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Abstract: The power system plays an essential part in the 

transmission of electricity. Generation, transmission and 

distribution are the main parts of electricity consumption, and 

day to day, the demand for electricity increases. So, the 

prediction of price and load is significant in the power system. 

The short term load forecasting (STLF) predicts the load 24 

hours ahead or a week ahead. This paper investigates the effect of 

price and load on short term load forecasting with two hybrid 

techniques (HT). The first hybrid technique consists of wavelet as 

well as Generalized Autoregressive Conditionally 

Heteroscedastic (GARCH) analysis methods and the second 

hybrid technique consists of GARCH, EGARCH, GJR models 

and Particle swarm optimization (PSO). The first hybrid 

technique (FHT) is analyzed by taking the Price from the Ontario 

grid and the second hybrid technique (SHT) is diagnosed by 

taking the load from the Xintai power plant. The prediction of 

Price and load depends on input data. The results are significant 

and its accuracies are effective. The analysis of two hybrid 

techniques clearly defines its work and the ability to produce the 

result. In the first HT, the wavelet decomposes the data and the 

GARCH models analyze the decomposition data. In the second 

HT, the GARCH, EGARCH, GJR models are executed the input 

data and PSO brings the smoothness of the result. The 

forecasting price results and load calculation indicates less error 

and it is essential for short term load forecasting.  

 
Keywords: Short term load forecasting (STLF), Hybrid technique 

(HT), Wavelet, GARCH, Particle swarm optimization (PSO).  

 

I. Introduction 

In the power system, short term load forecasting (STLF) plays 

an important for its operation like unit commitment, economic 

load dispatch, maintenance scheduling, hydro-thermal 

scheduling, etc. It also helps in load switching operation and 

load management for an electrical utility. As compared to the 

regulated areas, STLF is very important in the deregulated 

electricity market because the profit of the electricity market is 

involved. The amount of electricity is bid by an energy bidder 

depending on STLF in the deregulated market. An accurate 

STLF improves the accuracy of price forecasting. But the 

prediction of the exact load is challenging due to its 

nonlinearity and the factors influence the load like time, 

weather and price of the electricity. Different researchers have 

applied other methods for predicting the exact load and the 

accuracy of the STLF is improved by research. STLF is 

investigated by various old methods [4], [5] like linear 

regression [6], time series [7], pattern recognition [8], Kalman 

filter model [9]. But these methods are unable to solve the 

problem of the nonlinearity of load. So, new approaches are 

investigated on STLF like GARCH model [9], wavelet [10], 

PSO [11], expert system [12], ANN method [13]-[15], fuzzy 

logy [16], hybrid wavelet-Kalman filter [17], etc. because of its 

excellent output result.   

The most useful method is the GARCH model. It has been used 

for price forecasting and STLF. In this manuscript, we have 

worked on price forecasting and load forecasting in two 

separate subsections. 

Now a day, the GARCH model is essential for price 

forecasting and STLF. In this manuscript, we have applied a 

combined model of GARCH and wavelet for price forecasting 

and GARCH, EGARCH, GJR and PSO for STLF. In FHT, 

GARCH is a symmetrical model which is newly using for the 

control of Price in STLF as it is bringing success in price 

forecasting and wavelet helps to carry the information of data 

like trends, discontinuities in higher-order derivatives as well 

as self-similarities where other techniques are not able to do 

this. It is also helping in decompose the signal [18]. 

In SHT, GARCH, EGARCH, GJR models are used to 

reconstruct the data and PSO brings STLF. The PSO 

technique is a machine learning technique which is proposed by 
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Eberhart and Kennedy in 1995. It can apply in all emergency 

area for real-time optimization [19], [20] like quantum PSO 

using radial basis function (RBF) [21], load forecasting using 

RBF and PSO [22] and PSO for inertia weight factor and chaos 

[23], etc. 

The research gap found by studying the literature review is: 

 The shallow neural network is used in the past for 

forecasting, which degrades the forecasting accuracy 

 The collection of noisy real-time data and extraction of 

various features found in load demand makes modeling of 

an accurate STLF model challenging. There always 

remains a research scope to develop a robust STLF scheme 

for precise estimation of future load demand pattern that 

helps the system in maintaining area generation control and 

resource dispatch.  

