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Abstract: Software enhancement must be carefully planned 

and taken to satisfy customer change requests, such as adding a 

new functionality and deleting or changing an existing one. A 

poorly constructed planning may cause project failures to meet 

budget targets and deadlines. One of the software project 

planning activities is effort estimation. In this paper, we 

investigate the effectiveness and performance of four Machine 

Learning Regression Methods (MLRM): Ada Boost Regressor 

(ABR), Gradient Boosting Regressor (GBR), LinearSupport 

Vector Regression (LinearSVR), and Random Forest Regression 

(RFR) to predict software requirements enhancement effort. The 

analysis was based on the results of experiments carried out on 

real projects in the software industry. These techniques were 

trained and tested with six software development project 

datasets including functional requests and the PROMISE 

repository including enhancement requests. The results of 

enhancement effort with different machine learning techniques 

were compared with the enhancement effort obtained from the 

expert judgement. The best performances were observed with 

RFR in terms of: MAE (Mean Absolute Error) = 0.040, mean 

square error (MSE)= 0.045 and root mean square error 

(RMSE)= 0.215. Therefore, RFR could be recommended for the 

estimation of software enhancement effort when using expert 

judgment. 

 
Keywords: Software Enhancement, COSMIC Functional Change, 

Software Enhancement Effort estimation, Random Forest Regression 

(RFR), Linear Support Vector Regression (LinearSVR), Ada Boost 

Regression (ABReg), Gradient Boosting Regression (GBReg).  

I. Introduction 

Software enhancement is considered as the critical activity in 

the software development life cycle. It is defined as “changes 

made to an existing application where new functionality has 

been added, or existing functionality has been changed or 

deleted. This would include adding a module to an existing 

application, irrespective of whether any of the existing 

functionality is changed or deleted” [1]. Since changes are 

frequent throughout the Software Development Life Cycle 

(SDLC), software project planning should be reviewed 

frequently. And therefore, software enhancement effort 

estimation should be accurate. 

Considering that effort estimation is one of the main activities 

of software project planning, it is required to clarify the 

components of an estimation process. Basically, the quality of 

the outcomes of an estimation process depends on the quality 

of its inputs [2]. The size of software to be delivered is 

recognized as the most significant input variable. As software 

has increased in size and importance, software development 

becomes a risky, complex, and costly process [3] In fact, when 

the software size increases, effort will increase. However, with 

enhancement, software size may change. Consequently, effort 

for software enhancement projects needs to be accurately 

estimated [4]. Although many software estimation models are 

proposed, expert judgement approach is still used in software 

industries.  

The definition of a requirement change originates from the area 

of software maintenance and change management [5]. In 

general, there are two types of change requests: those that are 

inside the scope and those that are outside the scope of the 

project. Change requests that are inside the scope involve small 

corrections to an existing requirement. They usually have 

minimal impact on the budget or the project progress. On the 

other hand, change requests that are outside the scope take a 

considerable amount of time to implement and have a more 

sizeable impact on the budget [6]. One of the factors that 

influences the effectiveness of the change acceptance decision 

is the accuracy of the change effort estimation [7]. Nowadays, 

an accurate evaluation is a prime goal for risk-free projects [8]. 

In this context, Machine Learning (ML) techniques which are 

the most suitable for dealing with modeling of high dimensional 
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problems are becoming increasingly used to provide efficient 

solutions [9]. 

In our previous work [10], we proposed an ontology 

based-approach for classifying change requests as either 

Functional changes or Technical changes. Functional changes 

affect functional requirements, while Technical changes affect 

nonfunctional requirements as described in the ISO 25010 

quality model and Project requirements and constraints. In this 

paper, we complement this work by measuring the functional 

size of change request (i.e., enhancement request) using 

COSMIC FSM method (ISO 19761). The functional size of 

the change will provide a more realistic evaluation of the 

change request [11]. Based on the expert judgment approach, 

we estimate the effort for software enhancement. We propose 

to assess how well functional change is correlated with 

enhancement effort estimation and, which of the MLRM 

provides accuracy for the effort estimation. In order to 

improve the estimated enhancement effort, we will use four 

popular MLRM. The main emphasis of this work is to 

investigate the application of MLRM to achieve superior 

enhancement effort estimation results by using not only feature 

selection techniques but also parameter tuning techniques 

(K-fold-cross validation) on datasets created based on real 

software development projects and Expert judgement. 

