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Abstract: In the past few decades, many image quality indices
have been developed. However, they stem from different theo-
retical frameworks, application scenarios and purposes. Thus,
users and researchers are often faced with the time-consuming
task of deciding which quality index to choose when they require
a reliable image quality index that is capable of emulating the
human visual system (HVS). In this work, general criteria for
selecting the most appropriate index from a given set of quality
indices according to application needs are established. These
criteria are based on the statistical coefficients of correlation and
concordance. It is discussed why Kendall’s Tau and Spearman’s
rank correlation coefficients—which are widely used to compare
quality index performance—are not sufficient for this purpose;
moreover, additional nonparametric tests and methods of agree-
ment are incorporated: the concordance coefficients (Kendall’s
w, Cohen’s kappa, Scott’s pi and Fleiss’ kappa) not explored so
far, to determine the best procedures to compare digital images.
The combination of all these strategies led to a more complete
comparison method, from which a ranking of quality indices
could be generated from any set of them. As an application, the
performance and suitability of a large number of quality indices
for various real-world scenarios is compared. Our experiments
reveal that the indices are sensitive to the type of distortions.
This work expanded previous studies by incorporating direc-
tional indices, which perform well in the numerical experiments
developed using real datasets.
Keywords: Image analysis, Image quality indices, Measures of
association, Concordance coefficients, Distortion types, Machine
vision and scene understanding.

I. Introduction

The use of digital images as a convenient mechanism for rep-
resenting information has rapidly increased in the last decades
[1]. Consequently, a large number of researchers and practi-
tioners have focused their efforts on methodological aspects
and the development of algorithms for the analysis and pro-
cessing of images with applications in a variety of different
fields. Because image processing is commonly subject to
errors, due to acquisition, discretization, compression and
transmission [2], these efforts are mainly focused in improv-
ing the appearance of images of interest. In this framework,
automatic and effective mechanisms to detect and measure
the levels of distortions in images, quantifying their quality,
are essential. There is a need to compare the performance
of different image processing algorithms by quantifying and
comparing the quality of their output images. Image quality
assessment (IQA) has been a very useful approach to this ob-
jective. This topic can be classified as subjective or objective
IQA [1].
Subjective IQA—based on the average opinion of a set of
observers—provides the most accurate measures of quality
because the human eye is the final receptor of all visual com-
munication systems [3]. One of the most significant contribu-
tions of subjective IQA in recent decades has been the con-
struction of databases consisting of digital images featuring
various types of distortions labeled with a mean opinion score
(MOS)—a subjective rating obtained based on experiments
involving human observers. The abovementioned databases
include the Tampere Image Database 2008 (TID2008) [4], the
Tampere Image Database 2013 (TID2013) [5] [6], and the
LIVE Database available at http://live.ece.utexas.
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edu/research/quality, among others.
Although the most accurate approach, subjective IQA is often
slow, expensive and laborious, making it unsuitable for quan-
tifying image quality or for assessing image similarity within
visual communication systems. [1]. This shortcoming has
motivated the exploration of objective IQA indices, seeking
alternative ways to assess image quality. The goal of this ap-
proach is to design tools that can accurately and automatically
quantify image quality. Objective IQA is divided into three
main research areas based on the availability of reference
images: full-reference IQA (FR-IQA) ([7], [4], [8]), reduced-
reference IQA (RR-IQA) ([9], [10]), and no-reference IQA
(NR-IQA) [11], [12]). In the FR-IQA context, a quality index
M is a function that quantifies the quality of an image I with
respect to a reference image IR and is denoted as M(I, IR)
[13]. These quality indices rely on high-quality images being
available as references to assess the differences between them
and their distorted versions, hence verifying the importance
of image databases such as those previously mentioned.
Researchers are often faced with the dilemma of deciding
which FR-IQA index to choose from. Some studies have been
carried out in this regard [6] [14] [15] [16] and have been
precursors in the literature. The aim of this paper is to provide
a methodology for selecting an appropriate mechanism to
quantify image quality according to application needs; the ob-
jective is to answer the following question: which mechanism
should be chosen, and why?
In this work statistical methods were used to carry out a
comparative analysis between a subset of FR-IQA indices
while suggesting criteria of which one among them should be
selected according to its performance in different applied sce-
narios. One important work in this respect is the study carried
out by Ponomarenko et al. [6]. They developed a comparative
study between objective IQA indices using the nonparametric
correlation coefficients of Spearman and Kendall. In this pa-
per, the statistical tools used in [6] to compare FR-IQA indices
are extended, exploring new comparison methods. In addi-
tion to the Spearman and Kendall nonparametric correlation
coefficients, this analysis includes Kendall’s w multivariate
correlation—a generalization of Spearman’s coefficient—as
well as Cohen’s kappa, Scott’s pi and Fleiss’ kappa concor-
dance coefficients—all calculated based on confusion ma-
trices [17] [18] [19]. The advantage of incorporating these
procedures is that they provide a more comprehensive under-
standing of the relationship between each index and the MOS
and among a set of indices and the MOS. The inclusion of
multivariate coefficients makes the comparisons more flexi-
ble and complete, which is a significant improvement in this
comparison strategy. In addition, the concept of concordance
is included. This concept, despite being similar to correlation,
is a notion of agreement between two items. It is discussed
why a comparison between the MOS and a given quality in-
dex based solely on correlation coefficients is incomplete,
and why a more suitable statistical procedure to analyze and
compare a set of FR-IQA indices should be considered. The
combination of all these strategies led to a more complete
comparison method, from which a ranking of quality indices
can be generated.
Three directional quality indices are incorporated into
the study—the CQ index, gradient magnitude similarity

mean (GMSM) and gradient magnitude similarity deviation
(GMSD)—due to their good performance reported in the
literature [20, 21]. It must be emphasized that the main aim
of the paper is to propose a more systematic procedure for
comparing and evaluating FR-IQA indices, which can be
replicated for an arbitrary set of indices.