 There is always a need for fast and robust forecasting 

method as in the past, the researchers have examined the 

forecasting with slow and sensitive schemes. 

 The methodologies provided for STLF are either very 

complicated or have included fewer variables impacting the 

load variation in the short-term horizon. Most of the time, 

climate variables such as humidity, the dew point is 

excluded from modeling a less complicated forecasting 

model. Therefore, there has always been a research scope 

for developing an STLF model, which can assess these 

climate variables impact on load variation and design a less 

complicated model. 

In this paper, the research gap is fulfilled by proposing 

two-hybrid accurate, robust schemes which include a greater 

number of variables impacting the load variation in a short time 

horizon.  For the first time, the impact of Price and load in 

STLF is analyzed, which is also the main contribution in this 

paper.      

This manuscript is arranged in the following ways: Section 2 

gives the work of a hybrid approach, Section 3 represents the 

case study, Section 4 presents results and discussion, and 

Section 5 concludes the entire work.  

 

II. The Hybrid Techniques 

A. First hybrid technique (FHT):- 

This first HT is developed by working of wavelet and GARCH 

(1, 1) with the Monte-Carlo simulation result, as shown in 

Figure 1. The following steps are carried out.  

Step-1: Wavelet is applied to the decomposition of the original 

data. 

Step-2: GARCH (1, 1) is used in the analysis of decomposing 

data. 

Step-3-Monte-Carlo simulation is applying for the prediction 

of the Price. 

 

.  

Figure 1. Schematic of the proposed model 

1) Wavelet 

The signal of significant restriction of time interval consisting 

of zero mean value is known as a wavelet. It decomposes the 

original waveform is shifted way as well as scale type. Low and 

high pass filters allow the decomposition signal, as shown in 

Figure 2 [18]. 

  
 

Figure 2. Signal formation 

Figure 2 shows that the original signal S is passing through the 

low and high pass filters and the signal from filters is 

represented by A & D, respectively. Then the signals A & D 

are passing through the down sampling for further 

decomposition, as shown in Figure 3. 
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Figure 3. Decomposition of signal 

Figure 3 shows that the decomposing signals cA and cD are 

produced by down sampling, which reduces the length of data, 

and this process produces the discrete wavelet transform 

coefficients. It is used by wavelet for the propose of discretely 

sampling. 

2)   GARCH 

The vital characteristic of the GARCH model is conditional 

variance and the conditional distribution is allowing by 

sequential based on the conditional variance of the original. 

The work of GARCH (1, 1) is similar to normal autoregressive 

moving-average (ARMA). But it allows the more explanation 

in many conditions [24]. The standard form GARCH (p,q) is 

expressed as Eq. 1. 
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Where, 

p = GARCH method order 

q = ARCH method order 

0 , ,i ja a b = Constants            

2

t = Conditional variance                                                

In this manuscript, we are using GARCH (1, 1) instead of 

GARCH (2, 2), which may apply. So the GARCH (1, 1) is as 

Eq. 2. 
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After the calculation of GARCH (1, 1) value, The 

Monte-Carlo technique is used for the finding of valuable 

coefficients of GARCH (1, 1) using as Eq. 3 [25]. 
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Where, 

X


= Random number fluctuating around the theoretically 

expected value   

N = number of expected value 

X = Expectation value 

B. Second hybrid technique (SHT): - 

This second HT is developed by working of GARCH, 

EGARCH, GJR, and PSO models, as shown in Figure 4. The 

following steps are carried out.  

Step-1: GARCH, EGARC, GJR are defined. 

Step-2: Each model is applied to require data sample for 

forecasting propose 

Step-3: Finally, PSO will be used for the smoothness of the 

required forecasting result. 

 
Figure 4. Schematic of the proposed model 

1) GARCH 

The conditional variance is significant in autoregressive as well 

as moving average structure, which is calculated by the 

application of the GARCH model. In this model, the 

constraints factor is limited to 1. 

The GARCH model is defined as Eq. 1. This model allows the 

present and past conditional variance with past returns, 

calculated by the GARCH model. This model is also extended 

with the addition of some other factors. 

2) EGARCH 

This model is the difference from the GARCH model because it 

is the logarithm of conditional variance, which simulates the 

asymmetries between positive as well as negative shocks, and it 

will make the exponential effect of leverage. 

