
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 12 (2020) pp. 412-423

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Received: 23 Jan, 2020; Accepted: 2 June, 2020; Published: 3 December, 2020

Software Enhancement Effort Estimation using

Machine Learning Regression Methods

Zaineb Sakhrawi1, Asma Sellami2 and Nadia Bouassida3

1 Faculty of Economics and management of Sfax, University of Sfax,

Sened, 2190, Gafsa, Tunisia

zainebsakhraoui40@gmail.com

2 Higher Institute of Computer Science and Multimedia, University of Sfax,

BP 242. 3021, Sfax, Tunisia

asma.sellami@isims.usf.tn

3 Higher Institute of Computer Science and Multimedia, University of Sfax,

Cité El Ons 2, N°145, Sfax - Tunisie

nadia.bouassida@isims.usf.tn

Abstract: Software enhancement must be carefully planned

and taken to satisfy customer change requests, such as adding a

new functionality and deleting or changing an existing one. A

poorly constructed planning may cause project failures to meet

budget targets and deadlines. One of the software project

planning activities is effort estimation. In this paper, we

investigate the effectiveness and performance of four Machine

Learning Regression Methods (MLRM): Ada Boost Regressor

(ABR), Gradient Boosting Regressor (GBR), LinearSupport

Vector Regression (LinearSVR), and Random Forest Regression

(RFR) to predict software requirements enhancement effort. The

analysis was based on the results of experiments carried out on

real projects in the software industry. These techniques were

trained and tested with six software development project

datasets including functional requests and the PROMISE

repository including enhancement requests. The results of

enhancement effort with different machine learning techniques

were compared with the enhancement effort obtained from the

expert judgement. The best performances were observed with

RFR in terms of: MAE (Mean Absolute Error) = 0.040, mean

square error (MSE)= 0.045 and root mean square error

(RMSE)= 0.215. Therefore, RFR could be recommended for the

estimation of software enhancement effort when using expert

judgment.

Keywords: Software Enhancement, COSMIC Functional Change,

Software Enhancement Effort estimation, Random Forest Regression

(RFR), Linear Support Vector Regression (LinearSVR), Ada Boost

Regression (ABReg), Gradient Boosting Regression (GBReg).

I. Introduction

Software enhancement is considered as the critical activity in

the software development life cycle. It is defined as “changes

made to an existing application where new functionality has

been added, or existing functionality has been changed or

deleted. This would include adding a module to an existing

application, irrespective of whether any of the existing

functionality is changed or deleted” [1]. Since changes are

frequent throughout the Software Development Life Cycle

(SDLC), software project planning should be reviewed

frequently. And therefore, software enhancement effort

estimation should be accurate.

Considering that effort estimation is one of the main activities

of software project planning, it is required to clarify the

components of an estimation process. Basically, the quality of

the outcomes of an estimation process depends on the quality

of its inputs [2]. The size of software to be delivered is

recognized as the most significant input variable. As software

has increased in size and importance, software development

becomes a risky, complex, and costly process [3] In fact, when

the software size increases, effort will increase. However, with

enhancement, software size may change. Consequently, effort

for software enhancement projects needs to be accurately

estimated [4]. Although many software estimation models are

proposed, expert judgement approach is still used in software

industries.

The definition of a requirement change originates from the area

of software maintenance and change management [5]. In

general, there are two types of change requests: those that are

inside the scope and those that are outside the scope of the

project. Change requests that are inside the scope involve small

corrections to an existing requirement. They usually have

minimal impact on the budget or the project progress. On the

other hand, change requests that are outside the scope take a

considerable amount of time to implement and have a more

sizeable impact on the budget [6]. One of the factors that

influences the effectiveness of the change acceptance decision

is the accuracy of the change effort estimation [7]. Nowadays,

an accurate evaluation is a prime goal for risk-free projects [8].

In this context, Machine Learning (ML) techniques which are

the most suitable for dealing with modeling of high dimensional

Software Enhancement Effort Estimation using Machine Learning Regression Methods

problems are becoming increasingly used to provide efficient

solutions [9].

In our previous work [10], we proposed an ontology

based-approach for classifying change requests as either

Functional changes or Technical changes. Functional changes

affect functional requirements, while Technical changes affect

nonfunctional requirements as described in the ISO 25010

quality model and Project requirements and constraints. In this

paper, we complement this work by measuring the functional

size of change request (i.e., enhancement request) using

COSMIC FSM method (ISO 19761). The functional size of

the change will provide a more realistic evaluation of the

change request [11]. Based on the expert judgment approach,

we estimate the effort for software enhancement. We propose

to assess how well functional change is correlated with

enhancement effort estimation and, which of the MLRM

provides accuracy for the effort estimation. In order to

improve the estimated enhancement effort, we will use four

popular MLRM. The main emphasis of this work is to

investigate the application of MLRM to achieve superior

enhancement effort estimation results by using not only feature

selection techniques but also parameter tuning techniques

(K-fold-cross validation) on datasets created based on real

software development projects and Expert judgement.

The remainder of this paper is organized as follows: section 2

presents the related work on software enhancement effort

estimation where MLRM are used. Section 3 presents the

MLRM used in this study (Ada Boost Regressor (ABR),

Gradient Boosting Regressor (GBR), Linear Support Vector

Regression (LinearSVR) and Random Forest Regression

(RFR)). Section 4 gives a detailed description of our research

method. Section 5 presents the experiments and results where

prediction accuracy of four techniques is compared with

Expert judgement and addresses the threats to validity.

Whereas Section 6 presents the discussion and the limitations

of our study. Finally, section 7 provides our conclusions along

with a discussion and outlines future work.

II. Related Work

Many researchers proposed to build maintenance enhancement

estimation models in pursuit of “accurate” estimates. In this

section, we show the results of literature study in which we

have investigated different ML techniques with regard to their

capabilities to generate accurate estimation models.

