
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 13 (2021) pp. 051-061 

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

 

 

MIR Labs, USA 

 

Received: 27 December, 2020; Accepted: 4 May, 2021; Published: 10 June, 2021 

A Study on Multi-Objective Particle Swarm 

Optimization in Solving Job-Shop Scheduling 

Problems 
  

Nurul Izah Anuar1,2 and Muhammad Hafidz Fazli Md Fauadi2 
 

1 Faculty of Engineering and Technology, Multimedia University,  

Jalan Ayer Keroh Lama, 75450 Ayer Keroh, Melaka, Malaysia 

nurulizah.anuar@mmu.edu.my 

 
2 Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 

Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia  

hafidz@utem.edu.my 

 

 

Abstract: Particle Swarm Optimization (PSO) is a 

population-based metaheuristic that was modelled based on the 

social interaction and communication of organisms, such as a 

flock of birds or a school of fishes. It is widely applied to solve a 

single-objective function in existing research, but this is not 

suitable for cases in the real world, which normally consist of 

multiple-objective criteria. Such cases encompass the Job-shop 

Scheduling Problem (JSP), where it is a typical production 

scheduling problem and belongs to one of the most difficult 

problems of combinatorial optimization. Subsequently, the 

multi-objective Particle Swarm Optimization (MOPSO) was 

established to accommodate the requirement of 

multiple-objective cases encountered in real-world production 

systems. Nevertheless, research works on solving JSP with 

multiple objectives using MOPSO are still limited compared to 

the single objective. In this study, comparison and discussion of 

existing works, in terms of objective functions, test problems, 

multi-objective optimization methods, scheduling constraints, 

strategies and performances are conducted. This study also 

highlights current MOPSO improvement strategies and the aims 

of their implementation in solving JSP. Finally, this study 

proposes a MOPSO model in solving JSP that consolidates these 

aspects of improvement strategies, which would set the path for 

future directions of research provided in the final part of the 

paper. 

 
Keywords: Particle Swarm Optimization, Combinatorial 

Optimization, Pareto Optimality, Multi-objective Optimization, 

Job-shop Scheduling Problems, Production Scheduling.  

 

I. Introduction 

The Job-shop Scheduling Problem (JSP) is amongst one of the 

best known and most studied scheduling problems, with 

widespread applications in a variety of settings. The problem 

appears in many important applications involving 

transportation and logistics, production planning, information 

processing and communication [1]. It is well-known that even 

very simple versions of the JSP belong to the class of 

non-deterministic polynomial-time hard (NP-hard) [2], 

therefore an exact solution cannot be obtained in an acceptable 

computational time [3]. This is notably demonstrated by the 

fact that an instance of JSP comprising 10 jobs and 10 

machines introduced in 1963, which is currently available in 

the OR-Library [4], remained unsolved for more than 20 years. 

It was eventually solved in 1989 [5] and has been used as a 

benchmark for most algorithms in this field since then. 

The goal behind production scheduling is to obtain a 

sequence of jobs with the purpose that one or more objectives 

are optimized. The objective in question for JSP is commonly 

to find the optimum value of the makespan, i.e. the minimum 

completion time of the final job to leave the system [6]. 

Although a single objective like makespan is often used, the 

achievement of multiple objectives such as the improvement 

of cost, machine utilization and on-time deliveries are among 

the greater concerns encountered in the real-world production 

systems [7]-[8]. Thus, a single-objective problem needs to be 

extended to a multi-objective problem, whereby the 

optimization of the multiple objectives is carried out 

simultaneously and the objectives are generally in conflict 

with each other. They are more challenging to solve compared 

to single-objective cases, as there is no unique, single solution. 

Instead, there is a set of acceptable trade-off solutions which 

correspond to the most feasible compromises among the 

objectives [9]. 

There have been several methods and algorithms proposed 

to solve multi-objective problems. More recently, swarm 

intelligence approaches have been developed for this purpose 

[10]-[11], where the success of Particle Swarm Optimization 

(PSO) in solving single-objective optimization problems has 

inspired research works in the extension of this method to 

problems of multi-objective optimization. PSO has been 

observed to be capable of producing superior solutions at a 

very low computational cost, where it has performed 

considerably well in a broad range of applications [12]. In 



Anuar and Md Fauadi 52 

comparison with evolutionary algorithms, PSO has inherent 

advantages on scheduling problems. For instance, it does not 

have to devise special mutation or crossover operators to 

inhibit the presence of illegal individuals. It also contains less 

complex mathematical calculation and requires fewer 

parameter adjustments, which furnishes it with high search 

efficiency. The relative simplicity of PSO, its straightforward 

implementation and adaptability to a wide range of domains 

have rendered it an emerging prospect to be extended for 

multi-objective optimization [13]. 