The paper is organized as follows. In Section 2, related work
is discussed and the objective IQA indices considered in our
analysis are introduced. In addition, the TID2013 image
database, which will be used for our numerical experiments,
is also briefly described. In Section 3 statistical comparison
methods are discussed in more detail and a new method is
proposed. Section 4 presents the results of the numerical ex-
periments. Finally, Section 5 includes the main conclusions of
the study and a brief outline of directions for future research.

II. Related Works

A. Quality indices comparison

The contributions to FR-IQA are numerous ([22], [23], [3],
[24], [25], [26], [27], [28], [29], [30]), however, few studies
compare the performance of existing indices. Among these,
we can highlight the studies carried out in [6] and [31].
In [6] Ponomarenko et al. presented the TID2013 base, in-
tended for evaluation of FR-IQA metrics. The availability
of MOS allows the use of the designed database as a funda-
mental tool for assessing the effectiveness of quality indices.
An analysis of the correlation between MOS and a wide set
of existing metrics is carried out and a methodology for de-
termining drawbacks of existing quality indices is described.
This comparative study is based on the nonparametric correla-
tion coefficients of Spearman and Kendall. These correlation
indices have been obtained both considering the full set of
distorted images and specific image subsets. In this way, the
performance of the different quality indices is considered
according with the type of distortion that has affected the
image.
Moreover, Ding et al. [31] performed a large-scale compar-
ison of a set of FR-IQA indices in terms of their use as ob-
jectives for the optimization of image processing algorithms.
Specifically, they used eleven full-reference IQA models to
train deep neural networks for four low-level vision tasks: de-
noising, deblurring, super-resolution, and compression. They
tested the models on recovering a reference image from a
given initialization by optimizing the model-reported distance
to the reference. They reported that for many IQA methods,
the optimization does not converge to the reference image
and can generate severe distortions. Subjective testing on
the optimized images allowed them to rank the competing
models in terms of their perceptual performance, elucidate
their relative advantages and disadvantages in these tasks, and
propose a set of desirable properties for incorporation into
future IQA models.
Other works that can be mentioned in this regard are [15],
[16], [32], [33], [34], [35].
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B. Full-reference image quality indices

In this section, a brief description of the quality indices in-
cluded in this study is presented. Defining these indices will
help readers to better understand the research context. Com-
putational routines are available in the repository https:
//github.com/lucia15/IQA

1) Mean squared error (MSE), signal-to-noise ratio (SNR)
and related indices

One of the simplest and widely used indices for computing
the quality of an image is the mean squared error (MSE) [14],
which measures the average intensity difference between a
distorted image (image y) and a reference image (image x):

MSE =
1

N

N∑
i=1

(xi − yi)
2, (1)

where xi and yi indicate the intensity of images x and y in the
position or pixel i, respectively, and N is the total number of
pixels in both images. This index does not use the structural
and how they correlate.
One index related to the MSE is the signal-to-noise ratio
(SNR), defined as the ratio between the signal and noise
power.If a distorted image y is obtained from a reference
image x, by adding noise r to x, then y = x + r. Conse-
quently, SNR is defined through

SNR = 10 log10

(∑N
i=1 x

2
i∑N

i=1 r
2
i

)
. (2)

Because the signal power is equivalent to the norm of the
reference image, The SNR in (2) is equivalent to

SNR = 10 log10

(
|x|2

N · MSE

)
, (3)

where

|x|2 =

N∑
i=1

x2
i .

|x|2 can be seen as the mean square deviation of the signal x
with respect to zero.
The peak signal-to-noise ratio (PSNR) is defined in a similar
way as the SNR but using the square of the maximum intensity
of signal L, instead of the mean of the square of each pixel,
the PNSR is

PSNR = 10 log10

(
L2

MSE

)
. (4)

Finally, the weighted signal-to-noise ratio (WSNR) is defined
as

WSNR = 10 log10

( ∑N
i=1 wix

2
i∑N

i=1 wi(xi − yi)2

)
, (5)

where wi are weights according to an HVS frequency re-
sponse model based on a low-contrast sensitivity function
(CSF) [36].
Indices based on the MSE can be easily interpreted and are
simple to compute but have several limitations that might
explain why its correlation with the MOS is poor. One such

limitation is these indices ignore the location of the pixels
in the image and the effect that this spatial distribution can
have on the perception of image quality [14]. Furthermore,
the measurements derived from the SNR assume that the
distortion is only caused by additive noise, independent of the
signal, which makes its application problematic when there
are other sources of distortion. Finally, the HVS model used in
the WSNR approach is linear and spatially invariant; therefore,
it cannot quantify the nonlinear and spatially variable effects
of HSV, such as the well-known contrast masking effect [37].

2) Noise quality measure (NQM)

The noise quality measure (NQM) quantifies the impact of
frequency distortion and noise injection in image restoration
on the human visual system (HVS) when considering the
degradation of these two sources separately.
[37] presented this index in which a distorted image is mod-
eled using a linear frequency distortion and an additive noise
injection. To yield the simulated images, nonlinear space-
frequency processing is performed based on Peli’s contrast
pyramid [37]. The SNR is then computed for the difference
between the two simulated images as a measure of image
quality. Subsequently, the NQM index is

NQM = 10 log10

( ∑
i

∑
j O

2
s(i, j)∑

i

∑
j(Os(i, j)− Is(i, j))2

)
, (6)

where Os(x, y) denotes the simulated version of the model
restored image, and similarly, Is(x, y) denotes the restored
image.
The authors formulate a nonlinear quasi-local processing
model of the HVS by modifying Peli’s contrast pyramid to
measure the variation in contrast sensitivity with distance,
image dimensions, and spatial frequency; the variations in
the local luminance mean; the contrast interaction between
spatial frequencies; and contrast masking effects.
Unlike the NQM, indices based on the SNR and linear HVS
models do not account for frequency distortion and ignore the
essential nonlinear processing of the HVS in the spatial and
frequency domains. Furthermore, the authors demonstrated
through several experiments, that the NQM performs better
than the PSNR and other measurements based on linear HVS
models when the images are distorted by additive noise [37].

