

relates to the automation of tasks that the human visual system 

can do [23]. CV comprises fields such as image segmentation, 

which concerns the partitioning of an image into a set of 

regions that cover it, obtaining meaningful information from 

the regions. The former differs slightly from object detection, 

as the latter’s regions are bounding shapes (usually boxes), 

whereas image segmentation’s regions can be composed from 

pixel-by-pixel representations [24]. From the literature review 

conducted for this study, the most promising architectures to 

be used in the development of the DSS are Mask-RCNN and 

Single Shot MultiBox Detector (SSD).  

In the last decade, advances have been made to the CNN 

architecture, depending on the goal of its application (i.e., 

image classification, object detection, image segmentation). 

Some of the most significant contributions are as follows [17]: 

AlexNet, which won the 2012-ILSVRC competition (one of 

the most difficult challenges for image detection and 

classification, at the time); GoogleNet, which won the 

2014-ILSVRC competition (introduced the concept of split, 

transform and merge blocks); ResNet, proposed by Microsoft, 

for the net training of 150 layers deep networks and DenseNet, 

which uses the idea of cross-channel connectivity. One of the 

most significant contributions is the Mask-RCNN architecture, 

which is a Recurrent Convolutional Neural Network that 

extends the Faster R-CNN – one of the best architectures for 

object detection and image segmentation [25]. Mask-RCNN 

implements a branch for predicting an object mask in parallel 

with the branch that performs bounding box recognition. With 

this architecture, Mask-RCNN can perform faster and simpler 

training, with only a 5 Frames Per Second (FPS) loss [25]. 

The SSD architecture was inspired by the anchors adopted 

in Multibox, RPN and multi-scale representation [26]. SSD 

functions similarly to You Only Look Once (YOLO). However, 

instead of fixed grids, SSD uses a set of default anchor boxes 

with different aspect ratios and scales. This approach is used to 

discretize the output space of the bounding boxes. By fusing 

predictions from multiple feature maps with different 

resolutions, the network can handle objects of various sizes 

[26], [27]. Comparing SSD to YOLO applied to images of 

300x300, SSD outperforms YOLO with better accuracy at 59 

FPS. With tuned settings, SSD can even outperform Faster 

R-CNN. However, SSD cannot handle small objects by default, 

requiring a better feature extractor backbone (such as a 

ResNet101) in order to achieve this goal [27].  

The study in [27] has a particularly detailed and exhaustive 

comparison of several object detection frameworks such as 

Mask-RCNN, SSD, YOLO and Faster R-CNN, as well as 

insights on how these were implemented.  

 

Table 1 summarizes the authors’ findings when comparing the 

models on the VOC 2007, VOC 2012 and Microsoft COCO 

data sets. 

 

Architecture VOC 2007 

Ranking 

VOC 2012 

Ranking 

Microsoft 

COCO 

Faster 3rd/4th/5th 7th 13th 



Braga and Madureira 

 

242 

R-CNN 

Mask-RCNN 8th 12th  3rd/4th  

SSD 1st/2nd 2nd/3rd 2nd/10th/11th  

YOLO N/A  4th  12th 

 

Table 1. Comparison of different object detection architectures. 

The table depicts the ranking of each architecture in the tested 

data set. Multiple rakings represent different configurations of 

the architecture [27] 

 

As can be seen in Table 1, it can be stated that SSD seems to 

be the overall best architecture when compared to the 

remaining architectures, having achieved top rankings. 

Likewise, it can be stated that although Mask-RCNN had poor 

performance in the VOC data sets, it seems to have a 

satisfactory performance in the Microsoft COCO data set. 

III. Methodology 

A. DSS Workflow and Dynamics 

As stated previously, the goal of this work is to develop a DSS 

for the monitoring of Asian Hornet presence, which can 

provide insightful information to its users, such as park 

managers or beekeepers. To develop the DSS, the architecture 

defined in Figure 1 is proposed. The main logic of the DSS 

consists in using a camera’s image feed to detect signs of V. 

velutina. Since multiple cameras can be used, the system 

requires a scheduler that can determine which camera’s image 

will be evaluated at a given time, like how an operative system 

schedules a task to a CPU. After the image is fed onto the 

classifier, an alert constructor (specific to each camera) will 

store the result of the analysis in a buffer and begin evaluation. 

