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Abstract: With the innovations in technology, sophisticated 

attacks are threatening the major defenses of networks. 

Nowadays, it is highly impossible to avoid security attacks 

completely. Network Intrusion Detection System (NIDS) plays a 

vital role in network security in detecting the attacks that happen 

regardless of the best defensive methods. Most NIDS search 

engines use pattern matching algorithms as their core component 

to detect the signatures of inspecting packets. The selection of 

pattern matching algorithms greatly affects the performance of 

NIDS. Challenges like handling huge traffic, high data speed, low 

detection rate, etc. are also degrading the performance of many 

existing NIDS. To overcome the stated problems, this paper 

proposes an efficient NIDS layer-based architecture and 

designed Prospective Backward Oracle Matching (PBOM) 

Algorithms and applied at respective layers. PBOM algorithms 

use reversed patterns and construct factor oracle for better 

pattern matching and to achieve better results. Hashtable 

mechanism is used to minimize the memory used to store the state 

transitions. PBOM algorithms are integrated into the Snort tool 

and deployed on Kali Linux based environment set up. 

Experimental evaluation indicates that the proposed design with 

PBOM algorithms can achieve better detection accuracy, less 

packet loss, and reduced false alarms.  

 
Keywords: Network Intrusion Detection System, Prospective 

Backward Oracle Matching, Snort, Kali Linux.  

 

I. Introduction 

The latest technological developments are not only 

sophisticated common computer users but also cybercriminals. 

Heidi Shey, a Senior Analyst at Forester depicts “Hackers are 

carefully picking their victim organization, learning its 

businesses, understanding its partner relationships, and testing 

for weaknesses and vulnerabilities” [1]. Cyber attackers have 

shown new heights of determination with zero-day 

vulnerabilities and malware now used carefully and attackers 

are progressively trying to hide [2]. The year 2017 has seen an 

excessive number of cybersecurity collapses. 2017's major 

cyber-incidents like Shadow Brokers, WannaCry, Wikileaks 

CIA Vault 7 Cloudbleed, Petya/NotPetya/Nyetya/Goldeneye, 

Macron Campaign are examples of how chaotic things have 

already gotten [3]. When compared to 2017, the year 2018 is 

pretty much good as there were no many global ransom wares 

or government leaks apart from Russian Grid Hacking, 

rampant Data Exposures of US adults, Under Armour whose 

intention was to a data breach.  

    Network Intrusion Detection System (NIDS) has sustained 

as a noticeable real-field tested mechanism in security practices. 

Yet NIDS is not bulletproof to every attack, it increases the bar 

for attackers and reduces the intensity of the attack. As an 

effect, NIDS empirically thwarts huge illegitimate attacks that 

could possibly incur a loss of big amounts to companies. To 

understand several solutions and difficulties in the real-time 

situations of NIDS, this paper discusses some literature of 

NIDS with Snort [4] as their tool. To design an efficient NIDS, 

the authors propose an architecture and it’s supporting Pattern 

Matching (PM) Algorithms called PBOM Algorithms [5]. 

Three variations of PBOM algorithms were designed, 

integrated into Snort and experimented in a lab setup. 

Proposed PBOM algorithms use factor oracle and state 

machine mechanisms for the construction of patterns. 

    To detect the attacks in an efficient manner, the proposed 

NIDS uses the proposed PBOM algorithms. The designed 

NIDS evaluated under several network scenarios and different 
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types of attacks to assess its efficiency in terms of detection 

rate and false alarm rate.  

    This paper is organized as follows: Some of the works 

related to the research papers of existing Snort based NIDS are 

discussed in Section 2. Some potential directions of this paper 

followed by the proposed architecture and PBOM algorithms 

are discussed in Section 3. Section 4 discusses the 

experimental evaluation and the results followed by the 

conclusion in Section 5. 

II. Related Work 

We have analyzed various types of NIDS and their approaches 

that are operating with Snort and without Snort in the research 

papers [6][7] that are from various domains like data mining, 

Cloud Computing, Distributed Computing, Artificial 

Intelligence, etc. The functionality of these approaches is 

emphasized in various aspects like false alarm rate, detection 

accuracy, and scalability. 