3) Structural similarity (SSIM) index and related indices

The SSIM is based on the hypothesis that human visual per-
ception is strongly adapted to extract structural information
from a scene; therefore, a measure of structural similarity is
a reasonable good approximation of perceived quality in an
image [38]. The SSIM is defined as the product of luminance,
contrast and structural (correlation) comparison between a
reference image x and a distorted image y:

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y), (7)
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where

l(x, y) =

(
2x̄ȳ + c1

x̄2 + ȳ2 + c1

)
,

c(x, y) =

(
2sxsy + c2

sx2 + sy2 + c2

)
,

s(x, y) =

(
sxy + c3
sxsy + c3

)
,

with x̄, ȳ, s2x, s2y and sxy representing the sample means of
x and y, the sample variances of x and y, and the sample
covariance between x and y, respectively. The parameters α,
β and γ are fixed and associated with the weight of each coef-
ficient has in the final product; here, for simplicity consider
α = β = γ = 1. The constants c1, c2, and c3 are all nonneg-
ative and can be settled down in such a way that preserves the
definition of the SSIM index when the denominators are close
to zero. Commonly, these constants are small real numbers
to avoid instability when x̄ + ȳ is close to zero [39]. When
c1 = c2 = 0, this index is known as the universal quality
index (UQI) first studied in [38].
Another form of the SSIM, called the multiscale SSIM
(MSSIM), is conducted over multiple scales through a pro-
cess of multiple stages of subsampling [40]. The SSIM index
is a special case of the MSSIM using a single scale. Since
the introduction of the SSIM [40], many extensions have
been published and discussed [14]. Some of them include
visual information fidelity [15], the visual signal-to-noise
ratio [41], the most apparent distortion measure [7], the infor-
mation content-weighted method [42], the feature similarity
index [43], the SSIM-motivated rate-distortion optimization
for video coding [44], and the perceptual quality assessment
for multi-exposure image fusion [45].

4) Similarity index based on the codispersion coefficient

Ojeda et al. [20] proposed using the spatial codispersion coef-
ficient instead of the correlation coefficient in the definition
of the SSIM index. This initiative resulted in a promising
new objective IQA index, called the CQ index, which is able
to capture spatial correlation in a particular direction in a
two-dimensional space.
The cross-variogram γ(h) of the weak stationary processes
X(t) and Y (t), with t ∈ D ⊂ Zd, d ∈ N, is defined as

γ(h) = E[(X(t+ h)−X(t))(Y (t+ h)− Y (t))], (8)

where t, t+ h ∈ D. The codispersion coefficient is a normal-
ization of γ(h), defined as [46]

ρ(h) =
γ(h)√

VX(h)VY (h)
, (9)

where VX(h) = E(X(t+ h)−X(t))2 and equivalently for
VY (h). Note that both γ(h) and ρ(h) depend on X(t) and
Y (t), although for simplicity, only h appears in the notation
in the same way the variogram of a process is defined in
the literature [47]. Similar to the correlation coefficient, the
codispersion coefficient satisfies that |ρ(h)| ≤ 1.
The sample codispersion coefficient is given by

ρ̂(h) =

∑
t,t+h∈D′ atbt√
V̂X(h)V̂Y (h)

, (10)

with t = (t1, t2), h = (h1, h2), D′ ⊆ D, #D′ < ∞,
at = X(t1 + h1, t2 + h2)−X(t1, t2), bt = Y (t1 + h1, t2 +
h2) − Y (t1, t2), V̂X(h) =

∑
t,t+h∈D′ a2t and V̂Y (h) =∑

t,t+h∈D′ b2t .
In [48], the authors demonstrated that under certain regular-
ity conditions, ρ̂(h) is consistent and asymptotically normal,
statistical properties that allow the construction of confidence
intervals and hypothesis tests for the codispersion coefficient.
All the previous indices defined in this paper are able to cap-
ture only the linear association between two given sequences.
However, the codispersion coefficient captures the spatial as-
sociation between images x = {X(t) : t = 1, 2, ..., N} and
y = {Y (t) : t = 1, 2, ..., N} with respect to separation vector
h.
The CQ index is a generalization of the SSIM index defined
in (7) and accounts for the spatial association in a specific
direction h when replacing ρ̂(h) in the structural part, yielding

CQh(x, y) = l(x, y) · c(x, y) · ρ̂(h), (11)

where l and c are as in (7). This index allows for the detec-
tion of hidden similarity between a degraded image and the
original image in direction h. In addition, (11) has interesting
mathematical properties investigated in [20, 49]. Another ex-
tension of this type of coefficient is the CQ-max index, which
is obtained by evaluating the CQ coefficient in a certain set of
directions of interest [22].

5) Gradient magnitude similarity indices

Image gradient plays a very important role in the understand-
ing of visual signals, which is used to carry structural scene
information. As such, it is a crucial feature in the development
of objective quality assessment indices that largely base their
measurement on the preservation of this information from the
original image into the test image.
Given an image, the magnitude of the gradient (G) is defined
as

G =
√
G2

h +G2
v, (12)

where Gh and Gv are the partial derivatives of the image
intensity function in the horizontal and vertical directions,
respectively.
Many FR-IQA indices follow a two-step procedure. First,
a local quality map (LQM) is calculated by locally compar-
ing the distorted image with the reference image through a
similarity index. The LQM is a new image that captures the
local quality of each zone of the distorted image. Finally, the
quality index is calculated from the LQM image by a pooling
strategy, which is a weighting of all of its pixel values. Several
indices based on the magnitude of the gradient follow this
type of scheme and use G to define an LQM. Two indices that
follow this approach [21] are briefly reviewed below.
The gradient magnitude map of the reference image x is
calculated as

Gx(i) =
√
Gh(x)2(i) +Gv(x)2(i) (13)

where i denotes the location of pixel i in image x. Similarly,
for the distorted image y,

Gy(i) =
√
Gh(y)2(i) +Gv(y)2(i). (14)
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Figure. 1: Tampere Image Database 2013 (TID2013) reference images [5].