There are two current models that have been widely used to

estimate change effort which are algorithmic and

non-algorithmic models [7]. Estimating maintenance effort

using the algorithmic model is based on mathematical formulas.

In non-algorithmic models, the estimation can be done by using

historic projects and previous experiences. The objective of the

maintenance effort estimation is to estimate the amount of

work and time required in implementing the particular changes.

Expert judgment is one of the non-algorithm traditional

techniques that is frequently used in the software cost

estimation in the early phases of software project life cycle

[12].

Several models have been proposed for software maintenance

effort estimation (SMEE). In this study we will investigate the

use of four MLRM for enhancement estimation. Accurate

estimation is essential to choose for each software application

model development [8]. 18 studies proposing SMEE models

were published between 1995 and 2020. The models in these

18 studies were statistical regressions [13]–[18], neural

networks [18]–[23], SVR [24], rule based [21],[24], Bayesian

network [25], analogy [26], and a pattern recognition

approach termed optimized set reduction[18], General

Regression [23], Support Linear Regression models [23],

Support Vector Regression [24] and decision trees stochastic

gradient boosting [27].

Table 1 summarizes the three recent research studies related to

software maintenance (enhancement) effort estimation.

Results showed that there was not a statistically significant

difference in the prediction accuracy among the proposed

models. A major challenge for the research community is to

develop a good theoretical understanding for maintenance and

evolution, which scales to industrial applications [28]. Several

studies lack clarity on how the data were prepared and used,

which makes it difficult to compare results among studies as

well as replicate them [29].

The ISO/IEC 14764:2006 define software maintenance in four

types: corrective, adaptive, preventive and perfective [30]. The

IEEE 14764 classifies adaptive and perfective maintenance as

enhancements and corrective and preventive maintenance as

correction. The type of maintenance considered in our work is

maintenance enhancement (ME).

The aim of enhancement effort estimation model is to guide

manager in their control or avoidance of excessive costs when

dealing with requirements change rework effort.

III. Machine Learning Regression Methods

A review of various machine learning techniques used in

estimating enhancement effort revealed that the accuracy of

estimates can be achievable [31]–[36]. No method is

considered better than the others, strengths and weaknesses

are often complementary to each other.

Sakhrawi et al.

414

Table 1. Related Work

Several techniques for learning and classification exist in the

literature, but it is unclear which one is definitively better than

another in our context. For this reason, we used different

experiment learning methods to find the most suitable one for

our context. In our experiments, we considered the regression

methods that are available. The goal of regression methods is

to build a function f(x) that adequately maps a set of

independent variables (X1, X2,..., Xn) into a dependent

variable Y [37]. In our case, we aim to employ regression

methods using a training dataset to predict the total

enhancements effort for software projects in man-hours. The

four MLRM used in our research method are as follow:

 Adaboost Regressor (ABReg),

 Gradient Boosting Regssor (GradientBoostingReg)

 Random Forest Regression (RFR),

 Linear Support Verctor Regression (LinearSVR)

Many algorithms have been used for the purpose of boosting,

including Adaptive Boosting (Known as AdaBoost).

AdaBoost algorithm was first introduced by Freund &

Schapire [38]. This algorithm was a solution to many of the

difficulties for earlier boosting algorithms [39]. The idea

behind AdaBoost is to construct a strong model by combining

multiple weak classifiers into one single strong classifier. A

weak classifier is a classifier which performs poorly but better

than random guessing [40]. On the other hand, the Gradient

Boosting Regression (GBR) is one of the most popular and

widely used machine learning models today. The strength of

using GBR is to solve almost all objective functions, effective

in many cases, flexibility with the choice of loss functions [41].

The RFR is proposed by Breiman, it is an improved

classification and regression tree method that gained popularity

for its robustness and flexibility in modeling the input-output

functional relationship appropriately. The SVR was first

introduced by Vapnik in 1995 [42]. To generalize the Support

Vector algorithm to regression estimation, an analogue of the

margin is constructed in the space of the target values using

Vapnik's insensitive loss function [43] Variables in the SVR

model structure belong to continuous space.

Our constructed algorithm model contains a collection of 600

enhancement requests {ER1, ER2, ER3...ER600} related to

six software development project datasets with their

corresponding features ({Functional Process Size, Actual

Effort, Change (enhancement) Request, Functional Change

Size and Estimated Effort}). The aim is to predict change

effort ratios of test samples (new enhancement/change). In

other words, the goal is to construct a model that minimizes the

prediction error for estimating the future samples.

I. Research Method Overview

This study addressed the Enhancement Effort Estimation

problem as a regression task. Our research design includes the

following four steps (See Figure 1):

1. Gathering Data,

2. Pre-Processing Data and Normalizing Data,

3. Constructing Prediction Models,

4. Evaluating the performances of models

A. Gathering Data

This step involves the data set collection from two types of

database. The first database contains System Requirements

(SR) collected from use case diagrams, class diagrams, and

project tutorials from previously developed real projects in the

software industry. The second database contains Requirements

Changes (RC) collected from customers' reviews in

PROMISE 1 . These sources provide the system contextual

requirements including System purpose, System scope and

system overview.

1 http://promise.site.uottawa.ca/SERepository/datasets-page.html

References Techniques Maintenance

type

Evaluation Metrics Performance

Lopez et al. [23] Neural Networks (NN),

General Regression Neural

Network (GRNN) and Radial

Basis Function NN (RBFNN)

Enhancement Absolute Residuals

(AR),

Mean of Absolute

Residuals (MAR)

In comparing the

prediction accuracy

among the RBFNN,

MLP and GRNN, the

RBFNN had the highest

confidence level.