    N Jongsawat and J Decharoenchitpong in [8] used Bayesian 

Network Learning Algorithms and proposed Behavior-Based 

Rules for Snort. Wireshark tool was used to capture the 

packets and these were used for the formation of Bayesian 

Network. Later framed rules for Snort that were built on 

network traffic and resolved that the efficiency enhanced. One 

disadvantage identified it was created by rules. Thus to 

increase detection rate it needs more rules. Using Bayesian 

Search Graph Algorithm to verify a number of times for the 

maximum scoring graph is also its drawback. 

    Saiyan Saiyod, Khamkone Sengaphay, and Nunnapus 

Benjamas in [9] discussed Private Cloud-based IDS. They 

proposed multi-sensors in private cloud to improve behavior 

detection. This paper suggested rules for Snort like behavior 

checking, port scanning, etc. To evaluate, this paper assumed 

virtual machines as attackers, sensors, databases, and 

monitoring. To assess the performance, Nmap and 

MIT-DARPA 1999 dataset were used. For the duration of 

evaluation, different results were recognized at diverse sensors. 

The main disadvantage here is getting ready rules for each 

sensor and synchronizing sensors to improve the detection 

rate. 

    In [10] authors discussed the usage of the Snort tool in the 

Cloud environment. They have discussed the operation of 

Snort and embedding of this tool in the Cloud as a part of 

principal supervision. By altering the snort.conf file, it analyzed 

the behavior-based and signature-based functionality of Snort. 

The main disadvantage is that the authors didn’t suggest other 

diverse methods to solve the problems of Snort i.e. low 

detection rate and packet loss during heavy traffic flow. 

    Z. Chiba, N. Abghour, et al. in [11] explained the merging of 

the Back-Propagation Neural Network (BPN) and Snort to 

identify attacks in Cloud. Snort was used to discover 

well-known attacks and BPN for unidentified attacks. To 

improve the BPN detection rate, this paper discussed an 

optimization algorithm. But authors didn’t mention any 

methods to prevent DoS attacks and the sharing of this data in 

the Cloud. 

    Many of the existing NIDS detection engines’ core 

component is the Pattern Matching (PM) Algorithm. 

Nevertheless, of its wide deployment, throughput and 

scalability have reduced the first choice of NIDS due to the 

expensive PM actions. PM has to inspect every packet against 

the ruleset. Hence, PM essentially requires intensive resources 

for both computation and communication during heavy traffic. 

Numerous studies on NIDS divulge several significant features 

like the simultaneous search for multiple patterns, large 

keyword sets for searching, varied keyword lengths for 

searching, etc. to achieve the maximum efficiency. 

Considering these features and inspired by Set Backward 

Oracle Matching Algorithm (SBOM) [12] and Aho-Corasick 

Algorithm [13], we have designed PBOM algorithms to 

improve the pattern matching efficiency. SBOM constructs 

factor oracle with a set of keywords. 

    A factor is a substring of a word. A factor oracle is a variety 

of data structures that catalog the entire factors of the given 

word. It is a type of deterministic automata that identifies every 

state as an accepting state. To identify the factors of given 

keywords, it maintains transitions starting from the first state. 

During state transition for any input, if it encounters a 

character that is not defined, then the given input is not a factor 

of the word. A sample factor oracle can be observed in Fig. 1. 

 

Figure 1. Sample factor oracle 

    Aho-Corasick uses a state machine for the transitions. In our 

PBOM, we have used the combination of both factor oracle 

and state machine. In one variation of PBOM (i.e. PBOM2), 

we used a hash table mechanism to reduce the memory. 

 

III. Proposed Architecture and Algorithms 

Intrusion Detection System is a safeguarding tool that every 

organization desires. But there are some challenges for the 

organizations while setting up like huge traffic, low detection 

rate, manual observation, false alarming, etc. [14]. These 

restrictions can ascertain stimulating while setting up NIDS. 

Efficiency can be enhanced by concentrating on several critical 

attacks like Port Scanning, Session Hijacking and Denial of 

Service [7]. Networks are susceptible to various kinds of 

attacks that impends the Availability, Confidentiality, and 

Integrity. Certain attacks capture the data, whereas others try 

to alter. Some may attempt to bring down the network and 

services. Attacks like these may cost a lot in terms of economic, 

status, customer slow destruction, etc. As a prospective 

direction, the authors propose an NIDS architecture to thwart 

this type of attack in an efficient manner. 
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A. Our Proposal for improvement 

To overcome various NIDS challenges and to handle various 

attacks, the authors propose a novel architecture as shown in 

Fig. 2. This architecture must do the job perfectly without 

degrading the performance of NIDS. 