The gradient magnitude similarity (GMS) map is defined as a
function of Gx(i) and Gy(i) through

GMS(i) =
2Gx(i)Gy(i) + c

(Gx(i))2 + (Gy(i))2 + c
, (15)

where c > 0 has been added to obtain numerical stability
when the denominator of (15) is too small. Recall that the
GMS is used as the LQM. Also note that if x = y, then
GMS(i) = 1, which is the maximum GMS value.
One of the simplest pooling strategies is to take the average of
the local quality values as the final quality index. The gradient
magnitude similarity mean (GMSM) follows this scheme and
is hence defined as

GMSM =
1

N

N∑
i=1

GMS(i), (16)

where N is the total number of pixels in the map. As a result,
large GMSM values indicate high image quality levels.
The averaging process assumes that all pixels have the same
importance in the image. However, in practice there are ex-
amples in which different regions contribute differently to the
overall quality of an image. Because of this, there are propos-
als to assign a weight to local quality values before averaging
them. This type of modification would give a more accurate
result at the expense of highly increased computational costs
[21].
When an image is distorted, local structures will suffer dif-
ferent degrees of degradation in the magnitude of the gradi-
ent. The gradient magnitude similarity deviation (GMSD)

proposed in [21] notes that the spatial distribution of distor-
tion levels has an impact on perception; that is, unevenly
distributed distortion degrades visual quality more severely
than do other types of distortion. GMSD uses the standard
deviation as a pooling strategy to obtain the final quality in-
dex, because the global variation in local image quality is a
reflection of its final quality. This index is defined as

GMSD =

√√√√ 1

N

N∑
i=1

(GMS(i)− GMSM)2. (17)

The GMSD value accounts for the range of distortion severity
of an image; therefore, the higher the GMSD value is, the
greater the distortion range and thus the perceived quality.
This index is both computationally efficient and effective in
predicting quality [21].

6) Visual information fidelity (VIF)

The visual information fidelity [50] index is based on an in-
formation theory problem and is defined as the ratio between
the joint information of images x and y and the marginal
information of x through

VIF =
I(x, y + r)

I(x, x+ r)
, (18)

where r is a stationary and Gaussian white noise process with
variance σ2

r . The denominator represents the information that
the HVS can extract from the original image, while the nu-
merator accounts for the information that the HVS can extract
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from the distorted image. Hence, (18) is highly correlated
with the visual quality index studied in [15].

Figure. 2: MOS normalized histogram. The distribution is
unknown and asymmetric.

C. Image database

Our research was sustained on the TID2013 image database
[5], [6] as well as some FR-IQA indexes developed in recent
years have been tested [3]. This database contains 3,000
distorted images obtained from 25 reference images (Figure
1), and each of these 3,000 images has an associated MOS
value (Figure 2). In TID2013, 24 types of distortions (with 5
levels of distortion each) are considered. These 24 distortions
are classified according to their characteristics [6] into the
following groups: noise, actual, simple, exotic, new and color
(as shown in Table 1). To obtain the quality of each of the
3,000 images according to each quality index, our own script
routine is run generating a data frame.
To evaluate the normality of the set of 3,000 values that each
index produced, Shapiro-Wilks and Kolmogorov-Smirnov
tests were applied. Both tests showed p-values less than
0.0001 for all indices and for the MOS, indicating large devi-
ations from normality in each case. As an example, the MOS
distribution is displayed in Figure 2 and is clearly asymmetric.
Instead of introducing transformation to achieve normality, in
our analysis, nonparametric methods will be considered.

III. Proposed Method

A. Comparative Analysis of Quality Indices using concor-
dance coefficients

Many authors propose to consider a quality index as success-
ful if it is well correlated with the MOS index [6]. Following
this, a correlation analysis between each index and the MOS
was carried out, assuming that the MOS value of an image
reflects its true quality. To avoid distributional assumptions,
Spearman’s and Kendall’s rank correlation coefficients [51]
were used.
Similar to other correlation coefficients, these coefficients
vary between −1 and 1, and a coefficient equal to 0 implies
that there is no correlation. Positive values close to 1 indicate
that when one variable increases, so does the other, while
negative values close to −1 indicate that when one variable
increases, the other decreases. Correlations equal to −1 or 1
imply an exact monotonic relationship between the variables.
Table 2 contains all possible interpretations. Spearman’s and

Kendall’s rank correlation coefficients can also be used for
testing the hypothesis of there being no correlation between
two sequences [53].
To deepen the analysis, coefficients of concordance between
the MOS and one or several quality indexes were included,
considering that the correlation with the MOS is not enough to
evaluate the performance of a quality index. While correlation
attempts to quantify whether two datasets tend to vary in the
same direction, concordance seeks to quantify whether two or
more classifiers (in this case, the quality indices and the MOS)
are equivalent. In general, concordance is a more restrictive
concept than linear correlation, which measures the level of
agreement between two variables by comparing the values
with a specific straight line. Thus, a comparison between the
MOS and a quality index based solely on the Spearman and
Kendall coefficients is incomplete. In fact, concordance is a
notion of agreement between the MOS and a given quality
index that is not restricted to the linear correlation between
them, hence it gives a more comprehensive understanding of
the performance of a quality index.
In the next section, the concordance coefficients incorporated
into the comparative analysis of quality indices are introduced.

1) Kendall’s coefficient of concordance

Kendall’s coefficient of concordance is a measure of agree-
ment between m sets of n ranges. For instance, for a group
of n objects evaluated by m judges, the coefficient provides
information on the degree of agreement between the n ranges
granted by the judges [17]. It is defined through

w =
12S

m2(n3 − n)−m
∑m

j=1 Lj
, (19)

where

S =

n∑
i=1

(Ri − R̄)2,

Ri is the total rank given to object i, that is, the sum of
all the ranks each judge j (j ∈ {1, ...,m}) gave to object i
(i ∈ {1, ..., n}), and R̄ is the mean value of those total ranges;
finally, Lj is a correction factor for the set of ranks of judge j.
If there are no ties, then Lj = 0.
Kendall’s w always belong to the interval [0, 1]. w = 0 may
indicate that the attributes to be evaluated are ambiguous or
poorly defined; then, there is no overall trend of agreement
among judges, and their responses could be regarded as sub-
stantially random.
There is a hypothesis testing problem associated with (19),
where the null hypotheses is H0: Among the cited variables,
there is no correlation. This test is a generalization of the
Friedman test and is based on the previously defined w coeffi-
cient, a normalization of Friedman’s statistic for the interval
[0, 1].

