
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 12 (2020) pp. 046-055

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 2 January 2019; Accepted: 6 January, 2020; Published: 31 March, 2020

An Efficient Network Intrusion Detection

System Using Prospective Backward Oracle

Matching Algorithms: An Architectural

Approach

Raviteja Gaddam1, M. Nandhini2

1 Department of Computer Science, Pondicherry University,

Puducherry, Tamil Nadu, India

raviteja.csebec@gmail.com

2 Department of Computer Science, Pondicherry University,

Puducherry, Tamil Nadu, India

mnandhini2005@yahoo.com

Abstract: With the innovations in technology, sophisticated

attacks are threatening the major defenses of networks.

Nowadays, it is highly impossible to avoid security attacks

completely. Network Intrusion Detection System (NIDS) plays a

vital role in network security in detecting the attacks that happen

regardless of the best defensive methods. Most NIDS search

engines use pattern matching algorithms as their core component

to detect the signatures of inspecting packets. The selection of

pattern matching algorithms greatly affects the performance of

NIDS. Challenges like handling huge traffic, high data speed, low

detection rate, etc. are also degrading the performance of many

existing NIDS. To overcome the stated problems, this paper

proposes an efficient NIDS layer-based architecture and

designed Prospective Backward Oracle Matching (PBOM)

Algorithms and applied at respective layers. PBOM algorithms

use reversed patterns and construct factor oracle for better

pattern matching and to achieve better results. Hashtable

mechanism is used to minimize the memory used to store the state

transitions. PBOM algorithms are integrated into the Snort tool

and deployed on Kali Linux based environment set up.

Experimental evaluation indicates that the proposed design with

PBOM algorithms can achieve better detection accuracy, less

packet loss, and reduced false alarms.

Keywords: Network Intrusion Detection System, Prospective

Backward Oracle Matching, Snort, Kali Linux.

I. Introduction

The latest technological developments are not only

sophisticated common computer users but also cybercriminals.

Heidi Shey, a Senior Analyst at Forester depicts “Hackers are

carefully picking their victim organization, learning its

businesses, understanding its partner relationships, and testing

for weaknesses and vulnerabilities” [1]. Cyber attackers have

shown new heights of determination with zero-day

vulnerabilities and malware now used carefully and attackers

are progressively trying to hide [2]. The year 2017 has seen an

excessive number of cybersecurity collapses. 2017's major

cyber-incidents like Shadow Brokers, WannaCry, Wikileaks

CIA Vault 7 Cloudbleed, Petya/NotPetya/Nyetya/Goldeneye,

Macron Campaign are examples of how chaotic things have

already gotten [3]. When compared to 2017, the year 2018 is

pretty much good as there were no many global ransom wares

or government leaks apart from Russian Grid Hacking,

rampant Data Exposures of US adults, Under Armour whose

intention was to a data breach.

 Network Intrusion Detection System (NIDS) has sustained

as a noticeable real-field tested mechanism in security practices.

Yet NIDS is not bulletproof to every attack, it increases the bar

for attackers and reduces the intensity of the attack. As an

effect, NIDS empirically thwarts huge illegitimate attacks that

could possibly incur a loss of big amounts to companies. To

understand several solutions and difficulties in the real-time

situations of NIDS, this paper discusses some literature of

NIDS with Snort [4] as their tool. To design an efficient NIDS,

the authors propose an architecture and it’s supporting Pattern

Matching (PM) Algorithms called PBOM Algorithms [5].

Three variations of PBOM algorithms were designed,

integrated into Snort and experimented in a lab setup.

Proposed PBOM algorithms use factor oracle and state

machine mechanisms for the construction of patterns.

 To detect the attacks in an efficient manner, the proposed

NIDS uses the proposed PBOM algorithms. The designed

NIDS evaluated under several network scenarios and different

mailto:raviteja.csebec@gmail.com
mailto:mnandhini2005@yahoo.com

An Efficient Network Intrusion Detection System… 47

types of attacks to assess its efficiency in terms of detection

rate and false alarm rate.

 This paper is organized as follows: Some of the works

related to the research papers of existing Snort based NIDS are

discussed in Section 2. Some potential directions of this paper

followed by the proposed architecture and PBOM algorithms

are discussed in Section 3. Section 4 discusses the

experimental evaluation and the results followed by the

conclusion in Section 5.

II. Related Work

We have analyzed various types of NIDS and their approaches

that are operating with Snort and without Snort in the research

papers [6][7] that are from various domains like data mining,

Cloud Computing, Distributed Computing, Artificial

Intelligence, etc. The functionality of these approaches is

emphasized in various aspects like false alarm rate, detection

accuracy, and scalability.