Gracia et al.[24] Support Vector Regression

(SVR), Decision Tree (DT)

Enhancement Mean Relative Error

(MRE),

Absolute Residual

(AR)

The polynomial kernel

SVR (PK SVR) was

statistically better than

statistical regression,

neural networks,

association rules and

decision trees, with 95%

confidence

Ceron et al. [27] Statistical regression (SR),

NN, SVR, DT and

Stochastic Gradient Boosting

(SGB)

Enhancement Absolute Residuals

(AR),

Mean of Absolute

Residuals (MAR)

The SGB had better

prediction accuracy than

the other five models.

Software Enhancement Effort Estimation using Machine Learning Regression Methods

Figure 1. Research method design

Our study takes into account the change request as an input,

identifies its types, and measures its function size in terms of

CFP units, as well as the actual and the estimated effort of each

Functional Process (i.e., functional requirement) derived from

experts' opinions.

A. Pre-Processing and Normalizing Data for Learning

1) Identifying Functional Change requests

The collected change requests are pre-processed in our

previous work [10]. We used an ontology-based approach to

classify change requests as either Functional Change or

Technical Change. Technical Changes are further classified

into one of the eight ISO 25010 quality characteristics and

Project Requirements and Constraints. This ontology-based

approach involves three main steps: (i) identification and

specification of change requests, (ii) conceptualization of

relationship among system requirements change requests, and

(iii) an implementation of rules and results generation.

2) Sizing Functional Requirements and Functional Changes

requests

Our research method takes into account the functional size of a

change request. The ISO/IEC 14143-1 for Functional Size

Measurement defines FSM as a means of quantifying the

Functional User Requirements (i.e., functions that the

functional user has required to be delivered). Since Functional

User Requirements can be extracted from the software model

before its implementation, COSMIC FSM method can be used

for software size measurement and estimation purposes [44]. It

is to be noted that none of the effort estimation models used the

ISO standard COSMIC [44] which objectively measures the

software functional size.

(a) COSMIC FSM: overview

The COSMIC FSM method is an international standardized

method for measuring software functionality [45]. The method

is designed to be independent of any implementation decisions

embedded in the operational artifacts of the software to be

measured. COSMIC [36] can be used to approximate the

software size at the beginning of the software life-cycle.

COSMIC method has been successfully used to size “data

manipulation-rich” software, some scientific/engineering

software [46]. The COSMIC method measurement unit is the

“Cosmic Function Point (CFP)”.

Each data movement is measured as 1 CFP. The COSMIC

FSM method process [47] includes three steps: Measurement

strategy phase, mapping phase and Measurement phase.

COSMIC measures the size of a change to software and the

size of software that is added, changed or deleted as well.

COSMIC functional size measurement is applicable to business,

real-time and infrastructure software at any level of

decomposition [45]. Our dataset includes four web

applications and two business applications.

Over the years, many discussions are centered on software

project estimation [48]–[50] And, researchers continue to

propose new effort estimation models to achieve effort

prediction performance. Typically, these models are classified

as either Algorithmic or non-algorithmic models.

Some estimation models depend on the stakeholders

experience and skills level and require to spend more time to

understand both user requirements and program specifications,

or to complete program design [51]–[53]. For many years,

expert judgment was the main choice for effort estimation.

(b) Applying COSMIC FSM method

This section introduces the use of COSMIC FSM process as

described in [54]. The main parameters that must be identified

in Measurement strategy phase are detailed as follows:

 The purpose: Estimating Functional Change Effort.

 Overall scope: Sizing change request and estimating the

effort based on Expert Judgment

 Functions users: The functional users in this case are

human users.

 Layer: web application, business application.

 Level of granularity: high level of granularity

In order to visualize the interaction between the defined key

parameters, we used two different case studies. For web

application, the context diagrams are used to show the

measured software, along with its functional users, the

boundary, the persistent storage and the data movements [55].

For business application, the (human) functional users of the

application have no knowledge of how the application is

Sakhrawi et al.

416

physically distributed over the PC and the main-frame [56].

A functional user starts a functional process in response to a

triggering event. For both web and business application, the

triggering events are the users’ inputs. Hence, the types of the

data movements (Entry (E), Exit (X), Read (R) or Write (W))

were defined.

In Measurement phase, the identified data movements, based

on some common word cases [56] such as create, select, delete,

add, share and display, were counted. The identified data

movements type can be repeatedly executed by the user. This

has facilitated the measurement process. In our case we will

use the method proposed by Heeringen et al [57]. The size of a

functional process is the sum of all its data movements. The

Functional Size of a Functional Process (noted by FS(FP)) (i.e.,

UC) is given by Equation 1.

FS(FPi) = ∑ FS(Entries) +∑ FS(eXits) +∑ FS(Reads)

+∑ FS(Writes) (1)

 Where:

 FS(FPi): is the functional size of the functional process

FPi.

The functional size of a software is obtained by performing an

arithmetic addition of the functional sizes of its functional

processes (see Equation 2)

FS(SW)= ∑ FS(FPi) i=1 (2)

where:

 FS(SW): the functional size of the software SW.

 FS(FPi): the functional size of the functional process

FPi.

 n: the number of functional processes in the software.

Our dataset contains six software development projects,

including 600 FP. After identifying all the data movements for

each FP, Table 2 illustrates the application of COSMIC for an

example of three FP related to the “SOCOMENIN” project

that has a functional size of 142 CFP. And an example of three

FP related to the “Mobile game” project having a total

functional size of 175 CFP.

3) Estimating the Enhancement effort based on Expert

judgment approach

When data is gathered, there are some limitations to a number

of scenarios. In these situations, the Expert Judgement

approach is 'good' to be used [58]. It provides fast estimation

for unique or new projects [59], [60]. It is useful when an

organization does not have any historical data in database [61].

It provides estimates which are adjusted and calibrated to the

past of organization by means of expert experience. It does not

require any historical data.

Years of software Experience Numbers of estimators

3 years 2

4 years 3

10 years 2

Table 3. Expert Judgement Experience.