 

 

 

 

 

Figure 2. Proposed Architecture to improve NIDS efficiency 

 

 

1) Layer Based Design: 

    To ease the complication, layers in the design are 

incremental to guarantee the security features of the 

network: Availability, Confidentiality, and Integrity. DoS 

type attacks aim the network services availability, Packet 

Capturing, and Port Scanning attacks intimidate 

Confidentiality and Session hijacking attacks impend 

integrity. These features must be ensured by the network in 

scenarios like huge traffic and high data speed. The above 

specified three features may entrust by designing a 

three-level based design where each level detects and 

prevent certain attacks and these levels are incremental i.e.; 

a layer can detect the attacks that are intended for the 

previous layer also. As a support to handle the attacks with 

better detection capability, the authors designed PBOM 

algorithms for the three layers. 

2) Integrate into NIDS: 

To test the proposed design, incorporate it into a NIDS 

tool like Snort by Code Refactoring. Proposed PBOM 

algorithms are implemented, placed in the tool with 

necessary configuration changes. 

3) Evaluate the NIDS in Kali Environment: 

      Improved NIDS (i.e. enhanced Snort tool) can be 

deployed on a Kali Linux based system and assess it by 

offending the local network experimental setup with various 

attacks. Monitor and record all the results in various 

performance aspects. Later, assess the results and verify the 

efficiency of the suggested design. 

 

B. PBOM Algorithms for better pattern matching 

 

For any NIDS, the risk of algorithmic complexity attacks 

restrains the use of PM Algorithms that are open to the input 

size. Thus, to improve pattern matching, the authors propose 

Prospective Backward Oracle Matching (PBOM) algorithms. 

These are an extension of Allauzen et al. [12] Multiple 

Backward Oracle Matching algorithm but they didn’t describe 

the particulars in the work. 

    As an enhancement to Allauzen et al. [12], proposed PBOM 

uses State Machine (like Aho – Corasick Trie) and Multiple 

Keyword-based Factor Oracle. A set of all the keywords are 

used to build both the state machine and factor oracle. But 

reversed patterns are used for Factor Oracle construction. 

Algorithm 1 shows the construction of a Factor Oracle with 

Multiple Keywords 

 
 

 

1) PBOM1 Algorithm 

 

For a given set of patterns, it first builds a state machine by 

directing all the patterns to it. Later, it constructs a factor 

oracle by supplying the reversed patterns. Here reversed 

patterns are used to reduce the matching complexity. From all 

the patterns of the window, we calculate the minimum by 

performing a search for shortest length pattern. During the 

pattern matching process, it maintains a critical position to 

mark the right side of the stopping position. It starts matching 

process with the factor oracle. Because of using reversed 

patterns in factor oracle, process of matching the input with the 

factor oracle’s pattern drives from right side to left side. This 

searching process stops with a mismatch or at the finishing of 

scanning all the input characters. 

    No forward move in factor oracle can be the consequence of 

a mismatch. This is the point where the process is shifted to 

state machine. Modify the current state to the initial state of the 

state machine and change the critical position pointer to the 

right side of the mismatched character. Continue the matching 

process in the state machine until the longest prefix match 

occurs. As stated in Algorithm 2, PBOM1 doesn’t require 

input scanning as single characters. Multiple characters can be 

supplied at a time in a scanning window. Pre stoppage of 

critical position pointer skips all the further matching process 

and window length prevents adding excessive input characters 
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2) PBOM2 Algorithm 

 

To empower the performance in the PBOM1 search preference, 

factor oracle nodes comprise pointers to an array of 256 to 

other probable nodes in the factor oracle. Every state or node in 

the Oracle holds 1024 bytes for these pointers. Excluding 

certain memory, consumptions will lead to better performance. 

Thus, PBOM2 represented the nodes with 16-bit integers. 

Hashtable was used to build the Factor Oracle in PBOM2 as 

shown in Algorithm 3, which can cover all transitions by 

reducing the memory wastage. Every key in the hash table is a 

pair of state number and character. Every time mapping occurs 

between the state numbers that are a part of the hash table key. 

That is memory can be saved by allocating only to the existing 

transitions in factor oracle. 