The remainder of this paper is organized as follows: section 2 

presents the related work on software enhancement effort 

estimation where MLRM are used. Section 3 presents the 

MLRM used in this study (Ada Boost Regressor (ABR), 

Gradient Boosting Regressor (GBR), Linear Support Vector 

Regression (LinearSVR) and Random Forest Regression 

(RFR)). Section 4 gives a detailed description of our research 

method. Section 5 presents the experiments and results where 

prediction accuracy of four techniques is compared with 

Expert judgement and addresses the threats to validity. 

Whereas Section 6 presents the discussion and the limitations 

of our study. Finally, section 7 provides our conclusions along 

with a discussion and outlines future work.  

II. Related Work 

Many researchers proposed to build maintenance enhancement 

estimation models in pursuit of “accurate” estimates. In this 

section, we show the results of literature study in which we 

have investigated different ML techniques with regard to their 

capabilities to generate accurate estimation models.  

There are two current models that have been widely used to 

estimate change effort which are algorithmic and 

non-algorithmic models [7]. Estimating maintenance effort 

using the algorithmic model is based on mathematical formulas. 

In non-algorithmic models, the estimation can be done by using 

historic projects and previous experiences. The objective of the 

maintenance effort estimation is to estimate the amount of 

work and time required in implementing the particular changes. 

Expert judgment is one of the non-algorithm traditional 

techniques that is frequently used in the software cost 

estimation in the early phases of software project life cycle 

[12].  

Several models have been proposed for software maintenance 

effort estimation (SMEE). In this study we will investigate the 

use of four MLRM for enhancement estimation. Accurate 

estimation is essential to choose for each software application 

model development [8]. 18 studies proposing SMEE models 

were published between 1995 and 2020.  The models in these 

18 studies were statistical regressions [13]–[18], neural 

networks [18]–[23], SVR [24], rule based [21],[24], Bayesian 

network [25], analogy [26], and a pattern recognition 

approach termed optimized set reduction[18], General 

Regression [23], Support Linear Regression models [23], 

Support Vector Regression [24] and decision trees stochastic 

gradient boosting [27].  

Table 1 summarizes the three recent research studies related to 

software maintenance (enhancement) effort estimation. 

Results showed that there was not a statistically significant 

difference in the prediction accuracy among the proposed 

models. A major challenge for the research community is to 

develop a good theoretical understanding for maintenance and 

evolution, which scales to industrial applications [28]. Several 

studies lack clarity on how the data were prepared and used, 

which makes it difficult to compare results among studies as 

well as replicate them [29]. 

The ISO/IEC 14764:2006 define software maintenance in four 

types: corrective, adaptive, preventive and perfective [30]. The 

IEEE 14764 classifies adaptive and perfective maintenance as 

enhancements and corrective and preventive maintenance as 

correction. The type of maintenance considered in our work is 

maintenance enhancement (ME). 

The aim of enhancement effort estimation model is to guide 

manager in their control or avoidance of excessive costs when 

dealing with requirements change rework effort. 

III. Machine Learning Regression Methods 

A review of various machine learning techniques used in 

estimating enhancement effort revealed that the accuracy of 

estimates can be achievable [31]–[36]. No method is 

considered better than the others, strengths and weaknesses 

are often complementary to each other. 
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Table 1. Related Work

 

Several techniques for learning and classification exist in the 

literature, but it is unclear which one is definitively better than 

another in our context. For this reason, we used different 

experiment learning methods to find the most suitable one for 

our context. In our experiments, we considered the regression 

methods that are available. The goal of regression methods is 

to build a function f(x) that adequately maps a set of 

independent variables (X1, X2,..., Xn) into a dependent 

variable Y [37]. In our case, we aim to employ regression 

methods using a training dataset to predict the total 

enhancements effort for software projects in man-hours. The 

four MLRM used in our research method are as follow: 

 Adaboost Regressor (ABReg), 

 Gradient Boosting Regssor (GradientBoostingReg) 

 Random Forest Regression (RFR), 

 Linear Support Verctor Regression (LinearSVR) 

Many algorithms have been used for the purpose of boosting, 

including Adaptive Boosting (Known as AdaBoost). 