 N Jongsawat and J Decharoenchitpong in [8] used Bayesian

Network Learning Algorithms and proposed Behavior-Based

Rules for Snort. Wireshark tool was used to capture the

packets and these were used for the formation of Bayesian

Network. Later framed rules for Snort that were built on

network traffic and resolved that the efficiency enhanced. One

disadvantage identified it was created by rules. Thus to

increase detection rate it needs more rules. Using Bayesian

Search Graph Algorithm to verify a number of times for the

maximum scoring graph is also its drawback.

 Saiyan Saiyod, Khamkone Sengaphay, and Nunnapus

Benjamas in [9] discussed Private Cloud-based IDS. They

proposed multi-sensors in private cloud to improve behavior

detection. This paper suggested rules for Snort like behavior

checking, port scanning, etc. To evaluate, this paper assumed

virtual machines as attackers, sensors, databases, and

monitoring. To assess the performance, Nmap and

MIT-DARPA 1999 dataset were used. For the duration of

evaluation, different results were recognized at diverse sensors.

The main disadvantage here is getting ready rules for each

sensor and synchronizing sensors to improve the detection

rate.

 In [10] authors discussed the usage of the Snort tool in the

Cloud environment. They have discussed the operation of

Snort and embedding of this tool in the Cloud as a part of

principal supervision. By altering the snort.conf file, it analyzed

the behavior-based and signature-based functionality of Snort.

The main disadvantage is that the authors didn’t suggest other

diverse methods to solve the problems of Snort i.e. low

detection rate and packet loss during heavy traffic flow.

 Z. Chiba, N. Abghour, et al. in [11] explained the merging of

the Back-Propagation Neural Network (BPN) and Snort to

identify attacks in Cloud. Snort was used to discover

well-known attacks and BPN for unidentified attacks. To

improve the BPN detection rate, this paper discussed an

optimization algorithm. But authors didn’t mention any

methods to prevent DoS attacks and the sharing of this data in

the Cloud.

 Many of the existing NIDS detection engines’ core

component is the Pattern Matching (PM) Algorithm.

Nevertheless, of its wide deployment, throughput and

scalability have reduced the first choice of NIDS due to the

expensive PM actions. PM has to inspect every packet against

the ruleset. Hence, PM essentially requires intensive resources

for both computation and communication during heavy traffic.

Numerous studies on NIDS divulge several significant features

like the simultaneous search for multiple patterns, large

keyword sets for searching, varied keyword lengths for

searching, etc. to achieve the maximum efficiency.

Considering these features and inspired by Set Backward

Oracle Matching Algorithm (SBOM) [12] and Aho-Corasick

Algorithm [13], we have designed PBOM algorithms to

improve the pattern matching efficiency. SBOM constructs

factor oracle with a set of keywords.

 A factor is a substring of a word. A factor oracle is a variety

of data structures that catalog the entire factors of the given

word. It is a type of deterministic automata that identifies every

state as an accepting state. To identify the factors of given

keywords, it maintains transitions starting from the first state.

During state transition for any input, if it encounters a

character that is not defined, then the given input is not a factor

of the word. A sample factor oracle can be observed in Fig. 1.

Figure 1. Sample factor oracle

 Aho-Corasick uses a state machine for the transitions. In our

PBOM, we have used the combination of both factor oracle

and state machine. In one variation of PBOM (i.e. PBOM2),

we used a hash table mechanism to reduce the memory.

III. Proposed Architecture and Algorithms

Intrusion Detection System is a safeguarding tool that every

organization desires. But there are some challenges for the

organizations while setting up like huge traffic, low detection

rate, manual observation, false alarming, etc. [14]. These

restrictions can ascertain stimulating while setting up NIDS.

Efficiency can be enhanced by concentrating on several critical

attacks like Port Scanning, Session Hijacking and Denial of

Service [7]. Networks are susceptible to various kinds of

attacks that impends the Availability, Confidentiality, and

Integrity. Certain attacks capture the data, whereas others try

to alter. Some may attempt to bring down the network and

services. Attacks like these may cost a lot in terms of economic,

status, customer slow destruction, etc. As a prospective

direction, the authors propose an NIDS architecture to thwart

this type of attack in an efficient manner.

Gaddam and Nandhini

48

A. Our Proposal for improvement

To overcome various NIDS challenges and to handle various

attacks, the authors propose a novel architecture as shown in

Fig. 2. This architecture must do the job perfectly without

degrading the performance of NIDS.