2) Cohen’s kappa and Scott’s pi concordance coefficients

Cohen’s kappa coefficient is another statistical measure of
interrater agreement for qualitative items. It measures the
agreement between the corresponding classifications of two
evaluators who classify n elements into c mutually exclusive
categories [18]. It is a more robust measure than simply a
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Figure. 3: Normalized confusion matrices for each quality index.
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Table 1: Distortion types and their considered subsets present in TID2013 [6].
FullColorNewExoticSimpleActualNoiseType of distortionNo.

1 Additive Gaussian noise + + + − − − +
2 Additive noise in color comp. + − − − − + +
3 Spatially correlated noise + + − − − − +
4 Masked noise + + − − − − +
5 High-frequency noise + + − − − − +
6 Impulse noise + + − − − − +
7 Quantization noise + − − − − + +
8 Gaussian blur + + + − − − +
9 Image denoising + + − − − − +
10 JPEG compression − + + − − + +
11 JPEG2000 compression − + − − − − +
12 JPEG transm. errors − − − + − − +
13 JPEG2000 transm. errors − − − + − − +
14 Non-ecc. pattern noise − − − + − − +
15 Local blockwise dist. − − − + − − +
16 Mean shift (intensity shift) − − − + − − +
17 Contrast change − − − + − − +
18 Change in color saturation − − − − + + +
19 Multipl. Gaussian noise + + − − + − +
20 Comfort noise − − − + + − +
21 Lossy compr. of noisy images + + − − + − +
22 Image color quant. w. dither − − − − + + +
23 Chromatic aberrations − − − + + + +
24 Sparse sampl. and reconstr. − − − + + − +

Table 2: Interpretation of the estimated correlation coefficient
[52].

CorrelationCoefficient in the interval

(0; 0.2] ∪ [−0.2; 0) Very Poor
(0.2; 0.4] ∪ [−0.4; 0− .2) Poor
(0.4; 0.6] ∪ [−0.6;−0.4) Moderate
(0.6; 0.8] ∪ [−0.8;−0.6) Strong
(0.8; 1] ∪ [−1;−0.8) Very Strong

percentage agreement calculation because it takes into account
the agreement that occurs randomly. It can also underestimate
the agreement for a category of frequent use; because of this
reason, it is considered a conservative measure. All these
features render Cohen’s kappa coefficient more robust for
index comparison than those of Spearman and Kendall.
Scott’s pi coefficient is similar to Cohen’s kappa, differing
only in the calculation of the probability of agreement by
chance [54]. It assumes that the classifiers have the same
distribution of responses, making Cohen’s kappa slightly more
informative. Scott’s pi can be generalized to measure the
concordance for several classifiers, leading to Fleiss’ kappa
coefficient, which allows for the obtaining of a multivariate
concordance index between all the indices or a subset of them.

3) Fleiss’ kappa coefficient

Fleiss’ kappa is a generalization of Scott’s pi for assessing
the reliability of the agreement between a fixed number
of reviewers by assigning categorical ratings to several
items to be classified. The measure calculates the degree of
agreement in the classification above what is expected by
chance, assigning a score for the level of homogeneity or
consensus there is between the scores given by the reviewers.
It expresses how much the quantity observed in agreement
between the reviewers exceeds what is expected from random
qualifications [19].

To assess the agreement between the quality indices and the
MOS, continuous variables were transformed into categorical
variables. In [6], the authors classified the 3,000 TID2013
distorted images into three categories according to their MOS
value: “bad quality”, “middle quality” and “good quality”.
Following the same scheme, the 3,000 images were classified
into these three categories according to each index, for which
the one- and two-thirds percentiles delimited each category,
and then, approximately 1,000 images were classified as being
of “bad quality”, 1,000 as being of “middle quality” and 1,000
as being of “good quality”. In this fashion, it is possible to
consider the quality indices and the MOS as classifiers and
generate confusion matrices [55], in which the real classes
are determined according with the MOS classification, while
the predictions are determined by each index. As a result,
Cohen’s kappa and Scott’s pi can be calculated from these
confusion matrices, yielding a measure of the consistency of
these qualifications.

B. Quality index ranking

Our goal is to determine which quality index has the best
performance for each group of distortions and which ones
follow in rank. If for a correlation (or concordance) coeffi-
cient, the quality indices are ordered from the one with the
highest correlation (or concordance) with the MOS to the one
with the lowest value, then a ranking of the quality indices
is obtained. Because, in general, the coefficients take into
account different factors, a number of dissimilar results could
be obtained when using the four rankings generated according
to the coefficients of Spearman, Kendall, Cohen and Scott.
To overcome this inconvenience, the following system for the
final quality index ranking is suggested: if m is the number of
indices to be compared (in our case, m = 12), then for each
ranking, the index that ranks first place adds m − 1 points,
m − 2 for second place, m − 3 for third place, and so on.
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Table 3: The first value shows the Spearman correlation between each quality index and the MOS index for each type of
distortion’s group. The second value (in bold) shows Kendall’s correlation coefficients. At the bottom, the three new directional
quality measures incorporated into the study are highlighted. All correlations obtained are significantly different from zero
(p < 0.0001)