AdaBoost algorithm was first introduced by Freund & 

Schapire [38]. This algorithm was a solution to many of the 

difficulties for earlier boosting algorithms [39]. The idea 

behind AdaBoost is to construct a strong model by combining 

multiple weak classifiers into one single strong classifier. A 

weak classifier is a classifier which performs poorly but better 

than random guessing [40]. On the other hand, the Gradient 

Boosting Regression (GBR) is one of the most popular and 

widely used machine learning models today. The strength of 

using GBR is to solve almost all objective functions, effective 

in many cases, flexibility with the choice of loss functions [41]. 

The RFR is proposed by Breiman, it is an improved 

classification and regression tree method that gained popularity 

for its robustness and flexibility in modeling the input-output 

functional relationship appropriately. The SVR was first 

introduced by Vapnik in 1995 [42]. To generalize the Support 

Vector algorithm to regression estimation, an analogue of the 

margin is constructed in the space of the target values using 

Vapnik's insensitive loss function [43] Variables in the SVR 

model structure belong to continuous space. 

Our constructed algorithm model contains a collection of 600 

enhancement requests {ER1, ER2, ER3...ER600} related to 

six software development project datasets with their 

corresponding features ({Functional Process Size, Actual 

Effort, Change (enhancement) Request, Functional Change 

Size and Estimated Effort}). The aim is to predict change 

effort ratios of test samples (new enhancement/change). In 

other words, the goal is to construct a model that minimizes the 

prediction error for estimating the future samples. 

I. Research Method Overview 

This study addressed the Enhancement Effort Estimation 

problem as a regression task. Our research design includes the 

following four steps (See Figure 1):  

1. Gathering Data,  

2. Pre-Processing Data and Normalizing Data, 

3. Constructing Prediction Models, 

4. Evaluating the performances of models 

A. Gathering Data  

This step involves the data set collection from two types of 

database. The first database contains System Requirements 

(SR) collected from use case diagrams, class diagrams, and 

project tutorials from previously developed real projects in the 

software industry. The second database contains Requirements 

Changes (RC) collected from customers' reviews in 

PROMISE 1 . These sources provide the system contextual 

requirements including System purpose, System scope and 

system overview.  

 
1 http://promise.site.uottawa.ca/SERepository/datasets-page.html 

References Techniques Maintenance 

type 

Evaluation Metrics Performance 

Lopez et al. [23] Neural Networks (NN), 

General Regression Neural 

Network (GRNN) and Radial 

Basis Function NN (RBFNN) 

 

Enhancement Absolute Residuals 

(AR),  

Mean of Absolute 

Residuals (MAR) 

In comparing the 

prediction accuracy 

among the RBFNN, 

MLP and GRNN, the 

RBFNN had the highest 

confidence level. 

Gracia et al.[24] Support Vector Regression 

(SVR), Decision Tree (DT) 

Enhancement Mean Relative Error 

(MRE), 

Absolute Residual 

(AR) 

The polynomial kernel 

SVR (PK SVR) was 

statistically better than 

statistical regression, 

neural networks, 

association rules and 

decision trees, with 95% 

confidence 

Ceron et al. [27]  Statistical regression (SR), 

NN, SVR, DT and 

Stochastic Gradient Boosting 

(SGB) 

Enhancement Absolute Residuals 

(AR),  

Mean of Absolute 

Residuals (MAR) 

The SGB had better 

prediction accuracy than 

the other five models. 
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Figure 1. Research method design 

Our study takes into account the change request as an input, 

identifies its types, and measures its function size in terms of 

CFP units, as well as the actual and the estimated effort of each 

Functional Process (i.e., functional requirement) derived from 

experts' opinions. 