Figure 2. Proposed Architecture to improve NIDS efficiency

1) Layer Based Design:

 To ease the complication, layers in the design are

incremental to guarantee the security features of the

network: Availability, Confidentiality, and Integrity. DoS

type attacks aim the network services availability, Packet

Capturing, and Port Scanning attacks intimidate

Confidentiality and Session hijacking attacks impend

integrity. These features must be ensured by the network in

scenarios like huge traffic and high data speed. The above

specified three features may entrust by designing a

three-level based design where each level detects and

prevent certain attacks and these levels are incremental i.e.;

a layer can detect the attacks that are intended for the

previous layer also. As a support to handle the attacks with

better detection capability, the authors designed PBOM

algorithms for the three layers.

2) Integrate into NIDS:

To test the proposed design, incorporate it into a NIDS

tool like Snort by Code Refactoring. Proposed PBOM

algorithms are implemented, placed in the tool with

necessary configuration changes.

3) Evaluate the NIDS in Kali Environment:

 Improved NIDS (i.e. enhanced Snort tool) can be

deployed on a Kali Linux based system and assess it by

offending the local network experimental setup with various

attacks. Monitor and record all the results in various

performance aspects. Later, assess the results and verify the

efficiency of the suggested design.

B. PBOM Algorithms for better pattern matching

For any NIDS, the risk of algorithmic complexity attacks

restrains the use of PM Algorithms that are open to the input

size. Thus, to improve pattern matching, the authors propose

Prospective Backward Oracle Matching (PBOM) algorithms.

These are an extension of Allauzen et al. [12] Multiple

Backward Oracle Matching algorithm but they didn’t describe

the particulars in the work.

 As an enhancement to Allauzen et al. [12], proposed PBOM

uses State Machine (like Aho – Corasick Trie) and Multiple

Keyword-based Factor Oracle. A set of all the keywords are

used to build both the state machine and factor oracle. But

reversed patterns are used for Factor Oracle construction.

Algorithm 1 shows the construction of a Factor Oracle with

Multiple Keywords

1) PBOM1 Algorithm

For a given set of patterns, it first builds a state machine by

directing all the patterns to it. Later, it constructs a factor

oracle by supplying the reversed patterns. Here reversed

patterns are used to reduce the matching complexity. From all

the patterns of the window, we calculate the minimum by

performing a search for shortest length pattern. During the

pattern matching process, it maintains a critical position to

mark the right side of the stopping position. It starts matching

process with the factor oracle. Because of using reversed

patterns in factor oracle, process of matching the input with the

factor oracle’s pattern drives from right side to left side. This

searching process stops with a mismatch or at the finishing of

scanning all the input characters.

 No forward move in factor oracle can be the consequence of

a mismatch. This is the point where the process is shifted to

state machine. Modify the current state to the initial state of the

state machine and change the critical position pointer to the

right side of the mismatched character. Continue the matching

process in the state machine until the longest prefix match

occurs. As stated in Algorithm 2, PBOM1 doesn’t require

input scanning as single characters. Multiple characters can be

supplied at a time in a scanning window. Pre stoppage of

critical position pointer skips all the further matching process

and window length prevents adding excessive input characters

An Efficient Network Intrusion Detection System… 49

2) PBOM2 Algorithm

To empower the performance in the PBOM1 search preference,

factor oracle nodes comprise pointers to an array of 256 to

other probable nodes in the factor oracle. Every state or node in

the Oracle holds 1024 bytes for these pointers. Excluding

certain memory, consumptions will lead to better performance.

Thus, PBOM2 represented the nodes with 16-bit integers.

Hashtable was used to build the Factor Oracle in PBOM2 as

shown in Algorithm 3, which can cover all transitions by

reducing the memory wastage. Every key in the hash table is a

pair of state number and character. Every time mapping occurs

between the state numbers that are a part of the hash table key.

That is memory can be saved by allocating only to the existing

transitions in factor oracle.

3) PBOM3 Algorithm

The PBOM3 as shown in Algorithm 4, doesn’t implement any

new technique but it uses one of the above algorithms. The

main purpose of this algorithm is to specify the difficulty that

any algorithm suits performs well at all conditions. The

difference in the grouping of patterns is tricky. In the course of

pre-processing, all the patterns are added to a pattern group

structure that is suitable for other algorithms. Observe

minimum length patterns, and if it goes beyond two then opt

PBOM2 and compile the pattern group for it. Otherwise, opt

PBOM1. Hence, the PBOM3 algorithm wisely chooses

PBOM1 or PBOM2 that would typically work effectively for

pattern matching based on the pattern group.