If the alert constructor finds that the percentage of images 

stored in the buffer is greater than a given threshold, then an 

alert will be fired, and all images will be recorded in the 

database until the percentage of images of V. velutina 

decreases below the threshold value. Essentially, each alert 

constructor’s detection buffer works like a sliding window, 

allowing the system to know when an alert must be fired, as 

well as when to start and stop recording detection footage. 

Finally, when the alert is fired, a notification is sent to the 

system’s dashboard so that its users can review the detected 

footage and act accordingly. 

 
Figure 1. Diagram of the proposed DSS. Camera images will be fed onto a predictive model, following a scheduler’s policy, to 

detect V. velutina and provide beekeepers and park managers with timely information.

On the topic of the system’s scheduler, for this study, no needs 

for the type of job scheduler were found. As such, the 

implemented scheduler follows a First-In, First-Out (FIFO) 

approach, where each camera is inserted at the end of the 

queue after it’s done processing, in a rotating fashion. 

Furthermore, since the classifier will always take a set amount 

of time generating the masked image, the detection buffer’s 

length of each alert constructor is calculated by computing an 

estimate of the classification time. For the system to work 

properly, its administrator must specify the following 

constants: 

 Sequence_seconds: the amount of time, in seconds, for 

which a camera must be detecting V. velutina signs until 

it is considered a valid alert. The previous is required 

because of the following constraint: if one were to be 

using a classifier with 90% accuracy, on footage 

recorded at 30 FPS, it would mean that roughly 3 out of 

30 frames would have an incorrect prediction. As such, 
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to account for imprecision in the classifier, the alert is 

only fired if V. velutina signs are detected for a set 

amount of time. 

 Global_alert_threshold: the percentage of images of 

which an alert constructor signals an alert. Similarly to 

the above, when accounting for the imprecision of a 

classifier, if in 10 frames only 1 does not have signs of 

V. velutina, then such case might have happened 

because of a classifier’s inaccuracy (or even the wasp 

briefly being out-of-reach of the camera). However, as 

the alert should still be fired in such case, the possibility 

to configure the system’s sensitivity to outlier data is 

also needed. 

 

With the constants defined above, calculating an estimate for 

the detection buffer’s length is possible using the formula 

described in (1). 

 

             (1) 

 

Furthermore, when the system starts, it will run the detection 

mechanism for a set amount of time (default of 7 seconds) in 

order to get the average amount of time taken by the classifier 

for each detection (seconds_per_frame). As such, obtaining 

the desirable buffer length for a given system’s configuration, 

in an automatic fashion, is possible.  

The system was developed using Python, as the language 

possesses high versatility and compatibility with DL and 

software development frameworks, as opposed to R, which 

has some implementation incompatibilities due to third-party 

packages [28]. For the development of the DSS and respective 

dashboard, a web application approach was used, as it easily 

allows multiple users to view data without requiring any 

additional installation on computers.  

 

Hardware Specification 

GPU Nvidia Geforce GTX 1050 ti 4GB 

CPU Intel Core i7-8700 Hexa-Core 3.2GHz 

Disk 
540 MB/sec read speed 

520 MB/sec write speed 

RAM 32GB 2666 Mhz 

Software  

Python 3.6 

Keras with Tensorflow GPU backend; 

tensorflow v1.13.1; keras v2.2.4; 

mask-rcnn v2.1; cuda v10.0.130; 

cudnn v7.6.0; 

 

Table 2. Hardware specification of the environment used to 

develop the classifier and the DSS. 

For this development, Django was chosen as the web 

development framework, since it is implemented in Python,  

reducing any overheads that could exist when calling models 

from frameworks of other languages such as Spring, .NET and 

Laravel. Table 2 provides the hardware specifications of the 

development environment of the DSS and the predictive model. 

Django can be considered as a high-level, free and open source 

Python web framework which encourages rapid development 

and clean, pragmatic design [29]. Django is used in production 

by companies such as Bitbucket, NASA, Udemy and Mozilla 

[30]. 