A. Pre-Processing and Normalizing Data for Learning  

1) Identifying Functional Change requests 

The collected change requests are pre-processed in our 

previous work [10]. We used an ontology-based approach to 

classify change requests as either Functional Change or 

Technical Change. Technical Changes are further classified 

into one of the eight ISO 25010 quality characteristics and 

Project Requirements and Constraints. This ontology-based 

approach involves three main steps: (i) identification and 

specification of change requests, (ii) conceptualization of 

relationship among system requirements change requests, and 

(iii) an implementation of rules and results generation. 

2) Sizing Functional Requirements and Functional Changes 

requests 

Our research method takes into account the functional size of a 

change request. The ISO/IEC 14143-1 for Functional Size 

Measurement defines FSM as a means of quantifying the 

Functional User Requirements (i.e., functions that the 

functional user has required to be delivered). Since Functional 

User Requirements can be extracted from the software model 

before its implementation, COSMIC FSM method can be used 

for software size measurement and estimation purposes [44]. It 

is to be noted that none of the effort estimation models used the 

ISO standard COSMIC [44] which objectively measures the 

software functional size. 

(a) COSMIC FSM: overview 

The COSMIC FSM method is an international standardized 

method for measuring software functionality [45]. The method 

is designed to be independent of any implementation decisions 

embedded in the operational artifacts of the software to be 

measured. COSMIC [36] can be used to approximate the 

software size at the beginning of the software life-cycle. 

COSMIC method has been successfully used to size “data 

manipulation-rich” software, some scientific/engineering 

software [46]. The COSMIC method measurement unit is the 

“Cosmic Function Point (CFP)”. 

Each data movement is measured as 1 CFP. The COSMIC 

FSM method process [47] includes three steps: Measurement 

strategy phase, mapping phase and Measurement phase. 

COSMIC measures the size of a change to software and the 

size of software that is added, changed or deleted as well. 

COSMIC functional size measurement is applicable to business, 

real-time and infrastructure software at any level of 

decomposition [45]. Our dataset includes four web 

applications and two business applications. 

Over the years, many discussions are centered on software 

project estimation [48]–[50] And, researchers continue to 

propose new effort estimation models to achieve effort 

prediction performance. Typically, these models are classified 

as either Algorithmic or non-algorithmic models. 

Some estimation models depend on the stakeholders 

experience and skills level and require to spend more time to 

understand both user requirements and program specifications, 

or to complete program design [51]–[53]. For many years, 

expert judgment was the main choice for effort estimation. 

(b) Applying COSMIC FSM method 

This section introduces the use of COSMIC FSM process as 

described in [54]. The main parameters that must be identified 

in Measurement strategy phase are detailed as follows: 

 The purpose: Estimating Functional Change Effort. 

 Overall scope: Sizing change request and estimating the 

effort based on Expert Judgment 

 Functions users: The functional users in this case are 

human users. 

 Layer: web application, business application. 

 Level of granularity: high level of granularity 

In order to visualize the interaction between the defined key 

parameters, we used two different case studies. For web 

application, the context diagrams are used to show the 

measured software, along with its functional users, the 

boundary, the persistent storage and the data movements [55]. 

For business application, the (human) functional users of the 

application have no knowledge of how the application is 
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physically distributed over the PC and the main-frame [56]. 

A functional user starts a functional process in response to a 

triggering event. For both web and business application, the 

triggering events are the users’ inputs. Hence, the types of the 

data movements (Entry (E), Exit (X), Read (R) or Write (W)) 

were defined. 

In Measurement phase, the identified data movements, based 

on some common word cases [56] such as create, select, delete, 

add, share and display, were counted. The identified data 

movements type can be repeatedly executed by the user. This 

has facilitated the measurement process. In our case we will 

use the method proposed by Heeringen et al [57]. The size of a 

functional process is the sum of all its data movements. The 

Functional Size of a Functional Process (noted by FS(FP)) (i.e., 

UC) is given by Equation 1. 