A preliminary attempt to extend the PSO scheme was 

presented by Moore and Chapman [14] in solving 

multi-objective problems, designed with personal best 

repositories and a global best repository. Another one of the 

first Pareto-based PSO schemes, Coello and Lechuga [15] 

proposed the Multi-objective PSO (MOPSO). The improved 

version of the algorithm with a mutation operator and 

constraint-handling mechanism was proposed later [16]. A 

Dynamic Neighbourhood PSO (DNPSO) was introduced by 

Hu and Eberhart [17]. A modified dynamic neighbourhood 

PSO algorithm was presented [18] as a subsequent 

improvement that decreased the computational time. 

Parsopoulos and Vrahatis [19]-[20] investigated the capability 

of PSO to produce non-dominated solutions by employing a 

multi-swarm variant of PSO, Vector Evaluated Particle Swarm 

Optimization (VEPSO). It was modelled based on the idea of 

Vector Evaluated Genetic Algorithm (VEGA) developed by 

Schaffer [21]. Subsequent work showed the method could be 

enhanced using a parallel version of the VEPSO [22]. 

Fieldsend and Singh [23] continued the effort by proposing a 

novel technique for selecting the best global and local 

individuals for multi-objective PSO swarm members. 

Recently, numerous research articles have conducted 

various discussions regarding multi-objective Particle Swarm 

Optimization (MOPSO) that touch upon multiple facets of 

applications. Lalwani et al. [24] conducted studies regarding 

applications of MOPSO in diverse areas including the types of 

MOPSO variants. A taxonomy was proposed by Reyes-Sierra 

and Coello [25] to classify the current MOPSO techniques, in 

addition to its corresponding survey of approaches. A 

descriptive overview of the state-of-the-art MOPSO variants 

was provided by Parsopoulos and Vrahatis [26], along with the 

future trends and most active research directions. Fieldsend 

[27] discussed the effect of the different global best (gbest) 

and personal best (pbest) selection methods on MOPSO 

search, along with turbulence variable within MOPSO 

algorithms. Some articles briefly include MOPSO as part of 

the more comprehensive review, such as by Zhang et al. [12], 

Banks et al. [13], and Song and Gu [28]. There is also an 

article that specifically discussed the applications of MOPSO 

in a particular area i.e., Li and Yang [29] presented a survey on 

MOPSO applications in power system economic dispatch 

problems. However, despite the successful implementations in 

diverse areas, the MOPSO applications in JSP are still very 

limited. Further works of improving MOPSO algorithm and 

the challenges in employing JSP with multiple objectives need 

to be further investigated. In this paper, the discussion of 

MOPSO and its application of solving JSP is carried out in 

detail. The study done in this paper is then leveraged to 

establish a proposed model of MOPSO in solving JSP. This 

paper, thus, may aid as a helpful reference for practitioners 

involved in solving JSP with multiple objectives by using 

PSO. 

The remainder of the article is structured as follows: Section 

II describes the basic concept of multi-objective optimization 

and its general categorization, followed by Section III on the 

standard and multi-objective PSO descriptions and algorithms. 

Section IV provides the background of JSP, along with the 

related objective functions. In Section V, a comparison is 

made on existing works concerning the application of MOPSO 

in solving JSP. Section VI discusses the summary on 

variations and improvements of MOPSO implementation in 

JSP, leading to a proposed MOPSO model to solve JSP and 

the potential directions of future research. The paper 

concludes in Section VII. 

II. Multi-Objective Optimization 

A multi-objective optimization involves a problem with a 

number of objectives to be achieved and these objectives are 

generally conflicting i.e., one objective cannot be made better 

without making at least another one objective to be worse in 

value [30]. Mathematically, a multi-objective optimization 

problem can be formulated using equation (1): 

 

Optimize  )(xf
i

    ni ,,2,1       (1) 

Subject to  0)( xg
j

  pj ,,2,1        

0)( xh
k

   qk ,,2,1        

 

The search variable x is a vector of m decision variables 

 T
m

xxxx ,...,,
21

  and ),(
maxmin

xxx . The objective function 

)(xf
i

 is a vector having n objectives to be optimized 

simultaneously. )(xg
j

and )(xh
k

 represent inequality and 

equality constraints, respectively.  