In our studies, as shown in Table 3, we have asked seven

estimators having at least three years of experience. Each

Functional Process and its corresponding actual effort derived

from the Expert judgments is provided in Table 2. The results

are based on a set of estimators' information such as, design

requirements, available resources, base product/source code,

available software tools, and quality requirements.

Table 2. Change Request size based on COSMIC CFP.

Project Functional Process Status CFP Actual Effort

Mobile game

application

Login Completed E=3; X=3; R=1; W=1;

total=8CFP &

2h/per

send localization information Completed E=3; X=3; R=1; W=0;

total= 7CFP

4h/per

store information Completed E=2 ;X=2; R=1; W=0;

5CFP

2h/per

SOCOMENIN Add Customer Completed E =1X =1;R =1;W=1;

total= 4CFP

1h/per

Add invoice Completed E=1; X=1 ;R=1 ;W=1;

total= 4CFP

3h/per

Send events notification Completed E=2; X=2; R=1; W=0;

total= 5CFP

2h/per

Software Enhancement Effort Estimation using Machine Learning Regression Methods

Table 4. Enhancement Effort Estimation based on Expert Judgement

Table 4 presents the change requests that are gathered from

our Ontology-based approach. A number of FP are affected by

functional change request. Using COSMIC method, the

functional size of each functional process as well as the

functional size of the change are provided. The measurement

results are obtained from the sum of all FP sizes. Each

estimated effort to handle a change request is based on Expert

judgments. Thus, estimating the effort of change request (i.e.,

estimating the enhancement effort) is not an easy task for both

the manager and the development team when software is being

developed. In this situation, the results are based on a set of

estimators' information such as, previous history of the product

(e.g. previous changes), Functional Size of the new function,

similar previous implementations, amount of new code,

deadline pressure and expected life-time of the product.

A. Constructing Prediction Model

The selected MLRM are trained and tested for various

experiments using features. We used the Google Collaboratory

python programming language to develop our prediction

model. Google Collaboratory is widely known as Google

Colab is an open source service provided by Google to any

person having a Gmail account. Google Colab2 provides GPU

for research to the people who do not have enough resources

or cannot afford one. This section conducted series of

experiments to investigate the application of COSMIC method

and Expert Judgements. Our proposed prediction method was

evaluated through six software development project datasets.

B. Evaluating Performance

Many researchers used different metrics to evaluate the

performance of their proposed model [62]–[66] In our Context,

the outcomes of our constructed enhancement effort

estimation models are compared with the widely used set of

evaluation metrics such as mean square error (MSE), root

mean square error (RMSE) and mean absolute error (MAE).

In this section, two types of experiments are conducted. In the

first set of experiments, dataset is randomly split into two

subsets, a training set and a test set. And, the second set of

experiments is conducted using popular tenfold cross

validation method.

2 https://colab.research.google.com/notebooks/welcome.ipynb

1) Error metrics

The predicted values are compared with actual target values

and prediction errors are computed in the form of MAEs,

MSEs and RMSEs as demonstrated in Table 5.

Method/parameters MAE MSE RMSE

ABReg 0.450 0.263 0.513

GBReg 0.108 0.070 0.265

RFR 0.040 0.045 0.215

LinearSVR 0.100 0.479 0.190

Table 5. Prediction analysis using MAE, MSE and RMSE.

All error measurements indicate quiet values. It is evident from

the results (see Figure 2) that RFReg method delivers the best

performance when compared with the other three

Figure 2. Prediction analysis using MAE, MSE and RMSE

MLRM. It shows the evidence of its powerful predictive

capacity. In addition, the GBReg presents good results.

However, the bad results are presented by the ABReg method.

2) Simple split

For the first set of experiments, the classic approach is to do a

simple 80%-20% split, sometimes with different values like

70%-30% or 90%-10%. Using classic method, we often split

Figure 3. Mean Predicted value

our data into training and validation/test sets. The training set

Project Functional Process Functional

Change

Change Type CFP Actual Effort

Mobile Game

application

Login Personalize

Information &

Modify E=3; X=3; R=1;

W=1;

total= 8CFP

3h/per

send localization

information

Add notification

for localization

Add E=3; X=3; R=1;

W=0;

total =7CFP

7h/per

SOCOMENIN Add Customer Personalize

Information

Modify E=3; X=3; R=1;

W=1;

total= 8CFP

3h/per

Add invoice Personalize

Information for

invoice

Add E =3; X =3; R =1;

W=1;

total= 8CFP

3h/per

Sakhrawi et al.

418

is used to train the model, and the validation/test set is used to

validate data that it has never seen before. Results of the

experiments (see Figure 3) revealed that Random Forest

provides better predictive performance compared other models.

1) Cross validation

In cross-validation, we do more than one split. We can do 3, 5,

10 or any K number of splits. These splits are called Folds, and

there are many strategies that can be used to create these folds.

In our model, we used 10-fold for cross validation. It is

adapted in all sorts of experiments to analyze the performance

of four MLRM. By using Cross-Validation, we are able to get

more metrics and draw important conclusions both about our

algorithm and our data. One of the most obvious reasons to do

cross validation is that it helps us better use our data, and it

gives us much more information about our algorithm

performance. We also used the r2 (coefficient of determination)

regression score function for cross validation (Algorithm 1).

Table 6 illustrates the results of using these two metrics

(accuracy/prediction).

Table 6. 10-Fold Cross Validation accuracy.

2) Features Importance

We have conducted a set of experiments in order to investigate

the influence of each feature on the estimated effort based on

the best model results. Features including {Functional Process

Size, Actual Effort, Change (enhancement) Request, Change

(enhancement) Functional Size, Estimated Effort} are

shown in Figure 4. Results demonstrate that features {Actual

Effort, Functional Change (enhancement) and Estimated Effort}

have a good influence on the delivered results. This clearly

shows the utility of Expert judgments in predicting

enhancement effort. Figure 4 presents the results.