 

FS(FPi) = ∑ FS(Entries) +∑ FS(eXits) +∑ FS(Reads)            

+∑ FS(Writes) (1) 

 

 Where: 

 FS(FPi): is the functional size of the functional process 

FPi. 

The functional size of a software is obtained by performing an 

arithmetic addition of the functional sizes of its functional 

processes (see Equation 2) 

 

FS(SW)= ∑ FS(FPi)  i=1 (2) 

 

where:  

 FS(SW): the functional size of the software SW. 

 FS(FPi): the functional size of the functional process 

FPi.  

 n: the number of functional processes in the software. 

Our dataset contains six software development projects, 

including 600 FP. After identifying all the data movements for 

each FP, Table 2 illustrates the application of COSMIC for an 

example of three FP related to the “SOCOMENIN” project 

that has a functional size of 142 CFP. And an example of three 

FP related to the “Mobile game” project having a total 

functional size of 175 CFP. 

3) Estimating the Enhancement effort based on Expert 

judgment approach 

When data is gathered, there are some limitations to a number 

of scenarios. In these situations, the Expert Judgement 

approach is 'good' to be used [58]. It provides fast estimation 

for unique or new projects [59], [60]. It is useful when an 

organization does not have any historical data in database [61]. 

It provides estimates which are adjusted and calibrated to the 

past of organization by means of expert experience. It does not 

require any historical data. 

Years of software Experience Numbers of estimators 

3 years   2 

4 years  3 

10 years  2 

Table 3. Expert Judgement Experience. 

In our studies, as shown in Table 3, we have asked seven 

estimators having at least three years of experience. Each 

Functional Process and its corresponding actual effort derived 

from the Expert judgments is provided in Table 2. The results 

are based on a set of estimators' information such as, design 

requirements, available resources, base product/source code, 

available software tools, and quality requirements.

 

Table 2. Change Request size based on COSMIC CFP. 

Project Functional Process Status CFP Actual Effort 

Mobile game 

application 

Login Completed E=3; X=3; R=1; W=1; 

total=8CFP &  

2h/per 

send localization information Completed  E=3; X=3; R=1; W=0; 

total= 7CFP  

4h/per 

store information Completed  E=2 ;X=2; R=1; W=0; 

5CFP  

2h/per 

SOCOMENIN Add Customer Completed E =1X =1;R =1;W=1; 

total= 4CFP  

1h/per 

Add invoice Completed  E=1; X=1 ;R=1 ;W=1; 

total= 4CFP  

3h/per 

Send events notification Completed  E=2; X=2; R=1; W=0; 

total= 5CFP  

2h/per 
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Table 4. Enhancement Effort Estimation based on Expert Judgement 

Table 4 presents the change requests that are gathered from 

our Ontology-based approach. A number of FP are affected by 

functional change request. Using COSMIC method, the 

functional size of each functional process as well as the 

functional size of the change are provided. The measurement 

results are obtained from the sum of all FP sizes. Each 

estimated effort to handle a change request is based on Expert 

judgments. Thus, estimating the effort of change request (i.e., 

estimating the enhancement effort) is not an easy task for both 

the manager and the development team when software is being 

developed. In this situation, the results are based on a set of 

estimators' information such as, previous history of the product 

(e.g. previous changes), Functional Size of the new function, 

similar previous implementations, amount of new code, 

deadline pressure and expected life-time of the product. 

A. Constructing Prediction Model 

The selected MLRM are trained and tested for various 

experiments using features. We used the Google Collaboratory 

python programming language to develop our prediction 

model. Google Collaboratory is widely known as Google 

Colab is an open source service provided by Google to any 

person having a Gmail account. Google Colab2 provides GPU 

for research to the people who do not have enough resources 

or cannot afford one. This section conducted series of 

experiments to investigate the application of COSMIC method 

and Expert Judgements. Our proposed prediction method was 

evaluated through six software development project datasets. 