With the aim of evaluating the solutions of multi-objective 

problems, we normally make use of the notions of Pareto 

optimality and Pareto dominance [31]. For a minimization 

problem, an objective vector  
k

uuu ,,
1
  is said to 

dominate another objective vector  
k

vvv ,,
1
  in the search 

space, if and only if, no component of u is greater than the 

corresponding component of v and at least one component is 

smaller. This property is described as Pareto dominance. In 

this case, we also say that u is non-dominated i.e., not 

dominated by any other solution. A set of solutions that are 

non-dominated with respect to each other is described as a 

Pareto optimal set [32]. 

There are two general schemes to solve the problems in 

multi-objective optimization [26]. The categorization made is 

not stringent, however, since there are approaches that 

combine characteristics from the two schemes, as well as 

approaches that could not fit any of the two schemes.  The first 

scheme comprises transforming the multi-objective problems 

into single-objective ones, taking advantage of the PSO 

efficiency as a single-objective optimizer. These include 

aggregation strategy [20], [33], lexicographic ordering 

strategy [17]-[18] and multi-swarm strategy [20], [22], [34]. 



A Study on Multi-Objective Particle Swarm Optimization in Solving Job-Shop Scheduling Problems 53 

These strategies either merge the objective functions into a 

single combined function or handle every objective function 

separately and consecutively, to be optimized. The second 

scheme comprises employing all objective functions 

simultaneously to be optimized [14]–[16], [23]. According to 

the notion of Pareto optimality, it produces a set of Pareto 

optimal solution or a representative subset. A solution is part 

of the Pareto set if there does not exist another solution that is 

better in at least one of the objectives without being worse in 

another objective. The non-dominated solutions represent 

diverse compromises or trade-offs among the objectives.  

III. Particle Swarm Optimization (PSO) 

Each potential solution in the PSO algorithm is called a 

‘particle’. Each particle navigates throughout the search space 

by pursuing the current best particles, where they have 

velocities that guide the particles’ movements. This velocity is 

maintained continuously by the experiences of the particle 

itself and its neighbours or the entire swarm [35]. The particle 

updates its velocity and position using equations (2) and (3) 

respectively, as follows: 

 

   
idgdidididid

xprcxprcvwv 
2211

 (2) 

ididid
vxx           (3) 

 

for 
s

Ni ,,3,2,1  , Dd ,,3,2,1  , g = index of the best 

particle in the swarm, where 

s
N = swarm size 

D = dimension of the problem 

w = inertia weight 

1
c  and 

2
c  = learning factors 

1
r  and 

2
r  = random numbers in the range [0, 1] 

 
iDiiid

xxxx ,,,
21
 , the position of the ith particle 

 
iDiiid

vvvv ,,,
21
 , the velocity of the ith particle 

 
iDiiid

pppp ,,,
21
 , the best position of the ith particle 

 
gDgggd

pppp ,,,
21
 , the best position in the swarm 

 

Equations (2) and (3) given above depict the flying path of 

the particle population. The new velocity of the particle is 

computed using equation (2), taking into account its former 

velocity as well as the distances of its existing position from 

the best experience of its own and the best experience of the 

neighbourhood. Next, following equation (3), each particle 

will move towards its new position. The performance of every 

particle is evaluated in accordance with a pre-determined 

fitness function that is linked to the problem in question. The 

general pseudo-code of the PSO is presented as follows: 

 

1: Initialize swarm positions and velocities 

2: while stopping criterion not attained 

3:     for each particle 

4:        Calculate velocity according to equation (2) 

5:        Update position according to equation (3) 

6:        Evaluate fitness value 

7:          Update best position if the current fitness value is better 

8:     end for 

9: Update global best position having the best fitness value of  

    the swarm  

10: end while 

 

The general MOPSO algorithm can be represented by the 

pseudocode below. The differences between single-objective 

and multi-objective optimization are denoted in italics.  

 

1: Initialize swarm positions and velocities 

2: Initialize external archive 

3: while stopping criterion not attained 

4:     for each particle 

5:        Select a member of the external archive 

6:        Calculate velocity according to equation (2) 

7:        Update position according to equation (3) 

8:        Evaluate fitness value 

9:          Update best position if the current fitness value is better 

10:     end for 

11: Update members in the external archive 

12: end while 

 

The use of an external archive, the member selection from 

the archive, along with the archive update, establish the major 

concepts in the enhancement of MOPSO techniques, though 

not the only ones [36]. In MOPSO, the velocity and position 

update equations are still similar to equations (2) and (3) in 

PSO; whereas the objective function now consists of multiple 

objectives as formulated in equation (1). 