 

3) PBOM3 Algorithm 

 

The PBOM3 as shown in Algorithm 4, doesn’t implement any 

new technique but it uses one of the above algorithms. The 

main purpose of this algorithm is to specify the difficulty that 

any algorithm suits performs well at all conditions. The 

difference in the grouping of patterns is tricky. In the course of 

pre-processing, all the patterns are added to a pattern group 

structure that is suitable for other algorithms. Observe 

minimum length patterns, and if it goes beyond two then opt 

PBOM2 and compile the pattern group for it. Otherwise, opt 

PBOM1. Hence, the PBOM3 algorithm wisely chooses 

PBOM1 or PBOM2 that would typically work effectively for 

pattern matching based on the pattern group. 
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C. PBOM Algorithms to NIDS layers 

 

For the three layer-based design as mentioned earlier, PBOM 

algorithms can be mapped to preserve the Confidentiality, 

Integrity, and Availability of the network. 

 

1) Ensuring Availability 

 

Availability states the ability of a user to access the resources or 

information in a truthful manner. The system must be regularly 

functioning to ensure that it is available at any time in a secure 

way. Non-functioning of it highly impacts the users. Most of 

today’s cyber-attacks like Denial of Service (DoS) attacks, 

target to bring down the servers and to effect the companies 

and persons both in terms of financial and reputation. 

    To detect DoS like attacks and to preserve the availability 

feature, PBOM1 algorithm applied at this layer. PBOM1 

algorithm search for the flooded packets and alert the 

administrator by sending the messages and logging the activity. 

This is to be done in a faster manner so that the administrators 

can take necessary actions and prevent the crashing of servers. 

 

2) Ensuring Confidentiality 

 

Confidentiality allows only authorized persons to access 

sensitive data. Sensitive information must be disclosed to only 

those users who have authorization and measures must be 

taken to ensure it. Failure of confidentiality may lead to a 

breach where someone who should not have access has 

managed to get it and can do whatever they want. 

    PBOM2 algorithm ensures the Confidentiality feature at this 

level, detects abnormal connection establishment activities and 

port scanning attacks. This detected information can be sent as 

alerts to the administrator and logged, which help for 

restricting or closing the unused ports. 

 

3) Ensuring Integrity 

 

Integrity refers to ensuring that the information is real, correct 

and protected from unauthorized user modification. Data must 

remain unchanged within a system and during transmission. 

Hackers try to infiltrate the systems with malware and session 

hijacking like techniques. 

    To preserve Integrity, the PBOM3 algorithm monitors and 

detects any man in the middle attacks like session hijacking is 

happening in the network. If such activity occurs, it 

immediately alerts the administrator by sending a message and 

logging the activity. 

    All three PBOM variations ensure the better detection 

capability of various attacks at respective layers. To illustrate 

the performance of these algorithms, this paper evaluates the 

proposed architecture by using the Snort NIDS tool. 

 

IV. Experimental Evaluation & Discussion 

Since the tenacity of the work is to evaluate PBOM algorithms 

with Snort to supervise various attacks and its efficiency, the 

assessment has been carried out in a sophisticated lab 

environment. Simulation has been done for several attacks like 

SYN Flooding [15], Port Scanning [16] and Session Hijacking 

[17] to depict the network scenarios of huge traffic and high 

data speed. Monitored the performance of Snort per unit time 

of 15 minutes for these network scenarios for the designed 

algorithms and one in-built algorithm. 

A. Environment Setup 

The computer lab network is built around D-Link gigabit 

switches. All machines are hp Compaq, Intel i3, 2.40GHz, 4 

GB RAM, 1Gbps inbuilt Network Card. For the evaluation 

purpose, we have configured 26 machines as shown in Fig.  3 

Configuration details of various machines follow. 

1) Victim Server – Host Configuration: 

Victim machine runs on Microsoft Windows 8.1 platform and 

Microsoft IIS Server feature configured to serve as a web 

server and one HTML page hosted for evaluation purposes. 

2) Attacker Machine – Host Configuration: 

Kali Linux flavor has been installed on a virtual machine using 

VMWare workstation player over Windows 8.1 platform. This 

machine was configured to perform various attacks on the 

webserver. 

3) Snort Machine – Virtual Configuration: 

On the laptop, the virtual platform has been built using 

VMWare workstation player over Windows 10 OS and Kali 

Linux was created as a virtual machine. In this Kali Linux, 

modified Snort NIDS was installed and configured to monitor 

the Private Network. 