B. Evaluating Performance 

Many researchers used different metrics to evaluate the 

performance of their proposed model [62]–[66] In our Context, 

the outcomes of our constructed enhancement effort 

estimation models are compared with the widely used set of 

evaluation metrics such as mean square error (MSE), root 

mean square error (RMSE) and mean absolute error (MAE). 

In this section, two types of experiments are conducted. In the 

first set of experiments, dataset is randomly split into two 

subsets, a training set and a test set. And, the second set of 

experiments is conducted using popular tenfold cross 

validation method. 

 
2 https://colab.research.google.com/notebooks/welcome.ipynb 

1) Error metrics  

The predicted values are compared with actual target values 

and prediction errors are computed in the form of MAEs, 

MSEs and RMSEs as demonstrated in Table 5. 

 

Method/parameters MAE MSE RMSE 

ABReg  0.450   0.263  0.513 

GBReg  0.108  0.070 0.265 

RFR 0.040  0.045  0.215 

LinearSVR   0.100  0.479  0.190 

Table 5. Prediction analysis using MAE, MSE and RMSE. 

All error measurements indicate quiet values. It is evident from 

the results (see Figure 2) that RFReg method delivers the best 

performance when compared with the other three  

Figure 2. Prediction analysis using MAE, MSE and RMSE 

MLRM. It shows the evidence of its powerful predictive 

capacity. In addition, the GBReg presents good results. 

However, the bad results are presented by the ABReg method. 

2) Simple split 

For the first set of experiments, the classic approach is to do a 

simple 80%-20% split, sometimes with different values like 

70%-30% or 90%-10%. Using classic method, we often split  

 

Figure 3. Mean Predicted value  

our data into training and validation/test sets. The training set 

Project Functional Process Functional 

Change 

Change Type CFP Actual Effort 

Mobile Game 

application 

Login Personalize 

Information &  

Modify E=3; X=3; R=1; 

W=1;  

total= 8CFP   

3h/per 

send localization 

information 

Add notification 

for localization 

Add E=3; X=3; R=1; 

W=0;  

total =7CFP   

7h/per 

SOCOMENIN Add Customer Personalize 

Information  

Modify E=3; X=3; R=1; 

W=1;  

total= 8CFP 

3h/per 

Add invoice Personalize 

Information for 

invoice  

Add E =3; X =3; R =1; 

W=1;  

total= 8CFP 

3h/per 
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is used to train the model, and the validation/test set is used to 

validate data that it has never seen before.  Results of the 

experiments (see Figure 3) revealed that Random Forest 

provides better predictive performance compared other models.

1) Cross validation 

In cross-validation, we do more than one split. We can do 3, 5, 

10 or any K number of splits. These splits are called Folds, and 

there are many strategies that can be used to create these folds.  

In our model, we used 10-fold for cross validation. It is 

adapted in all sorts of experiments to analyze the performance 

of four MLRM. By using Cross-Validation, we are able to get 

more metrics and draw important conclusions both about our 

algorithm and our data. One of the most obvious reasons to do 

cross validation is that it helps us better use our data, and it 

gives us much more information about our algorithm 

performance. We also used the r2 (coefficient of determination) 

regression score function for cross validation (Algorithm 1).  

Table 6 illustrates the results of using these two metrics 

(accuracy/prediction). 

 

Table 6. 10-Fold Cross Validation accuracy. 

2) Features Importance 

We have conducted a set of experiments in order to investigate 

the influence of each feature on the estimated effort based on 

the best model results. Features including {Functional Process 

Size, Actual Effort, Change (enhancement) Request, Change 

(enhancement) Functional Size, Estimated Effort} are  

shown in Figure 4. Results demonstrate that features {Actual 

Effort, Functional Change (enhancement) and Estimated Effort} 

have a good influence on the delivered results. This clearly 

shows the utility of Expert judgments in predicting 

enhancement effort. Figure 4 presents the results. 