Gaddam and Nandhini

50

C. PBOM Algorithms to NIDS layers

For the three layer-based design as mentioned earlier, PBOM

algorithms can be mapped to preserve the Confidentiality,

Integrity, and Availability of the network.

1) Ensuring Availability

Availability states the ability of a user to access the resources or

information in a truthful manner. The system must be regularly

functioning to ensure that it is available at any time in a secure

way. Non-functioning of it highly impacts the users. Most of

today’s cyber-attacks like Denial of Service (DoS) attacks,

target to bring down the servers and to effect the companies

and persons both in terms of financial and reputation.

 To detect DoS like attacks and to preserve the availability

feature, PBOM1 algorithm applied at this layer. PBOM1

algorithm search for the flooded packets and alert the

administrator by sending the messages and logging the activity.

This is to be done in a faster manner so that the administrators

can take necessary actions and prevent the crashing of servers.

2) Ensuring Confidentiality

Confidentiality allows only authorized persons to access

sensitive data. Sensitive information must be disclosed to only

those users who have authorization and measures must be

taken to ensure it. Failure of confidentiality may lead to a

breach where someone who should not have access has

managed to get it and can do whatever they want.

 PBOM2 algorithm ensures the Confidentiality feature at this

level, detects abnormal connection establishment activities and

port scanning attacks. This detected information can be sent as

alerts to the administrator and logged, which help for

restricting or closing the unused ports.

3) Ensuring Integrity

Integrity refers to ensuring that the information is real, correct

and protected from unauthorized user modification. Data must

remain unchanged within a system and during transmission.

Hackers try to infiltrate the systems with malware and session

hijacking like techniques.

 To preserve Integrity, the PBOM3 algorithm monitors and

detects any man in the middle attacks like session hijacking is

happening in the network. If such activity occurs, it

immediately alerts the administrator by sending a message and

logging the activity.

 All three PBOM variations ensure the better detection

capability of various attacks at respective layers. To illustrate

the performance of these algorithms, this paper evaluates the

proposed architecture by using the Snort NIDS tool.

IV. Experimental Evaluation & Discussion

Since the tenacity of the work is to evaluate PBOM algorithms

with Snort to supervise various attacks and its efficiency, the

assessment has been carried out in a sophisticated lab

environment. Simulation has been done for several attacks like

SYN Flooding [15], Port Scanning [16] and Session Hijacking

[17] to depict the network scenarios of huge traffic and high

data speed. Monitored the performance of Snort per unit time

of 15 minutes for these network scenarios for the designed

algorithms and one in-built algorithm.

A. Environment Setup

The computer lab network is built around D-Link gigabit

switches. All machines are hp Compaq, Intel i3, 2.40GHz, 4

GB RAM, 1Gbps inbuilt Network Card. For the evaluation

purpose, we have configured 26 machines as shown in Fig. 3

Configuration details of various machines follow.

1) Victim Server – Host Configuration:

Victim machine runs on Microsoft Windows 8.1 platform and

Microsoft IIS Server feature configured to serve as a web

server and one HTML page hosted for evaluation purposes.

2) Attacker Machine – Host Configuration:

Kali Linux flavor has been installed on a virtual machine using

VMWare workstation player over Windows 8.1 platform. This

machine was configured to perform various attacks on the

webserver.

3) Snort Machine – Virtual Configuration:

On the laptop, the virtual platform has been built using

VMWare workstation player over Windows 10 OS and Kali

Linux was created as a virtual machine. In this Kali Linux,

modified Snort NIDS was installed and configured to monitor

the Private Network.

4) Traffic Generation and Reception Hosts:

An Efficient Network Intrusion Detection System… 51

All the remaining machines were used to generate and receive

regular traffic on both public and private networks.

Figure 3. Evaluation Environment Setup

 After integrating the PBOM algorithms into Snort using

code refactoring, we have installed the modified Snort for

intrusion detection and Zabbix [18] to monitor the performance

of the Snort NIDS machine. Zabbix [18] is an open-source

network monitoring software. It can be associated with Snort to

represent the Snort performance details in a graphical form.

B. Experimentation & Results

The designed NIDS has to be tested in several scenarios like

high data speed, huge traffic and a combination of both. For this

experiment, we consider

1) High Data Speed:

Generating 5,000 network packets each 128 bytes size and

pushing them into the network at one-second intervals.

2) Huge Traffic:

Generating 10,000 network packets each 128 bytes size and

pushing them into the network at fifteen seconds intervals.

3) High Data Speed & Heavy Traffic:

The mixture of the above two cases i.e.; Generating 10,000

network packets each 128 bytes size and pushing them into the

network at one-second intervals.