In this model, there is no limit of parameters, and the 

conditional variance is straightforward as the standardized 

shocks have finite values. It is defined as Eq. 4. 
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Where, 

p = Order of GARCH process 

q = Order of ARCH process 

0 , ,i ja a b = Constants   



Panda et al. 390 

ic = Leverage parameter          

2

t = Conditional variance  

3) GJR 

It is used to solve the asymmetric problem by present 

conditional variance, which is used for past positive and 

negative returns. 

GJR will be defined in Eq. 5 & Eq.6 
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Where, 

p = GARCH method order 

q = ARCH method order 

0 , ,i ja a b = Constants   

i = Leverage parameter  
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2

t = Conditional variance 

4) PSO 

The characteristic of this model is determined by a group of 

birds as well as educate of fishes. The self-speed and 

neighbor’s speed are calculating the factors of individual birds 

in a swarm. 

 By this behavior, the particles are reaching to a suitable 

position. The speed, as well as the place of the particle, is 

determined as Eq. 7 and Eq. 8. 
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1 1t t t
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Where, 

v = Speed of the particle 

x =Place of particle 

w  The constraint of Inertia weight  

1c = Cognitive coefficient 

2c  = Social coefficient 

1 2,j jr r = Random quantities whose value lies between 0 and 1. 

ijp = Position of 
thi particle for 

thj dimension 

gjp =Global Position of particle for 
thj dimension 

C. The proposed hybrid modeling techniques 

1) First hybrid technique (FHT): - 

This approach consists of a wavelet that decomposes the 

original data, GARCH (1, 1) process the decomposition data, 

and then the Monte-Carlo technique is using for finding out the 

GARCH coefficients. The following steps describe the detail 

work. 

1.  Step-1: - The wavelet analysis is applied to break the first 

sample of data. 

2. Step-2: - The decomposition data is processed through the 

GARCH (1, 1) model. 

3. Step-3: - GARCH (1, 1) coefficient is found by the 

Monte-Carlo technique. 

4. Step-4: - Forecasting result is found by random permutation 

and algorithms of the first sample of data. 

5. Step-5: - Second sample of data is seen by the repetition of 

Step-1 to Step-4.  

2) Second hybrid technique (SHT): - 

This approach consists of GARCH, EGARCH, GJR and PSO. 

The training process founds the forecasting result. The training 

process founds the forecasting result and its accuracy is 

defined by mean absolute error (MAE) as well as root mean 

square error (RMSE) [26]. The following steps describe the 

detailed work. 

1.Step-1: - Each model is defining. 

2. Step-2: - Each model is tested with data samples. 

3. Step-3: -Forecasting result is obtained. 

4. Step-4: PSO acquires -Smoothness of forecasting result. 

5. Step-5: - The result is found by the repetition of Step-1 to 

Step-4. 

D. Forecasting accuracy evaluation 

The MAE (mean absolute error) and RMSE (root mean square 

error) as Eq. 9 and Eq. 10, respectively, are using to find out 

the error. 
^
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Where, 

iy =Actual price / load 

^

iy  = Forecasted price/ load 

T  = Number of forecasting 

III. Case Study 

A. Forecasting results of FHT 

The required technique is used in Ontario dataset to design the 

wavelet-GARCH method for price forecasting in STLF. The 

actual prices and forecasted prices are given in Table 1(a) for 

Figures 5(a-c) and 6(a-c). The forecasted prices are excellent 

as compared to other techniques [27], which is using ANN, 

fuzzy logic, and a combination of both techniques for the price 

forecasting as given in Table 1(b). 

Table 1(a). Comparisons between actual and forecasted 

prices 

Time (hr.) Actual Price (Rs.) Forecasted Price (Rs.) 