4) Traffic Generation and Reception Hosts: 
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All the remaining machines were used to generate and receive 

regular traffic on both public and private networks. 

 

Figure 3. Evaluation Environment Setup 

 

    After integrating the PBOM algorithms into Snort using 

code refactoring, we have installed the modified Snort for 

intrusion detection and Zabbix [18] to monitor the performance 

of the Snort NIDS machine. Zabbix [18] is an open-source 

network monitoring software. It can be associated with Snort to 

represent the Snort performance details in a graphical form. 

B. Experimentation & Results 

The designed NIDS has to be tested in several scenarios like 

high data speed, huge traffic and a combination of both. For this 

experiment, we consider 

1) High Data Speed: 

Generating 5,000 network packets each 128 bytes size and 

pushing them into the network at one-second intervals. 

2) Huge Traffic: 

Generating 10,000 network packets each 128 bytes size and 

pushing them into the network at fifteen seconds intervals. 

3) High Data Speed & Heavy Traffic: 

The mixture of the above two cases i.e.; Generating 10,000 

network packets each 128 bytes size and pushing them into the 

network at one-second intervals. 

  We have used Kali Linux Penetration Testing Tools – hping3 

and hamster to generate heavy traffic by performing various 

security attacks as described below. 

4) SYN Flooding Attack: 

From the attacker machine, we launched this attack using the 

hping3 tool as various instances in 5 terminals. Each instance of 

hping3 floods the victim server with UDP, TCP and ICMP 

packets, each with 128 bytes packet size and randomizing the 

source. 

5) Port Scanning Attack: 

By mentioning a range of reserved port numbers of victim 

servers as the option to hping3 tool, we launched this attack 

from the attacker machine. More than 10 instances of it were 

launched in multiple terminals. 

6) SYN Flooding & Session Hijacking Attack [19]: 

In this scenario, we tried to flood the victim server as heavy as 

possible by running hping3 instances in 20 terminals. At the 

same time, it launched the Session hijacking attack by using 

hamster tool. 

    All these attacking scenarios were carried out for a unit time 

of 15 minutes and every activity was logged and many alerts 

were generated. To measure the performance of the proposed 

design, we considered a metric called Traffic Analysis 

Efficiency (TAE) along with the number of received packets, 

the number of analyzed packets and the number of dropped 

packets. We can define TAE as the ratio of a number of 

analyzed packets to the number of received packets. TAE must 

be more for assessing the packet processing speed of the 

pattern matching algorithms. The higher value of TAE 

represents more traffic packets are processed. Dropping Rate 

of Packets (DRP) must be reduced to improve the efficiency of 

the deployed NIDS. We define DRP as the ratio of a number of 

dropped packets to the number of received packets. 

 

     Traffic Analysis Efficiency 
NP R

NP A
TAE        (1) 

 

     Dropping Rate of Packets 
NP R

NP D
DRP       (2) 

Since NPDNP ANPR   , our effort is to maximize TAE 

and minimize DRP .i.e. 









NPR

NP A
1min  

 

Table 1 shows various scenarios of experimental results that are 

carried by different algorithms. 

From Table 1, we can infer that all the tested algorithms were 

handling more than 85% of incoming huge traffic with high 

speed except in PBOM1 and PBOM2, where the handling is 

nearly 75%. We can also observe these details in Fig. 4 and Fig. 

5. Because of the high data speed of incoming traffic, the 

packet drop rate percentage was more than 20%. But in that 

critical situation also, PBOM3 performed well in all the three 

test cases. This algorithm competes with the in-built AC-Std 

algorithm and tried to minimize the packet drop rate especially 

in the crucial test case of combined High Data Speed & Heavy 

Traffic. 
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Table 1. Processing of packets by various Algorithms 

 

Figure 4. Comparison of Traffic Analysis Efficiency of various 

Algorithms 

 

 

Figure 5. Comparison of Packets Drop Rate of various 

Algorithms 

 

After evaluating the performance of the algorithms in terms of 

packets analyzed and packets dropped in high data speed and 

heavy traffic conditions, now we try to analyze the accuracy. 

To assess the accuracy of the designed algorithms, we calculate 

Detection Rate (DR) and False Alarm Rate (FAR). For this, we 

evaluate the number of True Positives (TP), True Negatives 

(TN), False Positives (FP) and False Negatives (FN). 