 We have used Kali Linux Penetration Testing Tools – hping3

and hamster to generate heavy traffic by performing various

security attacks as described below.

4) SYN Flooding Attack:

From the attacker machine, we launched this attack using the

hping3 tool as various instances in 5 terminals. Each instance of

hping3 floods the victim server with UDP, TCP and ICMP

packets, each with 128 bytes packet size and randomizing the

source.

5) Port Scanning Attack:

By mentioning a range of reserved port numbers of victim

servers as the option to hping3 tool, we launched this attack

from the attacker machine. More than 10 instances of it were

launched in multiple terminals.

6) SYN Flooding & Session Hijacking Attack [19]:

In this scenario, we tried to flood the victim server as heavy as

possible by running hping3 instances in 20 terminals. At the

same time, it launched the Session hijacking attack by using

hamster tool.

 All these attacking scenarios were carried out for a unit time

of 15 minutes and every activity was logged and many alerts

were generated. To measure the performance of the proposed

design, we considered a metric called Traffic Analysis

Efficiency (TAE) along with the number of received packets,

the number of analyzed packets and the number of dropped

packets. We can define TAE as the ratio of a number of

analyzed packets to the number of received packets. TAE must

be more for assessing the packet processing speed of the

pattern matching algorithms. The higher value of TAE

represents more traffic packets are processed. Dropping Rate

of Packets (DRP) must be reduced to improve the efficiency of

the deployed NIDS. We define DRP as the ratio of a number of

dropped packets to the number of received packets.

 Traffic Analysis Efficiency
NP R

NP A
TAE  (1)

 Dropping Rate of Packets
NP R

NP D
DRP  (2)

Since NPDNP ANPR  , our effort is to maximize TAE

and minimize DRP .i.e. 









NPR

NP A
1min

Table 1 shows various scenarios of experimental results that are

carried by different algorithms.

From Table 1, we can infer that all the tested algorithms were

handling more than 85% of incoming huge traffic with high

speed except in PBOM1 and PBOM2, where the handling is

nearly 75%. We can also observe these details in Fig. 4 and Fig.

5. Because of the high data speed of incoming traffic, the

packet drop rate percentage was more than 20%. But in that

critical situation also, PBOM3 performed well in all the three

test cases. This algorithm competes with the in-built AC-Std

algorithm and tried to minimize the packet drop rate especially

in the crucial test case of combined High Data Speed & Heavy

Traffic.

Gaddam and Nandhini

52

Table 1. Processing of packets by various Algorithms

Figure 4. Comparison of Traffic Analysis Efficiency of various

Algorithms

Figure 5. Comparison of Packets Drop Rate of various

Algorithms

After evaluating the performance of the algorithms in terms of

packets analyzed and packets dropped in high data speed and

heavy traffic conditions, now we try to analyze the accuracy.

To assess the accuracy of the designed algorithms, we calculate

Detection Rate (DR) and False Alarm Rate (FAR). For this, we

evaluate the number of True Positives (TP), True Negatives

(TN), False Positives (FP) and False Negatives (FN).

 True Positives (TP) – identifies Illegitimate

Elements as Illegitimate

 True Negatives (TN) – identifies Legitimate

Elements as Legitimate

 False Positives (FP) – identifies Legitimate

Elements as Illegitimate

 False Negatives (FN) – identifies Illegitimate

Elements as Legitimate

 Detection Rate
FNTP

TP
DR


 (3)

 False Alarm Rate
TNFP

FP
FAR


 (4)

To consider a NIDS as efficient, we expect a very high DR and

a very low FAR. Along with the above parameters, we can also

calculate the Memory Usage (MU) and Average Pattern

Matching Percentage (APMP) values as

MU  (NumberofStates * StateSize)  NumberofTransitions



NumberofGroups  NumberofPatterns

Where

StateSize=2 bytes|1048 bytes|2096 bytes (5)

Algorithm
Network

Scenario

Received

Packets

Analyzed

Packets

Dropped

Packets

PBOM1

High Data

Speed
87.74% 54.33% 33.41%

Heavy

Traffic
89.33% 62.67% 26.66%

High Data

Speed &

Heavy

Traffic

74.33%

34.67%

39.66%

PBOM2

High Data

Speed
88.64% 59.76% 28.88%

Heavy

Traffic
91.47% 68.54% 22.93%

High Data

Speed &

Heavy

Traffic

76.34%

47.32%

29.02%

PBOM3

High Data

Speed
91.43% 72.47% 18.96%

Heavy

Traffic
97.12% 85.33% 11.79%

High Data

Speed &

Heavy

Traffic

89.75%

63.11%

26.64%

AC - Std

High Data

Speed
92.46% 75.92% 16.54%

Heavy

Traffic
93.77% 81.02% 12.75%

High Data

Speed &

Heavy

Traffic

88.53%

58.77%

29.76%

An Efficient Network Intrusion Detection System… 53

meStampsNumberofTi

ercentagernMatchedPTotalPatte
APMP  (6)

Where considering only TotalPatternMatchedPercentage  9 for

effective calculation because the single-digit percentage

doesn’t have any impact while calculating APMP.