1 93.25 9.2117 

2 44.14 21.1437 

3 40.26 -84.2634 

4 38.58 87.5299 

5 67.65 -87.4012 

6 44.99 -2.7660 

7 45.49 24.0553 

8 51.07 12.8356 

9 57.47 -13.727 
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10 53.3 53.3442 

11 39.56 -43.2401 

12 39.43 160.4599 

13 56.43 -10.0248 

14 39.47 8.3737 

15 38.26 78.4054 

16 42.85 0.3745 

17 37.14 -17.6981 

18 49.18 -36.0279 

19 58.28 83.1318 

20 48.36 28.0095 

21 42.08 -13.4893 

22 57.51 65.7122 

23 44.55 -5.2766 

24 47.63 -61.7319 

25 42.8 84.9926 

26 43.67 27.8619 

27 45.08 -49.1221 

28 44.42 -56.9905 

29 57.42 -72.0425 

30 41.47 121.0806 

 

The negative sign in forecasted Price indicates the reduction of 

Price. 

Table 1(b). Comparisons between actual and forecasted 

prices 

Time (hr.) Actual Price ($) Forecasted Price ($) 

55 990 200 

75 420 100 

212 820 220 

225 790 220 

250 420 220 

375 320 100 

450 390 100 

475 730 100 

 

During this peak period, the forecasted prices are significantly 

less than the actual price because of the outage of the generator 

and new bidding strategies of market participants. 

B. Simulation environment 

The simulation environment is performed by MATLAB 2010a 

software. The whole investigation has been carried out by 

developing vital optimization programs and testing real-time 

forecasted data. Table 1 and Table 9 present the actual and 

forecasted values of Price and load, respectively.  

C. Simulation results of FHT 

 
Figure 5(a). Actual prices of original data 

 
Figure 5(b). Forecasted prices of the first sample of data 

 
Figure 5(c). Forecasted prices of the second sample of data 

Figure 5(a) gives a variety of actual Price concerning time and 

these values help in the prediction of future Price in the Ontario 

power plant. Figures 5(b) and 5(c) give the control of price in 

the predicted value by liner increasing and decreasing for the 

first and second halves of 15 samples of the actual Price. In 

Figures 5(b) and 5(c), the forecasted prices are simultaneously 

decreasing because it depends on the utilization of electricity 

by consumer needs. 
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Figure 6(a). Actual prices of original data 

 
Figure 6(b). Forecasted prices of the first sample of data 

 
Figure 6(c). Forecasted prices of the second sample of data 

The trend of the histogram in Figure 6(a) shows the operation 

of the Ontario power plant with actual price value in bar form. 

Figure 6(b) and Figure 6(c)’s histogram trend indicates the 

control of Price in the predicted value for the first and second 

halves of 15 samples of the actual Price. The forecasted price 

value depends on the utilization of electricity by consumer 

needs. So the predicted price is less in Figure 6(b) and more in 

Figure 6(c). 

D. Forecasting results of SHT 

The Xinati power plant is placed in the Hebei territory of China, 

where we are considering the hourly basis load and weather 

data. These data are used for determining the effectiveness of 

load in STLF. 

 These data, as given in Table 2, are considering from 10th 

June 2006 t0 30th June 2006, which is called as historical data 

sample. The three segments classify these information samples, 

i.e., initial, checking, and confirmatory information samples.  