B. Accuracy Evaluation 

For the purposes of evaluating the accuracy of a given model, it 

is important to discuss the topic of assessing a ‘hit’ or ‘miss’ of 

a given example. In object detection, the output of a given 

model is considered correct it the area of the predicted mask 

overlaps a desirable amount of the truth mask. The IoU 

provides the intersection of the masks (between 0 and 1), and 

the threshold commonly used is 0.5. However, the complex 

part of the evaluation algorithm resides in choosing the 

predicted mask that should be compared with the truth mask, 

as well as the expected behavior in the case of multiple 

overlapping predicted masks. For these reasons, a custom 

algorithm was implemented to evaluate the accuracy of the 

model. On the context of choosing the best candidate predicted 

mask, the custom algorithm chooses the predicted mask 

closest to the truth mask, using the Euclidean distance. The 

position used for the distance computation is obtained from the 

calculation of the center of the mask. Furthermore, on the case 

of the expected behavior in the case of multiple overlapping 

predicted masks, the following two alternatives were 

identified: 

 Consider multiple predicted masks as TP if their 

IoU is above the desirable threshold, which 

translates to considering that the model predicted 

“correctly” that the detected object was in the given 

area, but did so multiple times (possibly meaning that 

the model fails to remember a given prediction); 

 Consider only one predicted mask as a TP, with the 

rest being FP, which translates to considering that 

the model incorrectly predicted the extra masks and 

assumed that other objects/information close to the 

TP were the target object, when they shouldn’t be 

(e.g. considering that a bee’s leg is a bee). 

Comparing both alternatives, the first alternative was 

concluded to provide a more optimistic assessment of the 

model’s quality performance, albeit possibly less realistic. 

Likewise, the second alternative was considered to provide a 

less optimistic assessment, but more realistic. Taking into 

consideration the differences between the approaches and the 

potential impacts (both positive and negative) in obtained 

results, the second alternative was implemented in the custom 

algorithm, as to minimize benefits to the evaluated model’s 

accuracy. Table 3 shows the pseudo-algorithm, where, for 

each target class, the custom algorithm compares the predicted 

mask closest to the truth mask and, if the IoU is higher than the 

threshold, the mask is considered a true positive. This process 

is repeated until there are no remaining truth masks. Any 

remaining predicted masks are automatically labelled as a false 

positive.  

 

 

1. def compute_confusion_matrix_image_data(self,truth_class_array,truth_mask_array,pred_class_array,pred_mask_array):   

2.     ground_truths = self.pair_class_names_masks(truth_class_array,truth_mask_array)   

3.     predictions = self.pair_class_names_masks(pred_class_array,pred_mask_array)   

4.    
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5.     unique_classes = unique_list(truth_class_array)   

6.     for clazz in unique_classes:   

7.         has_gt_masks = False   

8.         if clazz not in ground_truths:   

9.             if clazz in predictions: #If mask does not exist in ground truths, but predictions has it, then it's a false positive   

10.                 self.matrix.add_value(clazz, 'fp', float(len(predictions[clazz])))   

11.             else:   

12.                 #If not, then it is a true negative   

13.                 self.matrix.add_value(clazz,'tn',1.0)   

14.         else:   

15.             masks = ground_truths[clazz]   

16.             if clazz not in predictions:   

17.                 #If predictions do not have any class, then it's a false negative   

18.                 self.matrix.add_value(clazz, 'fn', float(len(masks)))   

19.             else:   

20.                 pred_masks = predictions[clazz]   

21.                 for i in range(0,len(masks)):   

22.                     has_gt_masks = True   

23.                     # if predictions has no targets for a class but there are still ground truths, then it's a FN   

24.                     if len(pred_masks)==0:   

25.                         #False Negative   

26.                         self.matrix.add_value(clazz,'fn',float(len(masks)-i-1))   

27.                     else:   

28.                         index = self.closest_prediction_to_truth(masks[i],pred_masks)   

29.                         pred_mask = pred_masks.pop(index)   

30.                         iou = self.compute_intersection_over_union(masks[i],pred_mask)   

31.                         if iou>self.iou_threshold:   

32.                             #True Positive   

33.                             self.matrix.add_value(clazz,'tp',1.0)   

34.                         else:   

35.                             #False Negative   

36.                             self.matrix.add_value(clazz,'fn',1.0)   

37.                 #if predictions still has masks (extra), but ground-truths hasn't: FP   

38.                 if has_gt_masks and len(pred_masks)>0:   

39.                     # False Positive   

40.                     self.matrix.add_value(clazz,'fp',float(len(pred_masks))) #pred_masks should have the remaining masks  
  

 

Table 3 - Pseudo-algorithm, in Python, for the assessment of an object detection model's accuracy. 
 