 

 True Positives (TP) – identifies Illegitimate 

Elements as Illegitimate 

 True Negatives (TN) – identifies Legitimate 

Elements as Legitimate 

 False Positives (FP) – identifies Legitimate 

Elements as Illegitimate 

 False Negatives (FN) – identifies Illegitimate 

Elements as Legitimate 

          Detection Rate 
FNTP

TP
DR


        (3) 

         False Alarm Rate 
TNFP

FP
FAR


       (4) 

To consider a NIDS as efficient, we expect a very high DR and 

a very low FAR. Along with the above parameters, we can also 

calculate the Memory Usage (MU) and Average Pattern 

Matching Percentage (APMP) values as 

 

MU  ( NumberofStates * StateSize)  NumberofTransitions 



NumberofGroups  NumberofPatterns 

Where 

StateSize=2 bytes|1048 bytes|2096 bytes                                             (5) 

Algorithm 
Network 

Scenario 

Received 

Packets 

Analyzed 

Packets 

Dropped 

Packets 

 

 

 
 

PBOM1 

High Data 

Speed 
87.74% 54.33% 33.41% 

Heavy 

Traffic 
89.33% 62.67% 26.66% 

High Data 

Speed & 

Heavy 

Traffic 

 

74.33% 

 

34.67% 

 

39.66% 

 

 

 
 

PBOM2 

High Data 

Speed 
88.64% 59.76% 28.88% 

Heavy 

Traffic 
91.47% 68.54% 22.93% 

High Data 

Speed & 

Heavy 

Traffic 

 

76.34% 

 

47.32% 

 

29.02% 

 

 

 
 

PBOM3 

High Data 

Speed 
91.43% 72.47% 18.96% 

Heavy 

Traffic 
97.12% 85.33% 11.79% 

High Data 

Speed & 

Heavy 

Traffic 

 

89.75% 

 

63.11% 

 

26.64% 

 

 

 
 

AC - Std 

High Data 

Speed 
92.46% 75.92% 16.54% 

Heavy 

Traffic 
93.77% 81.02% 12.75% 

High Data 

Speed & 

Heavy 

Traffic 

 

88.53% 

 

58.77% 

 

29.76% 
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meStampsNumberofTi

ercentagernMatchedPTotalPatte
APMP                      (6) 

 

Where considering only TotalPatternMatchedPercentage  9 for 

effective calculation because the single-digit percentage 

doesn’t have any impact while calculating APMP. 

Table 2 shows the above stated four parameters i.e.; Detection 

Rate (DR), False Alarm Rate (FAR), Average Pattern 

Matching Percentage (APMP) and Memory Usage (MU) of the 

designed Algorithms by using the formulas (3), (4), (5) and (6). 

 

Table 2. Performance Parameters of various Algorithms 

Figure 6. Comparison of Detection Rate and False 

Alarm Rate of various Algorithms 

    From Table 2 and Fig. 6, we can infer that the Detection 

Rate of designed algorithms is promising and especially 

PBOM3 is better than the in-built AC-Std algorithm. With less 

False Alarm Rate and more Average Pattern Matching 

Percentage, PBOM3 wisely handled the heavy traffic with high 

speed. It also uses less memory when compared to the other 

algorithms. Moreover, it makes a choice of selecting PBOM1 

and PBOM2 and from the analyzed statistics it’s clear that 

PBOM2 is also performing well and competing with AC-Std. 

    To assess the performance of the proposed algorithms on 

standard datasets, we considered the NSL-KDD dataset [20] 

and performed the experiment. Several versions of files are 

present in the NSL-KDD dataset for training and testing 

purposes. For the evaluation purpose of the proposed NIDS, 

this work considers the NSL-KDD Test+ file, which contains a 

full set of attack records. This data set contains various types of 

traffic scenarios like DoS, U2R, R2L, Probe and normal. This 

Test+ file contains a total of 22544 attack records. In them, 

7458 are DoS records, 200 are U2R records, 2754 are R2L 

records, 2421 are Probe records and 9711 are Normal traffic 

records of this data set were taken for the assessment. All three 

algorithms were tested by supplying this data set. Table 3, 

Table 4 and Table 5 show the performance parameters of these 

algorithms against the NSL-KDD dataset. 
 