Table 2. Data sample 

DATE(2016) POWER LOAD (MW) 
WEATHER 

LOAD 

6.10 

897 878 826 830 824 854 

1037 1094 1176 1272 1300 

1317 1281 1304 1286 1287 

1286 1178 1034 

0.2385 

0.2125 0 

6.11 

930 892 890 846 832 890 

1059 1136 1181 1273 1331 

1359 1321 1250 1223 1259 

1299 1336 1364 1343 1354 

1383 1271 1131  

0.2152 

0.2101 0 

6.12 

1025 982 944 921 916 987 

1142 1246 1277 1359 1408 

1441 1460 1380 1342 1322 

1378 1379 1390 1389 1408 

1345 965 796  

0.2415 

0.1027 0 

6.13 

750 733 703 697 718 716 

820 937 976 1048 1115 

1165 1153 1006 957 949 

959 1023 1052 1066 1074 

1055 937 843 

0.2421 

0.1423 0 

6.14 

776 788 750 754 766 785 

956 1052 1139 1240 1273 

1335 1321 1254 1241 1274 

1333 1345 1349 1346 1351 

1338 1237 1096 

0.2154 

0.1212 0 

6.15 

970 930 901 898 882 968 

1129 1238 1272 1344 1400 

1412 1427 1337 1285 1333 

1362 1395 1432 1388 1379 

1371 1283 1134 

0.2523 

0.3124 0 

6.16 

1044 998 959 952 975 1075 

1276 1316 1381 1448 1498 

1559 1549 1456 1407 1437 

1506 1509 1518 1445 1453 

1440 1338 1194  

0.2103 

0.2126 0 

6.17 

1066 1028 983 981 1000 

1080 1305 1398 1438 1534 

1559 1583 1583 1515 1498 

1512 1547 1589 1611 1623 

1589 1587 1493 1315 

0.2156 

0.2470 0 

6.18 

1223 1154 1122 1087 1099 

1199 1386 1466 1515 1594 

1620 1678 1619 1565 1512 

1537 1591 1628 1649 1613 

1647 1650 1568 1391  

0.2380 

0.2416 0 

6.19 

1250 1194 1175 1122 1085 

1215 1395 1453 1513 1612 

1672 1723 1698 1657 1608 

0.2351 

0.3215 0 
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1600 1567 1627 1608 1513 

1486 1477 1420 1304 

6.20 

1169 1136 1070 1060 1057 

1137 1330 1408 1470 1541 

1595 1640 1566 1550 1533 

1564 1580 1572 1585 1567 

1509 1493 1406 1244  

0.2419 

0.2780 0 

6.21 

1144 1096 1039 983 938 

1016 1222 1358 1443 1539 

1570 1571 1518 1443 1408 

1470 1511 1532 1517 1519 

1440 1380 1290 1129 

0.2411 

0.2801 0 

6.22 

1039 985 977 934 944 1037 

1227 1332 1461 1548 1597 

1625 1571 1453 1429 1477 

1526 1528 1514 1478 1411 

1377 1307 1138  

0.2512 

0.2456 0 

6.23 

1056 991 982 949 938 1033 

1243 1322 1430 1536 1587 

1622 1544 1447 1408 1451 

1540 1567 1565 1548 1501 

1480 1374 1224 

0.2123 

0.1476 0 

6.24 

1102 1039 990 951 947 

1037 1249 1353 1419 1543 

1608 1591 1549 1423 1392 

1432 1504 547 1580 1486 

1400 1373 1251 1095  

0.2416 

0.2134 0 

6.25 

996 948 925 881 908 984 

1227 1317 1410 1513 1578 

1566 1525 1449 1369 1430 

1471 1442 1384 1287 1261 

1311 1224 1077 

0.2751 

0.2347 0 

6.26 

994 938 939 901 912 991 

1182 1310 1356 1488 1513 

1533 1490 1435 1384 1444 

1497 1581 1576 1551 1474 

1448 1379 1252 

0.2415 

0.2556 0 

6.27 

1135 1079 1033 999 988 

1091 1290 1392 1445 1557 

1608 1599 1557 1465 1401 

1434 1501 1579 1561 1585 

1537 1520 1441 1326 

0.2315 

0.2647 0 

6.28 

1196 1104 993 821 760 728 

729 800 838 934 973 1047 

1069 1018 1013 1079 1092 

1116 1083 1096 1060 1112 

1036 954 

0.2372 

0.2502 1 

6.29 

861 828 800 798 787 799 

845 912 982 1090 1122 

1181 1174 1122 1092 1151 

1199 1204 1207 1167 1177 

1238 1168 1033 

0.2134 

0.2199 0 

6.30 

943 914 907 875 873 872 

931 976 1062 1144 1213 

1263 1231 1196 1150 1190 

1212 1231 1223 1228 1245 

1317 1214 1081 

 

0.2385 

0.2125 0 

As given in Table 3 and the data samples are normalized within 

the range of [0,1] for better results for Figs. 7-15 and Tables 

4-9. 

Table 3.Classification of information samples 

Information Date (June 2006) 

Initial 10th to 21st 

Checking 22nd to 28th 

Confirmatory 30th 

E. Simulation results of SHT 

 
Figure 7. Comparison of optimal power flow with input and 

output data 

Figure 7 shows the flow of power for input and output data 

respectively, where some disturbances are present in input data. 

These disturbances are controlled in output value with the help 

of a simulation technique during the running of the Xintai 

power plant. 