Table 2 shows the above stated four parameters i.e.; Detection

Rate (DR), False Alarm Rate (FAR), Average Pattern

Matching Percentage (APMP) and Memory Usage (MU) of the

designed Algorithms by using the formulas (3), (4), (5) and (6).

Table 2. Performance Parameters of various Algorithms

Figure 6. Comparison of Detection Rate and False

Alarm Rate of various Algorithms

 From Table 2 and Fig. 6, we can infer that the Detection

Rate of designed algorithms is promising and especially

PBOM3 is better than the in-built AC-Std algorithm. With less

False Alarm Rate and more Average Pattern Matching

Percentage, PBOM3 wisely handled the heavy traffic with high

speed. It also uses less memory when compared to the other

algorithms. Moreover, it makes a choice of selecting PBOM1

and PBOM2 and from the analyzed statistics it’s clear that

PBOM2 is also performing well and competing with AC-Std.

 To assess the performance of the proposed algorithms on

standard datasets, we considered the NSL-KDD dataset [20]

and performed the experiment. Several versions of files are

present in the NSL-KDD dataset for training and testing

purposes. For the evaluation purpose of the proposed NIDS,

this work considers the NSL-KDD Test+ file, which contains a

full set of attack records. This data set contains various types of

traffic scenarios like DoS, U2R, R2L, Probe and normal. This

Test+ file contains a total of 22544 attack records. In them,

7458 are DoS records, 200 are U2R records, 2754 are R2L

records, 2421 are Probe records and 9711 are Normal traffic

records of this data set were taken for the assessment. All three

algorithms were tested by supplying this data set. Table 3,

Table 4 and Table 5 show the performance parameters of these

algorithms against the NSL-KDD dataset.

Traffic DR FAR

DoS 0.998 0.002

U2R 0.862 0.011

R2L 0.878 0.008

Probe 0.891 0.006

Normal 0.972 0.004

Table 3. Performance Parameters of PBOM1 Algorithm

Traffic DR FAR

DoS 0.853 0.014

U2R 0.971 0.005

R2L 0.894 0.011

Probe 0.821 0.013

Normal 0.983 0.003

Table 4. Performance Parameters of PBOM2 Algorithm

Traffic DR FAR

DoS 0.946 0.008

U2R 0.952 0.010

R2L 0.983 0.003

Probe 0.935 0.013

Normal 0.986 0.003

Table 5. Performance Parameters of PBOM3 Algorithm

From Table 3, we can infer that the Detection Rate of the

PBOM1 algorithm is better in detecting DoS attack traffic.

This ensures the Availability feature of the network. The

average DR is 0.92 and the average FAR is 0.006 of this

PBOM1 algorithm on the NSL-KDD dataset.

From Table 4, we can infer that the Detection Rate of the

PBOM2 algorithm is better in detecting U2R traffic. This

ensures the Confidentiality feature of the network. The average

DR is 0.9 and the average FAR is 0.009 of this PBOM2

algorithm on the NSL-KDD dataset.

From Table 5, we can infer that the Detection Rate of the

PBOM3 algorithm is better in detecting R2L traffic. The

detection of other attacks is also good because of the intelligent

selection of the two algorithms. This not only ensures the

Integrity, but also the Availability and the Confidentiality

features of the network. The average DR is 0.96 and the

average FAR is 0.007 of this PBOM1 algorithm on the

NSL-KDD dataset.

During the evaluation against this standard dataset, the running

time of the algorithms was computed and mentioned the same

below.

PBOM1 Algorithm – 14.27356484 sec

PBOM2 Algorithm – 26.49501537 sec

PBOM3 Algorithm – 11.28763853 sec

Algorithm DR FAR APMP MU

PBOM1 0.86

4

0.052 24.93% 176092 KB

PBOM2 0.95

9

0.021 32.69% 9532 KB

PBOM3 0.98

8

0.013 36.10% 1320 KB

AC-Std 0.97

4

0.019 33.21% 161640 KB

Gaddam and Nandhini

54

Table 6 compares the DR and FAR of various existing

approaches with the proposed algorithms. The proposed

algorithms outperform the other compared

algorithms/techniques with better DR and FAR.