In order to obtain more performance prediction, we used only

the following features {Actual effort and Change

Figure 4. Importance of Features

(enhancement) request}. Results of the experiments (see

Figure 5) revealed that RFReg and GtBReg deliver better

mean score cross validation prediction when compared with

other models. However, the bad results are delivered by Linear

SVR.

Figure5. Mean Predicted value

II. Threads to validity

Threats to the validity of our study are pertinent to internal

validity, external validity, and finally construct validity.

A. Internal validity

The threat to internal validity in our research is related to the

classification of change request as Functional Change (FC) or

Technical change (TC), as well as the change Functional Size

(FS(FC)). The classification of change request is based on the

use of Ontology. The strength of using Ontology is to move

from simple classification to semantic classification [66]. As it

is described in section 3, using ontology for classification is for

improving the quality of data (models input). In addition, our

Techniques ABReg GBReg RFR LSVR

Accuracy_lf 0.8203

0.8634 0.8836 0.7168

Cross-Predict

ed

(K-Fold)

0.8066 0.8496 0.8175 0.8011

Algorithm 1: 10-Cross-Validation with r2_score

#Predicting the enhancement effort using test set

y_pred_rfr= RFR.predict(X_test)

#Random Forest Regression Accuracy with test set

accuracy_rfr = metrics.r2_score(y_test, y_pred_rfr)

print(“RFR Accuracy:,” accuracy_rfr)

#Predicting the enhancement effort using cross validation

(KFold method)

y_pred_kf_rfr = cross_val_predict(RFR, X, Y, cv=10)

#Random Forest Regression Accuracy with KFold method)

accuracy_rfr = metrics.r2_score(Y, y_pred_KFold_rfr)

print(accuracy_rfr)

Software Enhancement Effort Estimation using Machine Learning Regression Methods

419

classification ontology-based approach requires that the

request for changes must be defined clearly and completely.

Thus, using COSMIC FSM for sizing FC can be used

throughout the software life-cycle phases. We identified the

FS(FC) at a high level of abstraction of the software life-cycle.

B. External validity

The threats to external validity primarily include the degree to

which the proposed research method has exactly captured the

estimate (i.e., enhancements effort) for software projects in

practice. For data quality, we only extracted a small portion of

data samples from the used data sets based on Expert

Judgment. Figure 6 shows the observed and estimated

enhancement effort using RFReg.

Figure 6. Mean Predicted value

Figure 7. Mean Predicted value

Figure 7 shows the bar graph representation of actual effort

values and estimated enhancement effort values with our

proposed research method. The bar graph shows three cases.

The first case of Project 1 shows that the estimated

enhancement effort can be very close to the actual effort.

The second case of Project 3 shows that the actual effort can

Figure 8. Mean Predicted value

be higher than the estimated enhancement effort. And, the third

case of projects 6 shows that the estimated enhancement effort

can be higher than the actual effort. Regarding the functional

size measurement, Figure 8 shows the bar graph representation

of Functional Size of the total Functional processes and the

Functional Size of the total enhancement Functional processes

in terms of CFP units. The bar graph shows that values are very

close. This is due to the fact that our research method takes

into account Functional Process as well as the related

enhancement, Process with high level of granularity.

A. Threats of construct

The threats of construct validity are related to the relation

between theory and observation. In fact, the estimation of

enhancement effort in our study is provided using Expert

judgment method based on an ontology classification.

Moreover, the judgment of enhancement request effort

depends on many factors such as enterprise employee

experience, categories, etc. The use of the COSMIC method

for quantifying the functional requirements and enhancement

will be helpful for the development team.

Results (Figure 6,7 and 8) confirm the validity of MLRM as an

alternative to traditional estimation methods such as Expert

Judgement. This estimation will help experts making decisions

whether to accept, defer or deny the enhancement request.

III. Discussion

All the participants in software project recognize the

importance of developing an accurate enhancement effort

estimate, since it plays a key role in the success of the software

project planning. The main idea of our research is to present an

effective model for software enhancement effort estimation.

We focused on the importance of semantic classification when

using an Ontology-based approach, and therefore we

investigate their impacts for a “good” prediction.

The proposed enhancement effort prediction model is quite

effective and demonstrates the minimum MAE of 0.040 using a

real dataset project as presented in Table 5. After learning, the

MLRM were able to produce reasonably accurate predictions.

This study and experiment were done to evaluate four machine

learning methods Ada Boost Regression (ABR), Gradient

Boosting Regression (GBR), Linear Support Vector

Regression (LinearSVR) and Random Forest Regression

(RFR). These methods are used to predict effort for a new

change request that occurs in the software development

project. The Random Forest method is established to be the

more effective algorithm when compared with the other three

methods.

Sakhrawi et al.

420

We used two methods for evaluation. The first method used a

simple split. The second method used 10-fold cross validation.

In addition, we used the R2 score to cross validation. Based on

the obtained results, we noted a small value of MSEs, MREs

and RMSEs when applying a simple method alone. It

demonstrates the effectiveness of the used methods. A good

accuracy of 90% is obtained when the 10-fold cross validation

with R2 score in the best scenario is used. To identify the

effective determinants of the software enhancement effort

estimation, we calculate the importance of each feature.

Furthermore, a model that uses {Actual effort and change

request} features delivers superior performance as compared

to a model that uses all proposed features. In addition, a model

that incorporates combination of 10-fold cross validation and

R2 score demonstrates better performance when compared

with a model that uses a simple split (train/test).

Thus, we can conclude that RFReg and GBReg technique

improves the accuracy of the estimates.

For future work, other machine learning techniques can be

used for prediction problems. In addition, other datasets can be

used for experiments and training the model. In this way, more

accurate estimations and predictions can be generated. And,

more than two techniques can be combined to get more

accuracy reaching 100%.

Similar to all empirical studies, this study has some limitations.