There are several MOPSO variants proposed in the 

literature. Sha and Lin [37] altered the representation of 

velocity, movement and position of particles. Unlike the 

standard PSO that retains the best positions discovered as yet, 

it preserved the best schedules produced up till now. 

Consequently, the particle movement was also modified based 

on a swap operator. For the particle velocity, instead of 

moving them toward the best solutions, it focused on avoiding 

the particles from getting trapped in local optima. 

Wisittipanich and Kachitvichyanukul [38] adopted a 

combination of four groups of particles within a single swarm 

with unique movement schemes. The first group of particles 

conducted their explorations according to their personal 

experiences, while the second group of particles employed the 

global knowledge and were directed to the sparse regions of 

the Pareto front. The third group of particles were assigned to 

fulfill the gaps among Pareto front, while the fourth group of 

particles sought to explore around the boundary of the 

non-dominated front. Meng et al. [39] proposed a structure of 

dual-population i.e., a searching-population and a 

leading-population. The searching population is assigned the 

role to search while the leading-population is assigned the role 

to guide the searching-population to the Pareto front. 

IV. Job-Shop Scheduling Problems (JSP) 

In general, the JSP is designated as having a collection of jobs 

to be scheduled on a collection of machines in a given order 

[40]. Each job contains a number of operations, where the 

operation denotes the processing of a job on a particular 



Anuar and Md Fauadi 54 

machine. Every operation has a duration or processing time, 

which is known in advance, specific for every machine. Every 

operation is arranged to be scheduled on a specified machine 

adhering to a predetermined sequence, known as the 

precedence constraints, in which the sequence of machines is 

distinct for every job [41]. These precedence constraints, 

which dictate the specific order of operations, impose some 

complexity to the JSP. The assignment of operations of a job 

for predefined processing times on a machine is known as a 

schedule. The JSP is also subject to the following constraints 

[42]: Each job must be executed exactly once, without 

recirculation, on every machine; each machine can only 

process one operation at a time; each job can only pass through 

the machine in a certain order; no pre-emption is allowed, or 

once a job has started processing, it cannot be interrupted. 

When the schedule manages to determine the best sequence of 

operations processed on all machines in optimizing particular 

objectives, it is regarded as a good or optimal schedule. 

In terms of objective functions, the majority of the works in 

solving job-shop problems has focused on minimizing the 

makespan, where the formula is given by equation (4): 

 

Makespan,  
i

CC max
max

       (4) 

 

where 
i

C  is the completion time of job i. 

In order to reflect real-world scheduling problems, more 

objective functions are considered, such as to minimize the 

total tardiness, in which the formula is given by equation (5): 

 

Total tardiness,  itot
TT       (5) 

 0,max
iii

dCT          (6) 

 

where 
i

T  in equation (6) is the tardiness of job i, i.e. when job 

i is completed after its due date, 
i

d . 

Other objective functions that can be employed include total 

machine idle time [37], mean weighted completion time [43], 

sum of weighted tardiness and earliness costs [43], total 

penalties of tardiness and earliness [44], weighted mean flow 

time [44] and many more. Oyetunji [45] presented diverse 

scheduling objectives along with the formulation of their 

mathematical expressions. 

V. Applications of MOPSO in Job-Shop 

Scheduling Problems 

Tables 1 and 2 outline the applications of MOPSO in JSP in 

terms of types of objective functions, types of test problems 

and methods of multi-objective (MO) optimization. The tables 

also summarize the works in the aspect of their strategies and 

performances.

 

No. Refs 
Objective 

Functions 

Test 

Problems 

MO 

Optimization 

Methods 
Strategies Performances Remarks 

1 [46] 

1.  Makespan 

2.  Total 

tardiness 

OR-Library 

benchmark 

problems 

Pareto 

1. Combined global 

best position selection 

with crowding 

measure-based 

archive maintenance. 

2. Performed 

mutation on archive 

members. 

1. Outperformed strength 

Pareto evolutionary 

algorithm2 (SPEA2) in 

13 out of 18 problems. 

2. Outperformed 

MOPSO in 17 out of 18 

problems. 

1. Combination 

procedure resulted in fast 

approximation of 

high-quality Pareto 

optimal front. 