FullColorNewExoticSimpleActualNoiseIndex

MSE −0.7691 ; -0.5619 −0.7839 ; -0.5762 −0.8759 ; -0.6892 −0.5621 ; -0.3923 −0.7772 ; -0.5760 −0.7360 ; -0.5373 −0.6869 ; -0.4958
PSNR 0.7691 ; 0.5619 0.7839 ; 0.5762 0.8759 ; 0.6892 0.5621 ; 0.3923 0.7772 ; 0.5760 0.7360 ; 0.5373 0.6869 ; 0.4958
SNR 0.7207 ; 0.5160 0.7446 ; 0.5383 0.8352 ; 0.6305 0.5384 ; 0.3725 0.7323 ; 0.5307 0.6764 ; 0.4806 0.6491 ; 0.4607
WSNR 0.8711 ; 0.6827 0.8691 ; 0.6813 0.9227 ; 0.7551 0.4298 ; 0.3046 0.8872 ; 0.7054 0.9014 ; 0.7210 0.6382 ; 0.4938
NQM 0.8482 ; 0.6557 0.8507 ; 0.6598 0.8882 ; 0.6997 0.6116 ; 0.4336 0.8762 ; 0.6924 0.8937 ; 0.7080 0.7126 ; 0.5348
UQI 0.6030 ; 0.4194 0.6403 ; 0.4494 0.7348 ; 0.5230 0.4718 ; 0.3311 0.5191 ; 0.3650 0.5092 ; 0.3613 0.5239 ; 0.3695
SSIM 0.6753 ; 0.4777 0.7204 ; 0.5151 0.7669 ; 0.5610 0.5372 ; 0.3784 0.7446 ; 0.5347 0.6766 ; 0.4794 0.6273 ; 0.4457
MSSIM 0.8096 ; 0.6092 0.8727 ; 0.6757 0.8861 ; 0.6971 0.7391 ; 0.5444 0.7996 ; 0.5978 0.7481 ; 0.5481 0.7909 ; 0.5921
VIF 0.7525 ; 0.5575 0.8002 ; 0.6010 0.8456 ; 0.6452 0.5150 ; 0.3663 0.7659 ; 0.5644 0.7056 ; 0.5157 0.6338 ; 0.4669

CQ(1,1) 0.6509 ; 0.4657 0.6531 ; 0.4691 0.8356 ; 0.6358 0.6458 ; 0.4590 0.5284 ; 0.3790 0.4821 ; 0.3444 0.6009 ; 0.4292
GMSM 0.8928 ; 0.7093 0.8863 ; 0.7004 0.9474 ; 0.7966 0.7974 ; 0.6070 0.6473 ; 0.5202 0.6005 ; 0.4848 0.7884 ; 0.6132
GMSD −0.9187 ; -0.7461 −0.9150 ; -0.7408 −0.9415 ; -0.7949 −0.8452 ; -0.6528 −0.6511 ; -0.5248 −0.5922 ; -0.4723 −0.8044 ; -0.6339

Table 4: Index ranking from highest to lowest correlation with the MOS according to the results of Table 3. Two indices are
indicated when the Spearman and Kendall coefficients differ in their ordering.

FullColorNewExoticSimpleActualNoise

1st GMSD GMSD GMSM GMSD WSNR WSNR GMSD
MSSIM ; GMSMNQMNQMGMSMGMSDGMSMGMSM2nd

3rd WSNR MSSIM ; WSNR WSNR MSSIM MSSIM MSSIM GMSM ; MSSIM

NQMMSEMSECQ(1,1)NQMWSNR ; MSSIMNQM4th
5th MSSIM NQM MSSIM NQM PSNR PSNR MSE

PSNRVIFVIFMSEMSEVIFMSE6th
7th PSNR MSE PSNR PSNR SSIM SSIM ; GMSM SNR ; WSNR

WSNR ; VIFSNRSNRSNR ; SSIMVIFPSNRVIF8th
9th SNR SNR CQ(1,1) SSIM ; SNR GMSD GMSM ; SSIM VIF ; SNR

SSIMGMSDGMSMVIFSNRSSIMSSIM10th
11th CQ(1,1) CQ(1,1) SSIM UQI CQ(1,1) UQI CQ(1,1)

UQICQ(1,1)UQIWSNRUQIUQIUQI12th

Then, the total summation score is obtained for each index.
The index with the highest score will be ranked first, the one
that follows will be ranked second, and so on.
This algorithm is explained with a pseudo-code and in Figures
4 and 5. Figure 4 illustrates a general scheme, while Figure 5
presents an application example. It should be considered that
ties can occur, and thus, there may be no index that ranks in
last place.
The scripts to generate the database with index values and
classifications of the 3,000 images, the routines to calculate all
the coefficients described in this section and the final ranking,
as well as all the datasets and results, can be found online at
https://github.com/lucia15/IQA.

IV. Results

Table 3 shows the results of the Spearman and Kendall cor-
relation analysis, suggesting that in the group of simple dis-
tortions, the quality indices are best correlated with MOS.
Within the group of exotic distortions, it is observed that the
lowest correlation with MOS for almost all quality indices
except for the MSSIM and the directional indices: CQ(1,1),
GMSM and GMSD. In addition, the last three indexes show
a poor correlation with the MOS within the color and new
distortion groups, respectively.
The confusion matrices between each quality index and the
MOS are displayed in Figure 3. In all cases, the lowest agree-

Algorithm 1 Index ranking. Vector R contains the final rank-
ing

1: A: set of distorted images
2: B: set of m indices
3: P: vector of length m
4: for index in B do
5: for image in A do
6: get image quality
7: end for
8: for Spearman,Kendall, Cohen, Scott do
9: get coeff qualities vs MOS

10: end for
11: end for
12: P = 0
13: for Spearman,Kendall, Cohen, Scott do
14: sort(B) ▷ sort indices according to each coeff
15: for index in B do
16: r = position(index)
17: P [index]+ = m− r
18: end for
19: end for
20: R = argsort(P ) ▷ get the indices of the sorted array
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Table 5: The first value shows Cohen’s kappa concordance coefficient between the quality index and the MOS for each group
of distortions; the second value (in bold) shows Scott’s pi. These coefficients yielded the same results in the full group (the
group containing all images).