Author(s)

Reference

Algorithm/

Technique
DR FAR

[21] I3DS 0.65 0.15

[22] Active IDS 0.75 --

[23] NN 0.914 0.57

[24]

Semi-Supe

rvised

Learning

0.95

--

PBOM1 (Live Traffic) 0.864 0.052

PBOM2 (Live Traffic) 0.959 0.021

PBOM3 (Live Traffic) 0.988 0.013

PBOM1 (NSL-KDD DS) 0.92 0.006

PBOM2 (NSL-KDD DS) 0.90 0.009

PBOM3 (NSL-KDD DS) 0.96 0.007

Table 6. Comparison of DR and FAR with various algorithms

 From the above assessment, we can observe that the

designed three algorithms are performing well not only on live

traffic but also on standard datasets like the NSL-KDD dataset.

The Detection Rate and False Alarm Rate of these algorithms

were promising against various attacks like DoS, Port

Scanning, U2R, R2L, and Probe. But the shortcoming is, we

didn’t yet evaluate for the zero-day attacks [25]. Also, the

packet dropping rate during live traffic needs to bring down to

consider the proposed design for organizations

V. Conclusion

This paper proposes an efficient architecture for a network

intrusion detection system using a layer-based design. For

better pattern matching, PBOM algorithms were designed and

integrated into the proposed NIDS design. The main reason for

incorporating these algorithms is to improve the detection

engine efficiency in handling huge traffic with high data speed.

To assess the performance of this model, the Snort tool was

chosen in the Kali Linux environment. Experimental evaluation

depicts that the functionality of the designed algorithms is

promising in both live traffic and NSL-KDD dataset scenarios.

By analyzing various performance parameters, the competence

of the PBOM algorithms can be observed. For future

enhancements, we will evaluate the proposed design for

zero-day attacks and develop a generalized framework that can

be operable in both conventional networks and IoT networks

in an efficient manner.

Acknowledgment

We would like to thank the anonymous reviewers for their

valuable feedback. We would like to thank our Computer

Science Department for providing the necessary resources for

our work. This paper reflects the views only of the authors, and

others cannot be held responsible for any use which may be

made of the information contained therein.

References

[1] H. Taylor, “The key industry that’s way behind on

data security,” CNBC. 2018.

[2] K. Chandrasekar et al., “Internet Security Threat

Report - April 2017,” Istr, no. April, 2017.

[3] L. Newman et al., “The Biggest Cybersecurity

Disasters of 2017 So Far,” WIRED. 2018.

[4] “Snort - Network Intrusion Detection & Prevention

System,” 2018. [Online]. Available:

https://www.snort.org/.

[5] R. Gaddam and M. Nandhini, “Prospective backward

Oracle matching algorithm for network intrusion

detection system,” in 2017 2nd IEEE International

Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT),

2017, pp. 1143–1148.

[6] R. Gaddam and M. Nandhini, “An analysis of various

snort based techniques to detect and prevent intrusions in

networks proposal with code refactoring snort tool in

Kali Linux environment,” 2017 Int. Conf. Inven.

Commun. Comput. Technol., no. Icicct, pp. 10–15, 2017.

[7] R. Gaddam and M. Nandhini, “Analysis of Various

Intrusion Detection Systems with a Model for Improving

Snort Performance,” Indian J. Sci. Technol., vol. 10, no.

20, pp. 1–12, 2017.

[8] N. Jongsawat and J. Decharoenchitpong, “Creating

behavior-based rules for snort based on Bayesian

network learning algorithms,” Proc. 2015 Int. Conf. Sci.

Technol. TICST 2015, pp. 267–270, 2015.

[9] N. Khamphakdee, N. Benjamas, and S. Saiyod,

“Improving intrusion detection system based on Snort

rules for network probe attack detection,” 2014 2nd Int.

Conf. Inf. Commun. Technol. ICoICT 2014, pp. 69–74,

2014.

[10] V. Mishra, V. K. Vijay, and S. Tazi, “Intrusion detection

system with snort in cloud computing: Advanced IDS,”

Adv. Intell. Syst. Comput., vol. 408, pp. 457–465, 2016.

[11] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M.

Rida, “A Cooperative and Hybrid Network Intrusion

Detection Framework in Cloud Computing Based on

Snort and Optimized Back Propagation Neural

Network,” Procedia Comput. Sci., vol. 83, pp.

1200–1206, 2016.

[12] C. Allauzen, M. Crochemore, and M. Raffinot, “Factor

oracle: A new structure for pattern matching,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 1725, pp.

295–310, 1999.