 

C. Classifier Development 

From literature review, it was concluded that both 

Mask-RCNN and SSD would be good candidates for the 

development of a classifier for this task. However, it was not 

possible to find a valid and working SSD architecture that 

would be robust enough to work on data sets that differ from 

its implementation. The only valid architecture found was the 

one contained in Tensorflow’s Object Detection API [31], but 

the latest instructions for the correct implementation are dated 

and produce errors. Even after manual revision and correction, 

the training and evaluation trials of the SSD returned a 0% 

accuracy model. Due to time constraints and the complexity of 

the SSD architecture, it was not possible to perform a custom 

implementation of the architecture. Therefore, in this paper, 

the implementation, and trials of the SSD architecture will not 

be described. 

For the development of the classifier, the data set was 

composed of images with and without bees and V. velutina. 

Since bees have a similar appearance to an Asian Hornet, a data 

set of these images was included, as to make sure the classifier 

would distinguish a V. velutina from a honey bee, therefore 

ensuring the usage of the DSS in environments with bee hives. 

The bee data set was extracted from Explore’s honey bee live 

streams [32] and [33], which contain images from the 

perspective of the landing pad of two different apiaries and 

from inside a bee hive, respectively. For both live streams, 

images were extracted every 5 frames, totaling 2,750 images of 

honey bee footage for object detection. The wasp data set was 

obtained through manual search of V. velutina footage in 

documentaries and recording, such as in [34], as images of 

asian hornets aren’t widely available, mainly due to the threat 

they pose (usually, there is an urge to remove them as fast as 

possible). In total, 130 hornet images were obtained. All 

images used were resized to 990x504 pixels. The images were 

manually annotated, in accordance to the following criteria: 

only bees and wasps that are at least 50% visible and whose 

quality is high (i.e., there is no blur associated to the bee) are 

annotated for object detection. Figure 2 and Figure 3 

showcase an example of the annotations made following the 

previously mentioned criteria, using a custom-made tool for 

annotation.  
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Figure 2. Example of annotations for object detection. In the 

image, bees whose quality is too low (e.g., blurry) are not 

annotated. 

 

 
Figure 3. Example of an annotated V. velutina. 

 

To maximize the performance of the algorithm, only 386 

images were used for the object detection phase, which were 

manually annotated, instead of using an automated approach 

(i.e., Silver Standard). Of these, 49 correspond to 

nature-themed images with no bees. The empty images have 

the goal to further refine the model with examples of scenes 

where bees normally are present. Due to computational 

restrictions, all images and respective annotations were scaled 

down to 576x290 pixels. The evaluation metric used for the 

object detection task was the accuracy and average 

Intersection over Union (aIoU), which corresponds to the 

intersection of the predicted mask and ground-truth mask, over 

the union of the two masks. The accuracy was measured using 

IoU, with a threshold of 0.5 (i.e., an IoU higher than 0.5 is 

considered a true positive). The cross-validation technique 

chosen was the train/test split, as it still provides reliable results 

in low volume data, since, regarding object detection, 

cross-validation techniques provide minimal differences in 

accuracy [35]. Moreover, other cross-validation methods are 

impractical to use due to resource constraints. The train/test 

split was of 0.7/0.3. All splits were balanced in accordance to 

class distribution. 

Regarding the Mask-RCNN, in order to perform the object 

detection of bees, the default configuration was used as a base 

and the changes stated in Table 3 were added to the training 

configuration.  

Parameter Value 

NUM_CLASSES 3 

IMAGE_MAX_DIM 576 

IMAGE_MIN_DIM 320 

IMAGES_PER_GPU 1 

TRAIN_ROIS_PER_IMAGE 32 

STEPS_PER_EPOCH 200 

 

Table 4 - Mask-RCNN configuration for training the object 

detection model. 