When the dataset is tested with Deep Learning, we do not

achieve good accuracy (0.6). This is due to the lack of data,

and that, Deep Learning requires a big number of datasets. So,

we aim to extend our database for future work.

IV. Conclusion

All the participants in software project recognize the

importance of developing an accurate enhancement effort

estimate, since it plays a key role in the success of the software

project planning. The main idea of our research is to present an

effective model for software enhancement effort estimation.

Enhancement requests effort estimation became a challenging

task in the software project planning. We investigated the

problem of accurately estimate effort for software

enhancement projects. First, we determined the functional size

of the requirements enhancement in terms of CFP unit. Then,

for each requirements enhancement, we identify its

corresponding estimation effort based on the expert judgement

approach.

Thereafter, we evaluated 600 enhancement requests using four

MLRM: such as Ada Boost Regressor (ABR), Gradient

Boosting Regressor (GBR), Linear Support Vector

Regression (LinearSVR), and Random Forest Regression

(RFR). In addition, the importance of each feature is also

examined. The constructed models are tested using datasets of

real software projects based on Expert Judgement, COSMIC

FSM method and PROMISE repository for enhancement

request. The four MLRM have successfully estimated the

enhancements effort for the project's dataset. It was found that

Random Forest Regression enhancement effort estimation

model is more accurate with small MSEs, MREs and RMSEs

values results and with quite good performance.

Several extensions can be made. This work will be extended by

exploring other forms of ML techniques to estimate

enhancement effort for software engineering projects. We aim

to extend our dataset to be used for Deep Learning method.

The experiment outputs suggest that the suggested Deep

Learning method can provide better results and accurately

forecast the enhancement request effort. We aim to investigate

the use of the COSMIC FSM method at a detail level of

granularity as an input of enhancement effort estimation model.

Acknowledgment

The authors would like to thank Mr.Taher Labidi (Primatec

Engineering), Mr.Mounir Ktata (EDS(Expert Dev Solutions)),

Mr.Hamza Elkar (Spark-it), Ms.Mariem Mellef (SQLI

Services) for their support, advice, and expertise about the

software development process.

References

[1] International Software Benchmarking Standards Group

development and enhancement, Journal of Software:

Evolution and Process, version 5.1, pp. 11, 2018.

[2] Abran, Alain. Software project estimation: the

fundamentals for providing high quality information to

decision makers, Information and Software Technology,

2015.

[3] Tesch, Debbie and Kloppenborg, Timothy J and Frolick,

Mark N IT project risk factors: the project management

professionals perspective, Journal of computer

information systems, version 5.17, pp. 61–69, 22007.

[4] Garcia-Floriano, Andres and Lopez-Martrtin,

Cuauhtemoc and Yanez-M arquez, Cornelio and ́Abran,

Alain. Support vector regression for predicting software

enhancement effort, Information and Software

Technology,97, pp. 99–109, 2018.

[5] Mcgee, Sharon and Greer, Des. Sources of Software

Requirements Change from the Perspectives of

Development and Maintenance, Journal of computer

information systems, version 5.17, 2010.

[6] Lederer, Albert L and Prasad, Jayesh. Perceptual

congruence and information systems cost estimating,

Journal of computer information systems,pp. 50–59 ,

1995

[7] Basri, Sufyan and Kama, Nazri and Sarkan, Haslina Md

and Adli, Saiful and Haneem, Faizura. An

algorithmicbased change effort estimation model for

software development, 2016 23rd Asia-Pacific Software

Engineering Conference (APSEC), pp. 177–184, 2016.

[8] Singh, AJ and Kumar, Mukesh. Comparative Analysis on

Prediction of Software Effort Estimation Using Machine

Learning Techniques, Available at SSRN 3565822, 2020.

[9] Susto, Gian Antonio and Schirru, Andrea and Pampuri,

Simone and McLoone, Sean and Beghi, Alessandro. ́

Machine learning for predictive maintenance: A multiple

classifier approach, IEEE Transactions on Industrial

Informatics,11, pp. 812–820, 2014.

[10] Sakhrawi, Zaineb, Sellami, Asma, Bouassida,Nadia.

Requirements Change Requests Classification: An

Ontology-Based Approach, The International

Conference on Intelligent Systems Design and

Applications (ISDA), pp.487–496, 2019.

[11] Haoues, Mariem and Sellami, Asma and Ben-Abdallah,

Hanene. Functional change impact analysis in use cases:

An approach based on COSMIC functional size

measurement, Science of Computer Programming, 135,

pp. 88–104, 2017.

Software Enhancement Effort Estimation using Machine Learning Regression Methods

421

[12] Molokken, Kjetil and Jorgensen, Magne. Software

function, source lines of code, and development effort

prediction: a software science validation, 2003

International Symposium on Empirical Software

Engineering, 2003. ISESE 2003. Proceedings, pp.

223–230, 2003.

[13] Yu, Liguo. Indirectly predicting the maintenance effort of

open-source software, Journal of Software Maintenance

and Evolution: Research and Practice,18, pp. 311–332,

2006

[14] Shukla, Ruchi and Misra, AK. Software maintenance

effort estimation-neural network vs regression modeling

approach, International Journal of Computer

Applications,975, pp. 157–169, 2010.

[15] De Lucia, Andrea and Pompella, Eugenio and Stefanucci,

Silvio. Assessing effort estimation models for corrective

maintenance through empirical studies, Information and

Software Technology,15, pp. 3–15, 2005.

[16] Ahn, Yunsik and Suh, Jungseok and Kim, Seungryeol and

Kim, Hyunsoo. The software maintenance project effort

estimation model based on function points, Journal of

Software maintenance and evolution: Research and

practice,15, pp. 71–85, 2003.

[17] Kitchenham, Barbara and Pfleeger, Shari Lawrence and

McColl, Beth and Eagan, Suzanne. An empirical study of

maintenance and development estimation accuracy,

Journal of systems and software,64, pp. 57–77, 2002.