In order to obtain more performance prediction, we used only 

the following features {Actual effort and Change  

 

Figure 4. Importance of Features  

 

(enhancement) request}. Results of the experiments (see 

Figure 5) revealed that RFReg and GtBReg deliver better  

mean score cross validation prediction when compared with 

other models. However, the bad results are delivered by Linear 

SVR. 

 

Figure5. Mean Predicted value  

II. Threads to validity 

Threats to the validity of our study are pertinent to internal 

validity, external validity, and finally construct validity. 

A. Internal validity 

The threat to internal validity in our research is related to the 

classification of change request as Functional Change (FC) or 

Technical change (TC), as well as the change Functional Size 

(FS(FC)). The classification of change request is based on the 

use of Ontology. The strength of using Ontology is to move 

from simple classification to semantic classification [66]. As it 

is described in section 3, using ontology for classification is for 

improving the quality of data (models input). In addition, our 

Techniques  ABReg GBReg RFR LSVR 

Accuracy_lf  0.8203 

  

0.8634 0.8836 0.7168 

Cross-Predict

ed 

(K-Fold ) 

0.8066 0.8496 0.8175 0.8011 

Algorithm 1: 10-Cross-Validation with r2_score 

#Predicting the enhancement effort using test set  

y_pred_rfr= RFR.predict(X_test)  

#Random Forest Regression Accuracy with test set  

accuracy_rfr = metrics.r2_score(y_test, y_pred_rfr)  

print(“RFR Accuracy:,” accuracy_rfr)  

#Predicting the enhancement effort using cross validation 

(KFold method) 

y_pred_kf_rfr = cross_val_predict(RFR, X, Y, cv=10 )  

#Random Forest Regression Accuracy with KFold method)  

accuracy_rfr = metrics.r2_score(Y, y_pred_KFold_rfr) 

print(accuracy_rfr) 
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classification ontology-based approach requires that the 

request for changes must be defined clearly and completely. 

Thus, using COSMIC FSM for sizing FC can be used 

throughout the software life-cycle phases. We identified the 

FS(FC) at a high level of abstraction of the software life-cycle. 

B. External validity 

The threats to external validity primarily include the degree to 

which the proposed research method has exactly captured the 

estimate (i.e., enhancements effort) for software projects in 

practice. For data quality, we only extracted a small portion of 

data samples from the used data sets based on Expert 

Judgment. Figure 6 shows the observed and estimated 

enhancement effort using RFReg. 

Figure 6. Mean Predicted value  

 

 

Figure 7. Mean Predicted value  

Figure 7 shows the bar graph representation of actual effort 

values and estimated enhancement effort values with our 

proposed research method. The bar graph shows three cases.  

The first case of Project 1 shows that the estimated 

enhancement effort can be very close to the actual effort.  

The second case of Project 3 shows that the actual effort can  

Figure 8. Mean Predicted value  

be higher than the estimated enhancement effort. And, the third 

case of projects 6 shows that the estimated enhancement effort 

can be higher than the actual effort. Regarding the functional 

size measurement, Figure 8 shows the bar graph representation 

of Functional Size of the total Functional processes and the 

Functional Size of the total enhancement Functional processes 

in terms of CFP units. The bar graph shows that values are very 

close. This is due to the fact that our research method takes 

into account Functional Process as well as the related 

enhancement, Process with high level of granularity. 

A. Threats of construct 

The threats of construct validity are related to the relation 

between theory and observation. In fact, the estimation of 

enhancement effort in our study is provided using Expert 

judgment method based on an ontology classification. 

Moreover, the judgment of enhancement request effort 

depends on many factors such as enterprise employee 

experience, categories, etc. The use of the COSMIC method 

for quantifying the functional requirements and enhancement 

will be helpful for the development team. 

Results (Figure 6,7 and 8) confirm the validity of MLRM as an 

alternative to traditional estimation methods such as Expert 

Judgement. This estimation will help experts making decisions 

whether to accept, defer or deny the enhancement request. 