FullColorNewExoticSimpleActualNoiseIndex

MSE & PSNR 0.4334 ; 0.4309 0.4502 ; 0.4463 0.5223 ; 0.5188 0.2826 ; 0.2728 0.4702 ; 0.4681 0.3944 ; 0.3943 0.3820
SNR 0.3755 ; 0.3732 0.3935 ; 0.3900 0.4542 ; 0.4512 0.2985 ; 0.2921 0.4445 ; 0.4444 0.3552 ; 0.3550 0.3600
WSNR 0.4747 ; 0.4673 0.4377 ; 0.4272 0.5423 ; 0.5365 0.3335 ; 0.3157 0.5977 ; 0.5970 0.6389 ; 0.6383 0.4450
NQM 0.5120 ; 0.5084 0.4907 ; 0.4849 0.5454 ; 0.5425 0.3919 ; 0.3833 0.6043 ; 0.6036 0.6429 ; 0.6427 0.4845
UQI 0.2820 ; 0.2761 0.3151 ; 0.3126 0.4042 ; 0.4017 0.2842 ; 0.2785 0.2273 ; 0.2239 0.2386 ; 0.2360 0.2890
SSIM 0.3316 ; 0.3268 0.3805 ; 0.3781 0.4523 ; 0.4513 0.3205 ; 0.3137 0.3994 ; 0.3970 0.3631 ; 0.3596 0.3635
MSSIM 0.5102 ; 0.5093 0.5826 ; 0.5813 0.6446 ; 0.6437 0.4365 ; 0.4340 0.5050 ; 0.5039 0.4270 ; 0.4223 0.5095
VIF 0.3517 ; 0.3461 0.4082 ; 0.4054 0.4844 ; 0.4822 0.2669 ; 0.2551 0.3197 ; 0.3117 0.2735 ; 0.2628 0.3495

CQ(1,1) 0.3572 ; 0.3571 0.3419 ; 0.3412 0.5414 ; 0.5384 0.2917 ; 0.2897 0.2982 ; 0.2942 0.3568 ; 0.3534 0.3185
GMSM 0.6083 ; 0.6074 0.5800 ; 0.5788 0.7517 ; 0.7512 0.4953 ; 0.4918 0.4693 ; 0.4685 0.5676 ; 0.5659 0.5505
GMSD 0.7048 ; 0.7047 0.6958 ; 0.6957 0.7518 ; 0.7517 0.5327 ; 0.5290 0.5750 ; 0.5736 0.5908 ; 0.5878 0.6150

Table 6: Index ranking from highest to lowest concordance with the MOS according to the results of Table 5. Two indices are
indicated when the Cohen and Scott coefficients differ in their ordering.

FullColorNewExoticSimpleActualNoise

1st GMSD GMSD GMSD GMSD NQM NQM GMSD
GMSMWSNRWSNRGMSMGMSMMSSIMGMSM2nd

3rd NQM ; MSSIM GMSM MSSIM MSSIM GMSD GMSD MSSIM

NQMGMSMMSSIMNQMNQMNQMMSSIM ; NQM4th
5th WSNR MSE WSNR ; CQ(1,1) WSNR MSE ; GMSM MSSIM WSNR

MSEMSEPSNR ; MSESSIMCQ(1,1) ; WSNRPSNRMSE6th
7th PSNR WSNR MSE SNR GMSM ; PSNR PSNR PSNR

SSIMSSIMSNR ; SNRCQ(1,1)PSNRVIFSNR8th
9th CQ(1,1) SNR VIF UQI SSIM CQ(1,1) ; SNR SNR

VIFSNR ; CQ(1,1)VIFMSESNR ; SSIMSSIMVIF10th
11th SSIM CQ(1,1) SSIM ; SNR PSNR CQ(1,1) VIF CQ(1,1)

UQIUQIUQIVIFUQIUQIUQI12th

ment was for the “middle quality” category, as indicated by
the blue scale.
Table 5 shows Cohen’s kappa and Scott’s pi coefficients cal-
culated from the confusion matrices. The outcomes of these
indices are very similar. The highest values were obtained
mostly for the group of simple distortions. For exotic distor-
tions, the values of the indices are the lowest in most of the
cases. Broadly, Table 5 shows similar trends to those in Table
3, but with much lower values.
The quality indices were ordered from the highest to low-
est values conforming to each correlation (or concordance)
coefficient, obtaining four index rankings, which are shown
in Tables 4 and 6. These rankings were pooled into a final
ranking, as illustrated in Figure 5. Table 7 shows the final
quality index ranking for each distortion group. For most of
the distortion groups, the indices that performed best were
the GMSD and the GMSM, except for the new and color
distortion groups.
Figures 6 and 7 include a few scatterplots to check some
of the obtained results. Figure 6 illustrates the main results
shown in Table 7, while in Figure 7 some of the most com-
mon distortions in practice are examined: additive Gaussian
noise (distortion #1), Gaussian blur (distortion #8), JPEG
compression (distortion #10), and JPEG2000 compression
(distortion #11).
Finally, Kendall’s w concordance coefficient among the MOS
and the 12 selected quality indices was computed, and the
same was done for Fleiss’ kappa. These two multivariate
coefficients were also calculated among the MOS and the

subset of indices that performed best in first, second, and third
place for each distortion group, according to Table 7. It is
observed that the agreement improves when the analysis is
restricted to the subset of indices (Table 8).

V. Discussion

Faced with the problem of deciding which IQA measure to
select to measure the similarity between two images, it is
important to emphasize that there is no superior or optimal
evaluation method. The selection of one or another tool is
often done in an arbitrary way, without considering the type of
distortion that could be affecting the images to be compared,
nor the limitations of the comparison index. In this work,
an attempt was made to address this problem and provide
the researchers with a methodology that helps them make
a decision based on statistical foundations that incorporate
the agreement between the methods, in addition to the cor-
relation. A method that provides a guide for comparing the
performance of any set of FR-IQA indices given different
types of distortions was described. The method has been used
to carry out a comprehensive comparative analysis of a set
of FR-IQA indices under a variety of distortions. To the best
of our knowledge, this is the first attempt that incorporates
concordance measures to the study of FR-IQA performance.

A. Conclusion

Concordance measures revealed aspects that have not been
taken into account by traditional correlation coefficients. Co-
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Figure. 4: Work flow to obtain the quality index ranking. The correlation and concordance coefficients are calculated between
each quality index and the MOS.