[18] Jorgensen, Magne. Experience with the accuracy of

software maintenance task effort prediction models,

IEEE Transactions on software engineering,21, pp.

674–681, 1995.

[19] Lopez-Martrtin, Cuauhtemoc. Predictive accuracy com- ́

parison between neural networks and statistical

regression for development effort of software projects,

Applied Soft Computing,27, pp. 434–449, 2015.

[20] Ku, Yan and Du, Jing and Yang, Ye and Wang, Qing.

Estimating software maintenance effort from use cases:

An industrial case study, 2011 27th IEEE International

Conference on Software Maintenance (ICSM),15, pp.

482–491, 2011.

[21] Shukla, Ruchi and Shukla, Mukul and Misra, Arun Kumar

and Marwala, Tshilidzi and Clarke, WA. Dynamic

software maintenance effort estimation modeling using

neural network, rule engine and multi-regression

approach, International Conference on Computational

Science and Its Applications,15, pp. 157–169, 2012.

[22] Shukla, Ruchi and Misra, Arun Kumar. Estimating

software maintenance effort: a neural network approach,

Proceedings of the 1st India software engineering

conference, pp. 107–112, 2008.

[23] Lopez-Martin, Cuauhtemoc. Predictive accuracy com- ́

parison between neural networks and statistical

regression for development effort of software projects,

Applied Soft Computing, 27, pp. 434–449, 2015.

[24] Garcia-Floriano, Andres and Lopez-Martin, Cuauhtemoc

and Yanez-Marquez, Cornelio and Abran, Alain. Support

vector regression for predicting software enhancement

effort, Information and Software Technology,97, pp.

99–109, 2018.

[25] Song, Tae-Hoon and Yoon, Kyung-A and Bae, DooHwan.

An approach to probabilistic effort estimation for military

avionics software maintenance by considering structural

characteristics, 14th Asia-Pacific Software Engineering

Conference (APSEC’07), pp. 406– 413, 2007.

[26] Leung, Hareton KN, Emilia, Vrijendra. Estimating

maintenance effort by analogy, Empirical Software

Engineering,7, pp. 157–175, 2002.

[27] Ceron-Figueroa, Sergio and Lopez-Martin, Cuauhtemoc

and Yanez-Marquez, Cornelio. Stochastic gradient

boosting for predicting the maintenance effort of

software-intensive systems, IET Software,pp. 99–109 ,

2019.

[28] Bennett, Keith H and Rajlich, Vaclav T. Software main- ́

tenance and evolution: a roadmap, Proceedings of the

Conference on the Future of Software Engineering, pp.

73–87, 2000.

[29] Gonzalez-Ladron-de-Guevara, Fernando and Fernandez

Diego, Marta and Lokan, Chris. The usage of ISBSG

data fields in software effort estimation: A systematic

mapping study, Journal of Systems and Software,113,

pp.188–215, 2016.

[30] P. Bourque, R. Fairley. Guide to the Software

Engineering Body of Knowledge, SWEBOK V3.0, IEEE

Computer Society, 2014.

[31] Basgalupp, Marcio P and Barros, Rodrigo C and ́Ruiz,

Duncan D. Predicting software maintenance effort

through evolutionary-based decision trees, Proceedings

of the 27th Annual ACM Symposium on Applied

Computing, pp. 1209–1214, 2012.

[32] Kaur, Arvinder and Kaur, Kamaldeep and Malhotra,

Ruchika. Soft computing approaches for prediction of

software maintenance effort, International Journal of

Computer Applications,16, pp. 69–75, 2010.

[33] Dubey, Sanjay Kumar and Rana, Ajay. A fuzzy approach

for evaluation of maintainability of object oriented

software system, International Journal of Computer

Applications,21, pp. 60–73, 2012.

[34] Sharawat, Mr Sandeep. Software maintainability

prediction using neural networks, Journal of

Environment,5, pp. 750–755, 2012.

[35] Sharawat, Mr Sandeep. Software maintainability

prediction using neural networks, Journal of

Environment,5, pp. 750–755, 2012.

[36] Mishra, Swati and Sharma, Arun. Maintainability

prediction of object oriented software by using adaptive

network based fuzzy system technique, International

Journal of Computer Applications,9, 2015.

[37] SBraga, Petronio L and Oliveira, Adriano LI and Meira,

Silvio RL. Software effort estimation using machine

learning techniques with robust confidence intervals, 7th

international conference on hybrid intelligent systems

(HIS 2007),5, pp. 352–357, 2007.

[38] Freund, Yoav and Schapire, Robert E. A desiciontheoretic

generalization of on-line learning and an application to

boosting, European conference on computational

learning theory,5, pp. 23–37, 1995.

[39] Freund, Yoav and Schapire, Robert and Abe, Naoki. A

short introduction to boosting, Journal-Japanese Society

For Artificial Intelligence,14, pp. 771-780, 1999.

[40] Hidmi, Omar and Sakar, Betul Erdogdu, Robert and Abe,

Naoki.Software development effort estimation using

ensemble machine learning, Int J Comput Commun

Instrum Eng,4, pp. 143–147, 2017.

Sakhrawi et al.

422

[41] Ertugrul, Egemen and Baytar, Zakir and Catal, Cagatay

and Muratli, Omer Can. Performance tuning for machine

learning-based software development effort prediction

models, Turkish Journal of Electrical Engineering &

Computer Sciences,27, pp. 1308–1324, 2019.

[42] Breiman, Leo. Random forests, Machine learning,45, pp.

5–32, 2019.

[43] Cortes, Corinna and Vapnik, Vladimir. Support-vector

networks, Machine learning,20, pp.273–297, 1995.

[44] Gencel, Cigdem. How to use cosmic functional size in

effort estimation models?, Software Process and Product

Measurement,284, pp.196–207, 2008.