 
 Figure 8. Optimal power flow using GARCH model 

 

Figure 8 shows the control of power from decreasing in 

forecasted value concerning actual value using the GARCH 

model, which helps to bring a good result.  
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Figure 9. Optimal power flow using EGARCH model 

Figure 9 shows the control of power in forecasted value using 

the EGARCH model. This trend indicates increasing in power. 

 

Figure 10. Optimal power flow using GJR model 

In Figure10, the trend shows the control of power in forecasted 

value and it can be noticed from the trend that by using the GJR 

model, fluctuation of power is removed. 

 

 
Figure 11. Calculation of conditional variance and 

standardized residuals during the training process 

In Figure 11, the trend of the curve shows the accurateness of 

predicted value by the selection of conditional variance and 

standardized residuals value during the training of the data. 

The load is sudden with rise and fall in the time of 330 hrs 

because of some external factors like sunny day, winter day and 

cloudy day which in turn affects the load. This is removed by 

the calculation of conditional and standardized residual values. 

Table 4. GARCH (0, 1) model of conditional variance  

Parameter Value Standard error t 

statistic 

Constant 21.1043 3.35604 6.28845 

ARCH{1} 0.426346 0.139877 3.04801 

DoF 3.7281 0.455675 8.1815 

 

Table 4 gives the parameter value of the GARCH (0, 1) model 

for optimal power flow by the selection of constant, ARCH 

and DoF values during the calculation of conditional variance. 

 
Figure 12. Calculation of simulated conditional variance and 

simulated nominal returns during the testing process 

Figure 12 shows the paths of optimal power flow using the 

simulated approach, mean and conditional bounds during the 

simulation of conditional variance and nominal return in the 

testing of data.  

Table 5. GARCH (1, 1) model of conditional variance 

Parameter Value  Standard error t 

statistic 

Constant 906.807 1776.13 0.510551 

GARCH {1} 0.220487 0.309414 0.712594 

ARCH{1} 0.741176 0.882933 0.839448 

Offset 1195.86 13.7879 86.7331 

Table 5 also gives the design value of the parameter for optimal 

power flow by selecting constant, GARCH, ARCH and offset 

values during the calculation of conditional variance in the 

GARCH (1, 1) model. 
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Figure 13. Calculation of conditional variance with GARCH, 

EGARCH, and GJR during the testing process 

In Figure 13, the trend shows a reduction of fluctuation of load 

by calculation of conditional variance during the testing 

operation. It also indicates a decrease in errors.  

 
Figure 14. Effect of load with GARCH, EGARCH, and GJR 

during the training process 

Figure 14 indicates the noise-free curve of the loads acquired 

during the training of data using GARCH, EGARCH and GJR 

model. 

 

Table 6. GARCH (0, 1) model of conditional variance 

Parameter Value  Standard 

error 

t 

statistic 

Constant 0.00327603 0.000445629 7.35148 

ARCH{1} 1 0.182348 5.48403 

Table 7. EGARCH (1, 1) model of conditional variance 

Parameter Value  Standard 

error 

t 

statistic 

Constant -4.42063 0.93212 -4.74256 

GARCH {1} 0.128253 0.178401 0.7189 

ARCH{1} 1 0.182348 5.48403 

Leverage{1} 0.458658 0.0820929 5.58706 

 

Table 8. GJR (0, 1) model of conditional variance 

Parameter Value  Standard 

error 

t 

statistic 

Constant 0.00364592 0.000397661 9.1684 

ARCH{1} 1 0.159196 6.28157 

Leverage{1} -0.0671856 0.126273 -5.32068 

 

Tables 6, 7, and 8 give the design value of the parameter model 

for optimal power flow in GARCH (0, 1), EGARCH (1, 1) and 

GJR (0, 1) models respectively during the calculation of 

conditional variance with the choice of constant, ARCH, 

GARCH and Leverage values. 

 
Figure 15. The smoothness of result using PSO  

Figure 15 shows the accurateness of predicted load and 

smoothness of the result using PSO for GARCH, EGARCH 

and GJR models. 

 

Table 9. Load forecasting results of different models 

Time 

(hr.) 