 

The TRAIN_ROIS_PER_IMAGE and IMAGES_PER_GPU 

were reduced due to computational constraints, as to lower the 

amount of VRAM required to train the model. Table 4 shows 

the different values tested in trials for each configuration, with 

the goal of obtaining the best hyper-parameters for the object 

detection task. All trials conducted used the value of 500 as the 

random seed, for reproducibility purposes.  

 

 

Parameter Values 

IMAGE_MAX_DIM [576,460] 

IMAGE_MIN_DIM [320,256] 

IMAGES_PER_GPU [1,3] 

TRAIN_ROIS_PER_IMAGE [16,32,48,64] 

BACKBONE [‘resnet101’,’resnet50’] 

 

Table 5 - Listing of all different values used for Mask-RCNN. 

Each trial tested a combination of the values specified in the 

table. 

IV. Results & Discussion 

Regarding the Mask-RCNN trials, each unique configuration 

was run for 40 epochs, since past this limit, the classifier did 

not seem to improve, as can be seen from Figure 4. From the 

trials conducted, the best results obtained for Mask-RCNN are 

the ones shown in Table 6, which corresponds to the 

configuration present in Table 5. 

 

 
Figure 4. Evolution of train and testing accuracy over learning 

epochs. The accuracy change is approximately stagnant past 

epoch 40, as well as between epochs 20 and 40. 

 

 

 

Parameter Values 

IMAGE_MAX_DIM 576 

IMAGE_MIN_DIM 320 

IMAGES_PER_GPU 1 

TRAIN_ROIS_PER_IMAGE 64 

BACKBONE ‘resnet101’ 

EPOCHS 40 
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Table 6 - Best configuration for the Mask-RCNN model. 

 

 

Data set aIoU Accuracy 

Train (Bee) 0.4444 47.44% 

Test (Bee) 0.4512 53.75% 

Train (Wasp) 0.5719 63.63% 

Test (Wasp) 0.6827 85.00% 

Train (All) 0.4614 49.60% 

Test (All) 0.4975 60.00% 

 

Table 7 - Best configuration's metric results. The metrics for all 

labels was obtained by combining the individual IoU of each 

sample and performing the test IoU>0.5 

 

Using the best configuration obtained, the average time for the 

classification process, including the compositing of the 

resulting masked image, is approximately 0.36 seconds, which 

averages at 2-3 FPS. During trials, changes to the 

configuration were performed (e.g., changing resolution of the 

input image) to obtain a faster model, at the expense of the 

quality of the prediction. However, the increase in FPS was of 

1-2 (totaling 4-5 FPS), with severe classification accuracy loss 

(of around 20%). As such, it can be stated that with 

Mask-RCNN, it is currently not possibly to obtain a faster 

classification process at the expense of accuracy, unless a more 

powerful hardware is used. 

Comparing to related work, it can be stated that the 

approach defined in this study has interesting results. 

Regarding the bee detection, the developed classifier seems to 

have the same accuracy as other approaches. Regarding Asian 

Hornet detection, a direct comparison cannot be made, as there 

is no work found in the literature regarding the subject. 

However, when compared to bee detection accuracy, it can be 

stated that the classifier has a high accuracy in detecting signs 

of V. velutina through images, as evidenced by the 85% 

accuracy. The classifier exhibits satisfactory results, making its 

implementation in the DSS viable. 

V. Conclusion 

In sum, it can be stated that V. velutina can provide a great 

negative impact in both humans and bees, which in turn can 

cause a negative impact in the global economy and food 

production.  

In this study, a methodology for the development of a DSS 

that can detect signs of V. velutina through cameras was 

proposed. The accuracy of the classifier in detecting asian 

hornets is satisfactory (85%), making the model and DSS 

viable for the automatic detection of signs of V. velutina. The 

model can still be improved since the detection accuracy for 

bees is still unsatisfactory (53%). Even though bee detection is 

not the scope of this study, the model could benefit from an 

improved detection process that can distinguish bees from V. 

velutina. 

Future work consists in improving the classifier by providing 

more annotated data, as well as the further implementation of 

the SSD architecture, in order to ensure if the algorithm can 

generate a model that performs object detection with 

satisfactory results, at a higher frame rate. 
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