[45] ISO, TCJTC. Software Engineering-COSMIC-FFP

Functional size Measurement Method, ISO,284,

pp.196–207, 2011.

[46] Ebert, Christof and Soubra, Hassan. Functional size

estimation technologies for software maintenance, 2014

Joint Conference of the International Workshop on

Software Measurement and the International Conference

on Software Process and Product Measurement,31,

pp.24–29,2014.

[47] Symons, CR and Lesterhuis, A. Introduction to the

COSMIC method of measuring software, COSMIC,31,

pp.24–29,2014.

[48] Trendowicz, Adam and Jeffery, Ross. Software project

effort estimation, Foundations and Best Practice

Guidelines for Success, Constructive Cost Model–

COCOMO pags,12, pp.277–293,2014.

[49] Trendowicz, Saeed, Ayesha and Butt, Wasi Haider and

Kazmi, Farwa and Arif, Madeha. Survey of Software

Development Effort Estimation Techniques, Proceedings

of the 2018 7th International Conference on Software

and Computer Applications,12, pp.82–86,2018.

[50] Nerkar, LR and Yawalkar, PM. Software Cost Estimation

using Algorithmic Model and Non-Algorithmic Model a

Review, Int J Comput App,2, pp.4–7,2014.

[51] Tawfik, Sherif M and Abd-Elghany, Marwa M and Green,

Stewart. A software cost estimation model based on

quality characteristics, IWSM (International Workshop

in Software Measurement) and MENSURA

(International Conference on Software Process and

Product Measurement),2, pp.13–31,2007.

[52] Ochodek, Mirosław. Functional size approximation based

on use-case names, Information and Software

Technology,80, pp.73–88,2016.

[53] Zhang, Cheng and Tong, Shensi and Mo, Wenkai and

Zhou, Yang and Xia, Yong and Shen, Beijun. ESSE: an

early software size estimation method based on

autoextracted requirements features, Proceedings of the

8th Asia-Pacific Symposium on Internetware,80,

pp.112– 115,2016.

[54] M. v5.0.1. Common Software Measurement International

Consortium, Version 5.0, 2020.

[55] M. v4.0.1. Common Software Measurement International

Consortium (COSMIC), Proceedings of the 8th

Asia-Pacific Symposium on Internetware,7,2015.

[56] Abran, A and others. Guideline for sizing business

applications software, v 1.1, COSMIC, May,2008.

[57] D’Avanzo, Loris and Ferrucci, Filomena and Gravino,

Carmine and Salza, Pasquale. Cosmic functional

measurement of mobile applications and code size

estimation, Proceedings of the 30th Annual ACM

Symposium on Applied Computing,16,

pp.1631–1636,2015.

[58] Van Heeringen, Harold and Van Gorp, Edwin. Measure

the functional size of a mobile app: Using the cosmic

functional size measurement method, 2014 Joint

Conference of the International Workshop on Software

Measurement and the International Conference on

Software Process and Product Measurement,16, pp.11–

16,2014.

[59] Suri, PK and Ranjan, Pallavi. Comparative analysis of

software effort estimation techniques, International

Journal of Computer Applications,48, pp.12–19,2012.

[60] Shekhar, Shivangi and Kumar, Umesh. Review of various

software cost estimation techniques, International

Journal of Computer Applications,141, pp.31–34,2016.

[61] Bajwa, Sohaib-Shahid. Investigating the nature of

relationship between software size and development

effort, International Journal of Computer

Applications,2008.

[62] Galorath, Daniel D and Evans, Michael W. Software

sizing, estimation, and risk management: when

performance is measured performance improves,

International Journal of Computer Applications,2006.

[63] Idri, Ali and azzahra Amazal, Fatima and Abran, Alain.

Analogy-based software development effort estimation:

A systematic mapping and review, Information and

Software Technology,58, pp. 206–230, 2015.

[64] Bibi, Stamatia and Stamelos, Ioannis. Selecting the

appropriate machine learning techniques for the

prediction of software development cost, IFIP

International Conference on Artificial Intelligence

Applications and Innovations,5, pp. 533–540, 2006.

[65] Huang, Sun-Jen and Chiu, Nan-Hsing. Applying fuzzy

neural network to estimate software development effort,

Applied Intelligence,30, pp. 73–83, 2009.

[66] Labidi, Taher., Sakhrawi, Zaineb., Sellami, Asma., Mtibaa,

Achraf. An Ontology-Based Approach for Preventing

Incompatibility Problems of Quality Requirements

During Cloud SLA Establishment. In International

Conference on Computational Collective Intelligence, pp.

663-675,2019.

Author Biographies

Zaineb Sakhrawi received her Master Thesis degree in

Computer Science from Higher Institute of Computer

Science and Multimedia, Sfax University, Tunisia in 2018.

She is currently a PhD student at Sfax University, Tunisia

and a member of Multimedia, InfoRmation systems and

Advanced Computing Laboratory (MIRACL). Her

research interests include software engineering, ontology,

cloud computing and machine Learning techniques.

Asma Sellami is teaching at the University of Sfax in

Tunisia. Her current research interest includes broadly

measurement in Software Engineering, software quality

and software project management. She is also working

on ISO standards for measuring the functional size of

software, and has been involved in developing case

study of ISO 19761 (COSMIC FSM Method). She

published more than 40 referred conferences, journals,

and technical reports. She is currently member of

COSMIC Advisory council in Tunisia.

Software Enhancement Effort Estimation using Machine Learning Regression Methods

423

Nadia Bouassida received a Phd in Computer and

Information Science from the University of Science of

Tunis, Tunisia. Currently, she is Associate Professor at

the Department of Computer Science of the Higher

Institute of Computer Science and Multimedia at the

University of Sfax, Tunisia. She is a member of the

Multimedia, Information systems and Advanced

Computing Laboratory, University of Sfax. Her research

interests include reuse techniques, such as design

patterns, Frameworks and Software Product Lines.