III. Discussion 

All the participants in software project recognize the 

importance of developing an accurate enhancement effort 

estimate, since it plays a key role in the success of the software 

project planning. The main idea of our research is to present an 

effective model for software enhancement effort estimation.  

We focused on the importance of semantic classification when 

using an Ontology-based approach, and therefore we 

investigate their impacts for a “good” prediction.  

The proposed enhancement effort prediction model is quite 

effective and demonstrates the minimum MAE of 0.040 using a 

real dataset project as presented in Table 5. After learning, the 

MLRM were able to produce reasonably accurate predictions. 

This study and experiment were done to evaluate four machine 

learning methods Ada Boost Regression (ABR), Gradient 

Boosting Regression (GBR), Linear Support Vector 

Regression (LinearSVR) and Random Forest Regression 

(RFR). These methods are used to predict effort for a new 

change request that occurs in the software development 

project. The Random Forest method is established to be the 

more effective algorithm when compared with the other three 

methods. 
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We used two methods for evaluation. The first method used a 

simple split. The second method used 10-fold cross validation. 

In addition, we used the R2 score to cross validation. Based on 

the obtained results, we noted a small value of MSEs, MREs 

and RMSEs when applying a simple method alone. It 

demonstrates the effectiveness of the used methods. A good 

accuracy of 90% is obtained when the 10-fold cross validation 

with R2 score in the best scenario is used. To identify the 

effective determinants of the software enhancement effort 

estimation, we calculate the importance of each feature. 

Furthermore, a model that uses {Actual effort and change 

request} features delivers superior performance as compared 

to a model that uses all proposed features. In addition, a model 

that incorporates combination of 10-fold cross validation and 

R2 score demonstrates better performance when compared 

with a model that uses a simple split (train/test). 

Thus, we can conclude that RFReg and GBReg technique 

improves the accuracy of the estimates. 

For future work, other machine learning techniques can be 

used for prediction problems. In addition, other datasets can be 

used for experiments and training the model. In this way, more 

accurate estimations and predictions can be generated. And, 

more than two techniques can be combined to get more 

accuracy reaching 100%. 

Similar to all empirical studies, this study has some limitations. 

When the dataset is tested with Deep Learning, we do not 

achieve good accuracy (0.6). This is due to the lack of data, 

and that, Deep Learning requires a big number of datasets. So, 

we aim to extend our database for future work. 

IV. Conclusion 

All the participants in software project recognize the 

importance of developing an accurate enhancement effort 

estimate, since it plays a key role in the success of the software 

project planning. The main idea of our research is to present an 

effective model for software enhancement effort estimation.  

Enhancement requests effort estimation became a challenging 

task in the software project planning. We investigated the 

problem of accurately estimate effort for software 

enhancement projects. First, we determined the functional size 

of the requirements enhancement in terms of CFP unit. Then, 

for each requirements enhancement, we identify its 

corresponding estimation effort based on the expert judgement 

approach. 

Thereafter, we evaluated 600 enhancement requests using four 

MLRM: such as Ada Boost Regressor (ABR), Gradient 

Boosting Regressor (GBR), Linear Support Vector 

Regression (LinearSVR), and Random Forest Regression 

(RFR). In addition, the importance of each feature is also 

examined. The constructed models are tested using datasets of 

real software projects based on Expert Judgement, COSMIC 

FSM method and PROMISE repository for enhancement 

request. The four MLRM have successfully estimated the 

enhancements effort for the project's dataset. It was found that 

Random Forest Regression enhancement effort estimation 

model is more accurate with small MSEs, MREs and RMSEs 

values results and with quite good performance. 

Several extensions can be made. This work will be extended by 

exploring other forms of ML techniques to estimate 

enhancement effort for software engineering projects. We aim 

to extend our dataset to be used for Deep Learning method. 

The experiment outputs suggest that the suggested Deep 

Learning method can provide better results and accurately 

forecast the enhancement request effort. We aim to investigate 

the use of the COSMIC FSM method at a detail level of 

granularity as an input of enhancement effort estimation model. 
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