Figure. 5: Steps to obtain the quality index ranking: noise distortion group example. Step 1. Measure quality of each distorted
image according to each quality index. Step 2. Calculate Spearman, Kendall, Cohen and Scott coefficients between each
quality index values and MOS values. Step 4. Sort them from highest to lowest. Step 4. Assign 11 points to the first index, 10
to the second, and so on. Step 5. Calculate the total that adds up each index and order them from highest to lowest to establish
the final ranking.

hen’s and Scott’s indices have shown similar trends as those
of Spearman and Kendall, but for lower values, they are less
optimistic about the degree of agreement with the MOS. One
reason for this could finding be the robustness of these mea-
sures. In addition, these measures are also more realistic,
although in practice, most of the quality indices do not attain
the desired performance.
Our experiments reveal that the FR-IQA indices are sensitive
to the type of distortions. In the group of simple distortions,
the quality indices were quite in agreement with the MOS,
while the group of exotic distortions had the worst perfor-
mance. It is remarkable that for the new and color distortion
groups, the most appropriate indices were the WSNR and
NQM, unlike the other groups, in which it was preferable to
use a directional index. In the case of image compression
(distortions #10 and #11), additive Gaussian noise (distortion
#1) and Gaussian blur (distortion #8), the GMSD was proven
to be the most appropriate index.
In practice, it is difficult to know the type of distortion that
affects an image. Additional information such as the transmis-
sion or capturing method, is commonly needed. For instance,
if an image is sent by mail, then it will be affected by com-
pression, as well as possibly by other distortions. Although in
practice, many times, the actual type of distortion is unknown,

this work reveals that even ignoring this factor, the indices
that showed the best performance are the GMSD, GMSM and
MSSIM, in decreasing order.
An interesting contribution of this work is that it expanded
the study of Ponomarenko et al. by incorporating the direc-
tional indices of the GMSD, GMSM and CQ(1,1) into the
correlation tables proposed in [6]. An important finding is
that precisely two of these new indices best correlate with
the MOS both in general and per distortion group, except in
the new and color groups. Furthermore, new tables based on
concordance coefficients were proposed. The combination of
all these strategies led to a more complete comparison method,
from which a ranking of quality indices could be generated
from any set of them.
All the scripts, generated databases, and results are available
at https://github.com/lucia15/IQA, hoping that
others might benefit from open-source implementations orga-
nized in a single repository. This is an extra contribution in
an area in which reproducible research is often difficult.

B. Future Work

Although the directional indices—the GMSD and GMSM—
showed the highest correlation with the MOS in the full group,
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Figure. 6: Scatterplots showing the correlation between MOS and the quality indices with the best performance for each group
of distortions.

Figure. 7: Scatterplots for the most common distortions. The plots on the left show a strong correlation, while those on the
right show a poor correlation.
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Table 7: Most appropriate quality index per distortion group.
FullColorNewExoticSimpleActualNoise

1st GMSD GMSD GMSD-GMSM GMSD NQM-WSNR NQM-WSNR GMSD
GMSMMSSIMMSSIMGMSMMSSIM-NQMGMSMGMSM2nd

3rd NQM MSSIM WSNR MSSIM MSE MSE MSSIM
NQMGMSM-PSNRPSNRNQMMSENQMWSNR4th

5th MSSIM WSNR CQ(1,1) CQ(1,1) GMSD GMSD MSE
WSNRSSIMGMSM-SNRSSIMPSNRMSEMSE6th

7th PSNR PSNR-VIF VIF SNR SSIM-VIF VIF PSNR
SNRSNRCQ(1,1)MSESNRSNRSNR8th

9th VIF SSIM SSIM WSNR UQI CQ(1,1) SSIM
VIFUQI—–PSNRUQICQ(1,1)CQ(1,1)10th

11th SSIM UQI —– UQI —– —– CQ(1,1)
UQI—–—–VIF—–—–UQI12th

Table 8: Kendall’s w and Fleiss’ κ among the MOS and the
quality indices by distortion group. In each column, the first
values correspond to the coefficient among the MOS and all
quality indices, whereas the second values in bold correspond
to the coefficient among the MOS and the subset of indices
that worked best in first, second, and third place for each
distortion group, according to Table 7. All w values are
significantly different from zero (p < 0.0001) according to
Kendall’s concordance test.

Kendall’sGroup w Fleiss’ κ

Noise 0.7802 ; 0.9357 0.4329 ; 0.5896
Actual 0.7986 ; 0.9418 0.4518 ; 0.6719
Simple 0.8544 ; 0.9358 0.5134 ; 0.6471
Exotic 0.5894 ; 0.8726 0.3251 ; 0.5084
New 0.7472 ; 0.8200 0.4685 ; 0.5561
Color 0.7043 ; 0.7855 0.4280 ; 0.5339
Full 0.6659 ; 0.8658 0.4020 ; 0.5913

no matter the type of distortion used, this does not imply that
the distortions have any directional factor but rather that the
indices based on the magnitude of the gradient captured the
similarity between images more often than other indices did.
Therefore, it is proposed to elucidate in future research what
makes this type of index so effective in capturing similarity.
In the case of the CQ index, it has only been considered the
direction h = (1, 1). It is planned to approach the problem
of how to choose a set of directions of interest to obtain a
summary function of these CQ values in several directions,
e.g., along the lines given in [56].
One problem that is related to the methodology suggested
in this paper is the inclusion of the spatial concordance cor-
relation coefficient (SCCC) recently studied in [25]. This
coefficient is a generalization of the concordance index intro-
duced in [57] and has two main features. First, it preserves
the interpretation of Lin’s index in the sense that it evaluates
the agreement between two continuous variables by measur-
ing their joint deviation from a 45◦ line through the origin.
Second, it measures the spatial concordance between two
georeferenced variables for a fixed value of the spatial lag h.
The exploration of the SCCC in the context of image quality
assessment remains an open problem that should be addressed
in future research.
Another pending task is to determine desirable characteristics
for a quality index. In this direction, we propose to continue
the ideas raised in [35].
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