[13] A. V. Aho and M. J. Corasick, “Efficient string matching:

an aid to bibliographic search,” Commun. ACM, vol. 18,

no. 6, pp. 333–340, 1975.

[14] “The Pros & Cons of Intrusion Detection Systems.”

[Online]. Available:

https://komunity.komand.com/learn/featured/the-pros-c

ons-of-intrusion-detection-systems.

[15] “Hping3 Examples - Firewall testing |

http://www.snort.org/

An Efficient Network Intrusion Detection System… 55

0DAYsecurity.com,” 0daysecurity.com, 2018. [Online].

Available:

http://0daysecurity.com/articles/hping3_examples.html.

[16] “Network Scanning with HPING3,”

Devilzlinux.blogspot.com, 2018. [Online]. Available:

https://devilzlinux.blogspot.com/2017/04/network-scan

ning-with-hping3.html

[17] “IT Security – Session Hijacking.” [Online]. Available:

http://itsecurity.telelink.com/session-hijacking/.

[18] “zabbix.” [Online]. Available: https://www.zabbix.com/.

[19] “hamster-sidejack,” Tools.kali.org, 2018. [Online].

Available:

https://tools.kali.org/sniffingspoofing/hamster-sidejack.

[20] “NSL-KDD | Datasets | Research | Canadian Institute for

Cybersecurity | UNB.” [Online]. Available:

https://www.unb.ca/cic/datasets/nsl.html.

[21] M. Jha and R. Acharya, “An immune inspired unsupervised

intrusion detection system for detection of novel attacks,”

IEEE Int. Conf. Intell. Secur. Informatics Cybersecurity

Big Data, ISI 2016, pp. 292–297, 2016.

[22] A. Bhandari, M. Agarwal, S. Biswas, and S. Nandi,

“Intrusion detection system for identification of

throughput degradation attack on TCP,” 2016 22nd Natl.

Conf. Commun. NCC 2016, 2016.

[23] A. a. Alfantookh, “DoS Attacks Intelligent Detection

using Neural Networks,” J. King Saud Univ. - Comput.

Inf. Sci., vol. 18, no. 2006, pp. 31–51, 2006.

[24] W. Li, W. Meng, X. Luo, and L. F. Kwok, “MVPSys:

Toward practical multi-view based false alarm reduction

system in network intrusion detection,” Comput. Secur.,

vol. 60, pp. 177–192, 2016.

[25] FireEye, “Zero-Day Danger: A Survey of Zero-Day

Attacks and What They Say About the Traditional

Security Model,” p. 16, 2015

[26] “Hping3 Examples - Firewall testing |

0DAYsecurity.com,” 0daysecurity.com, 2018. [Online].

Available:

http://0daysecurity.com/articles/hping3_examples.html.

[27] “Network Scanning with HPING3,”

Devilzlinux.blogspot.com, 2018. [Online]. Available:

https://devilzlinux.blogspot.com/2017/04/network-scan

ning-with-hping3.html

Author Biographies

 Raviteja Gaddam received B.Tech degree in CSE from Bapatla Engineering

College and M.Tech degree in CSE from NIMRA College of Engineering &

Technology. He is currently pursuing Ph.D. (CSE) at Pondicherry University.

He received TCS Gold Medal for standing “Best Student of CSE&IT” during

his B.Tech course. He qualified both SET & NET. He worked as a lecturer for

three years at Bapatla Engineering College and as an Assistant Professor for six

years in St. Mary’s Women’s Engineering College. His research interests

include Network Security, Networking, Cryptanalysis, and Information

Security. Currently, he is doing his research work on providing efficient

intrusion detection in conventional and IoT networks.

.

 Dr. M. Nandhini received B.Sc. and MCA degrees from

Bharathidasan University, M.Phil degree from Alagappa

University and pursued Ph.D. from Bharathiar University,

Tamilnadu and qualified NET with lectureship. Currently,

she is working as an Associate Professor in Department of

Computer Science, Pondicherry University. She published

more than 75 papers in various national and international conferences and

journals. Her area of interests includes Evolutionary Algorithms – Soft

Computing, Combinatorial Problem Optimization, Artificial Intelligence, and

Software Engineering.

http://0daysecurity.com/articles/hping3_examples.html
http://0daysecurity.com/articles/hping3_examples.html
http://itsecurity.telelink.com/session-hijacking/
http://itsecurity.telelink.com/session-hijacking/
http://www.zabbix.com/
http://www.unb.ca/cic/datasets/nsl.html
http://0daysecurity.com/articles/hping3_examples.html
http://0daysecurity.com/articles/hping3_examples.html