Traffic DR FAR 

DoS 0.998 0.002 

U2R 0.862 0.011 

R2L 0.878 0.008 

Probe 0.891 0.006 

Normal 0.972 0.004 

Table 3. Performance Parameters of PBOM1 Algorithm 

Traffic DR FAR 

DoS 0.853 0.014 

U2R 0.971 0.005 

R2L 0.894 0.011 

Probe 0.821 0.013 

Normal 0.983 0.003 

Table 4. Performance Parameters of PBOM2 Algorithm 

Traffic DR FAR 

DoS 0.946 0.008 

U2R 0.952 0.010 

R2L 0.983 0.003 

Probe 0.935 0.013 

Normal 0.986 0.003 

Table 5. Performance Parameters of PBOM3 Algorithm 

 

From Table 3, we can infer that the Detection Rate of the 

PBOM1 algorithm is better in detecting DoS attack traffic. 

This ensures the Availability feature of the network. The 

average DR is 0.92 and the average FAR is 0.006 of this 

PBOM1 algorithm on the NSL-KDD dataset. 

From Table 4, we can infer that the Detection Rate of the 

PBOM2 algorithm is better in detecting U2R traffic. This 

ensures the Confidentiality feature of the network. The average 

DR is 0.9 and the average FAR is 0.009 of this PBOM2 

algorithm on the NSL-KDD dataset. 

From Table 5, we can infer that the Detection Rate of the 

PBOM3 algorithm is better in detecting R2L traffic. The 

detection of other attacks is also good because of the intelligent 

selection of the two algorithms. This not only ensures the 

Integrity, but also the Availability and the Confidentiality 

features of the network. The average DR is 0.96 and the 

average FAR is 0.007 of this PBOM1 algorithm on the 

NSL-KDD dataset. 

During the evaluation against this standard dataset, the running 

time of the algorithms was computed and mentioned the same 

below. 

PBOM1 Algorithm – 14.27356484 sec 

PBOM2 Algorithm – 26.49501537 sec 

PBOM3 Algorithm – 11.28763853 sec  

Algorithm DR FAR APMP MU 

PBOM1 0.86

4 

0.052 24.93% 176092 KB 

PBOM2 0.95

9 

0.021 32.69% 9532 KB 

PBOM3 0.98

8 

0.013 36.10% 1320 KB 

AC-Std 0.97

4 

0.019 33.21% 161640 KB 
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Table 6 compares the DR and FAR of various existing 

approaches with the proposed algorithms. The proposed 

algorithms outperform the other compared 

algorithms/techniques with better DR and FAR. 

 

Author(s) 

Reference 

Algorithm/ 

Technique 
DR FAR 

[21] I3DS 0.65 0.15 

[22] Active IDS 0.75 -- 

[23] NN 0.914 0.57 

 
[24] 

Semi-Supe

rvised 

Learning 

 
0.95 

 
-- 

PBOM1 (Live Traffic) 0.864 0.052 

PBOM2 (Live Traffic) 0.959 0.021 

PBOM3 (Live Traffic) 0.988 0.013 

PBOM1 (NSL-KDD DS) 0.92 0.006 

PBOM2 (NSL-KDD DS) 0.90 0.009 

PBOM3 (NSL-KDD DS) 0.96 0.007 

Table 6. Comparison of DR and FAR with various algorithms 

    From the above assessment, we can observe that the 

designed three algorithms are performing well not only on live 

traffic but also on standard datasets like the NSL-KDD dataset. 

The Detection Rate and False Alarm Rate of these algorithms 

were promising against various attacks like DoS, Port 

Scanning, U2R, R2L, and Probe. But the shortcoming is, we 

didn’t yet evaluate for the zero-day attacks [25]. Also, the 

packet dropping rate during live traffic needs to bring down to 

consider the proposed design for organizations 

V. Conclusion 

This paper proposes an efficient architecture for a network 

intrusion detection system using a layer-based design. For 

better pattern matching, PBOM algorithms were designed and 

integrated into the proposed NIDS design. The main reason for 

incorporating these algorithms is to improve the detection 

engine efficiency in handling huge traffic with high data speed. 

To assess the performance of this model, the Snort tool was 

chosen in the Kali Linux environment. Experimental evaluation 

depicts that the functionality of the designed algorithms is 

promising in both live traffic and NSL-KDD dataset scenarios. 

By analyzing various performance parameters, the competence 

of the PBOM algorithms can be observed. For future 

enhancements, we will evaluate the proposed design for 

zero-day attacks and develop a generalized framework that can 

be operable in both conventional networks and IoT networks 

in an efficient manner. 
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