2. Mutation of chosen 

archive members reduced 

stagnation of search 

process to produce more 

non-dominated solutions. 

2 [37] 

1.  Makespan 

2.  Total 

machine idle 

time 

3. Total 

tardiness 

OR-Library 

benchmark 

problems 

Pareto 

1. Modified 

representation of 

position, movement, 

and velocity of 

particles. 

2. Performed 

diversification 

strategy to update 

non-dominated 

solutions. 

1. Outperformed 

multi-objective Genetic 

Algorithm (MOGA) in 

relative error of solution 

for makespan and total 

idle time in all 23 

problems. 

2. Outperformed MOGA 

in relative error of 

solution for total 

tardiness in 22 out of 23 

problems. 

1. Best schedules were 

recorded rather than best 

positions found so far. 

2. Particle movement was 

based on swap operator. 

3. Particle velocity 

focused on avoiding 

particles from getting 

trapped in local optima 

rather than moving them 

toward best solutions. 

3 [47] 

1.  Makespan 

2.  Workload 

equitableness 

among 

machines 

3. Total 

OR-Library 

benchmark 

problems 

Pareto 

Performed orthogonal 

design method during 

generation of initial 

swarm and selection 

of global best 

position. 

Outperformed MOGA, 

Non-dominated Sorting 

GA II (NSGA-II) and 

Variable Neighborhood 

Particle Swarm 

Optimization (VNPSO) 

by dominating solutions 

found by those 

1. Orthogonal operator 

enhanced PSO searching 

capability by distributing 

the swarm evenly during 

initial stage and leading it 

toward Pareto Front 

dispersedly. 

2. Became more 



A Study on Multi-Objective Particle Swarm Optimization in Solving Job-Shop Scheduling Problems 55 

maintaining 

cost of all jobs 

4. Total 

compensation 

of delayed 

jobs 

algorithms. prevalence over other 

algorithms as the scale of 

chosen instances 

increased. 

4 [38] 

1.  Makespan 

2.  Total 

tardiness 

OR-Library 

benchmark 

problems 

Pareto 

1. Employed a 

combination of four 

groups of particles 

within a single swarm 

with unique 

movement schemes. 

2. Retained updated 

non-dominated 

solutions discovered 

by entire swarm as a 

common elite group, 

which used as 

guidance for flying of 

particles. 

1. Outperformed 

crowding measure-based 

multi-objective 

evolutionary algorithm 

(CMOEA) and strength 

Pareto evolutionary 

algorithm (SPEA) in 

producing 

non-dominated solutions 

in 7 out of 15 instances 

and most cases under C 

metric. 

2. SPEA and CMOEA 

were marginally better in 

producing 

non-dominated solutions 

in 4 out of 15 instances 

and 2 and 3 instances 

respectively under C 

metric. 

1. Each group of particles 

performed unique 

movement schemes with 

its own benefit to explore 

diverse potential areas. 

2. Search procedure was 

faster and quality of 

solutions was higher due 

to the use of common 

elite group that assisted 

particles in using global 

information. 

5 [48] 

1.  Makespan 

2. Total 

weighted 

earliness 

3. Total 

weighted 

tardiness 

OR-Library 

benchmark 

problems 

Weighted 

aggregative 

function 

1. Performed 

evolutionary process 

in 2 stages. 

2. Utilized multiple 

populations for 

independent 

evolution. 

3. Employed 

migration strategies, 

re-initialization and 

local search. 

1. Comparable to 

two-stage genetic 

algorithm (2ST-GA) and 

multi-stage genetic 

algorithm (MS-GA) in 

medium-sized problems. 

2. Outperformed 

2ST-GA and MS-GA in 

computational time and 

solution quality for 

large-sized problems. 

1. Serial particle swarm 

with migrated particles 

accelerated convergence 

of solution through 

shared information of 

search experience from 

previous swarm. 

2. Local search enhanced 

quality of solution by 

exploring better solutions 

around its neighbours. 

3. Re-initialization 

strategy to diversify 

particles periodically was 

able to prevent the 

tendency of being stuck 

in local minima. 

6 [39] 

1.  Makespan 

2. Average 

flow time 

3. Machine 

idle time 

OR-Library 

benchmark 

problems 

Greedy 

strategy 

1. Employed 

dual-population 

hybrid PSO algorithm 

based on greedy 

strategy, where one 

population will lead 

another population to 

converge. 

2. Performed 

mutation and 

crossover operations 

on individuals in the 

two populations. 