GARCH EGARCH GJR 

Actual 

load 

(MW) 

Fore 

cast 

load 

(MW) 

Actual 

load 

(MW) 

Fore 

cast 

load 

(MW) 

Actual 

load 

(MW) 

Fore 

cast 

load 

(MW) 

1 0.012 0.02 0.006 0.02 0.009 0.02 

50 0.003 0.18 0.003 0.18 0.003 0.18 

100 0.003 0.02 0.002 0.02 0.003 0.02 

150 0.009 0.03 0.014 0.03 0.009 0.03 

200 0.004 0.01 0.005 0.01 0.005 0.01 

250 0.007 0.01 0.008 0.01 0.007 0.01 

300 0.003 0.01 0.004 0.01 0.004 0.01 

350 0.005 0.01 0.004 0.01 0.004 0.01 

400 0.003 0.01 0.004 0.01 0.004 0.01 

450 0.003 0.01 0.003 0.01 0.003 0.01 

 

Table 9 shows the predicted load concerning actual load and 

the MAE (Mean absolute error) of GARCH, EGRCH, and 

GJR is 0.0258, 0.0257, 0.0259, and the RMSE of GARCH, 

EGARCH, and GJR is 0.0568. 

IV. Result and Discussion 

The wavelet calculates the forecasting prices and GARCH 

model using Monte-Carlo simulation, and the forecasting 

prices are compared with actual prices as given in Table 1(a). 

Here, the Monte-Carlo simulation predicts the Price sensitively 

with the decomposition of data and its analysis by wavelet and 

GARCH model, respectively, in FHT. Figure 5(a) explains the 

actual price flow of the Ontario power plant, which helps to 

predict Price in-terms two half of sample data. Figure 5(b) 

gives the first half of 15 sample data of the expected price, and 

the forecasted price is more, and Figure 5(c) gives the second 
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half of 15 sample data of the predicted price, and the forecasted 

price is less. These two figures, Figure 5(b) and Figure 5(c), 

bring the expected price value of the Ontario plant, which 

reduces the cost of electricity. Figure 6(a) gives the actual 

value of Price in bar form for which the Ontario power plant 

operates. Figures 6(b) and 6(c) describe the predicted Price 

with the help of wavelet and GARCH models in bar form for 

the control of Price. 

In SHT, the actual load is tested by GARCH, EGARCH, and 

GJR models, as given in Table 2. After that, the tested load is 

run by PSO for smoothness, which brings good results in the 

predicted value, as shown in Table 9. Figure 7 gives the load 

flow of input and output data during the running of the Xintai 

power plant. The GARCH model represents the reduction of 

the variation of the load from decreasing to constant in Figure 

8. In Figure 9, the predicted load is constant by the decrease in 

the fluctuation of the load from increasing with the help of the 

EGARCH model. The GJR model helps to control the change 

of the predicted load in Figure 10. Figure 11 brings good 

results in the expected load by the help of conditional variance 

and standardized value of data during the training period. 

Figure 12 describes the path of simulated conditional variance 

and simulated nominal returns during the testing of data where 

the simulated approach, mean, and conditional boundary 

removes the unwanted data for the accurateness of the result. 

In Figure 13, the conditional variance of testing data reduces 

the fluctuation of the load. While Figure 14 describes the 

noise-free of load during the training period. Figure 15 brings 

smoothness of the predicted load and gives accurateness in the 

result. Tables 4 and 5 help in the design of the parameters for 

the optimal power flow by the GARCH model concerning the 

Figures 12 and 13, respectively. Similarly, Tables 6, 7, and 8 

also describe the design value of GARCH, EGARCH, and GJR 

model for the smoothness of the power flow.  

V. Conclusion 

This manuscript explains the development of the model for the 

effect of Price and load on STLF using hybrid techniques (HT). 

In this study, we concluded that in the first hybrid technique 

(FHT), the original data is decomposed by wavelet. Then 

GARCH (1,1) is estimated using decomposition data as well as 

the Monte-Carlo technique is using for the calculation of  

GARCH (1, 1) coefficients. In the second hybrid technique 

(SHT), each model is defined with specific conditions, and 

each model helps process the data sample. Then the output of 

the model is optimized through PSO for smoothness of the 

result.  Finally, the random permutation and algorithm are used 

to find out the forecasting result. These hybrid techniques (HT) 

are the best methods for predicting Price, and load in STLF is 

seen from the result. 
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