3. Utilized simulated 

annealing as local 

search. 

Outperformed MOPSO 

and Improved 

Multi-objective Particle 

Swarm Optical (IMPSO) 

in terms of solution 

quality and running time 

in all 31 problems of 

different scales. 

 

1. Evolutionary speed 

was faster in early stage 

of searching. 

2. Crossover and 

mutation operators 

enhanced diversity and 

convergence of both 

populations. 

3. Local search strategy 

was effective to escape 

local minima and to guide 

searching process 

converging to optimal 

values. 

Table 1. Comparison of standard JSP solved by MOPSO. 



Anuar and Md Fauadi 56 

 

No. Refs 
Objective 

Functions 

Test 

Problems 

MO 

Optimization 

Methods 

Scheduling 

Constraints Strategies Performances Remarks 

1 [49] 

1. Mean 

fuzzy 

completion 

time 

2. 

Maximum 

fuzzy 

completion 

time 

3. 

Minimum 

agreement 

index 

Selected 

problems 

from 

literature 

Pareto 

1. Fuzzy 

due date 

2. Fuzzy 

processing 

time 

1. Combined 

crowding 

measure-based 

archive 

maintenance with 

global best position 

selection. 

2. Performed 

mutation on archive 

members. 

1. Outperformed 

Pareto-dominance 

MOPSO 

(PDMOPSO) in 6 out 

of 8 problems. 

2. Outperformed 

SPEA2 in 3 out of 8 

problems and 4 out of 

8 problems involving 

mutation. 

3. Consumed less 

computational time 

than PDMOPSO and 

SPEA2. 

1. Combination 

procedure resulted in 

archive members 

became uniformly 

distributed, each 

member led global 

best of at least 1 

particle to take part in 

new search. 

2. Introduction of 

mutation resulted in 

strong optimization 

capability in fuzzy 

JSP. 

2 [43] 

1. Sum of 

weighted 

tardiness 

and 

earliness 

costs 

2. Mean 

weighted 

completion 

time 

Self- 

designed 

test 

problems 

Pareto 

Sequence-

dependent 

setup times 

1. Employed 

genetic operators 

for particle update 

and VNS for 

particle 

improvement. 

2. Combined 

crowding 

measure-based 

archive updating 

method with global 

best position 

selection. 

3. Constructed 

initial solutions 

using new ETS 

method. 

1. Obtained more 

non-dominated 

solutions with greater 

quality than 

NSGA-II. 

2. Non-dominated 

solutions were more 

uniformly distributed 

than NSGA-II. 

3. Outperformed 

NSGA-II in average 

values of 

diversification 

metric. 

4. Outperformed 

NSGA-II in mean 

improvements of 

about 8% and 13% 

for 2 objectives. 

 

1. Utilized 3 

comparison metrics: 

diversity metric, 

spacing metric, and 

quality metric. 

2. Found 

non-dominated 

solutions with higher 

diversity. 

3. More 

time-consuming than 

NSGA-II. 

3 [44] 

1. Total 

penalties of 

earliness 

and 

tardiness  

2. 

Weighted 

mean flow 

time 

Self- 

designed 

test 

problems 

Pareto 

1. 

Sequence-

dependent 

setup times 

2. Ready 

times 

1. Employed 

genetic operators 

for particle update 

and variable 

neighbourhood 

search (VNS) for 

particle 

improvement. 

2. Applied 

characters of scatter 

search (SS) to 

choose a different 

swarm in each 

iteration. 

3. Constructed 

initial solutions 

using new elite tabu 

search (ETS) 

method. 

1. Outperformed 

SPEA-II and 

NSGA-II in every 

test instance. 

2. Obtained more 

non-dominated 

solutions with greater 

quality than SPEA-II 

and NSGA-II. 

3. Outperformed 

SPEA-II and 

NSGA-II in 

diversification 

metric. 

1. Utilized 3 

comparison metrics: 

diversity metric, 

spacing metric and 

quality metric. 

2. Found 

non-dominated 

solutions with higher 

diversity. 

3. More 

time-consuming, 

with greater 

increasing rate in 

computational times. 

Table 2. Comparison of JSP with scheduling constraints solved by MOPSO. 

 

 

 



A Study on Multi-Objective Particle Swarm Optimization in Solving Job-Shop Scheduling Problems 

 

 

57 

Table 1 presents the related works implementing standard 

JSP which do not consider additional scheduling constraints 

such as sequence-dependent setup times, ready times, as well 

as uncertainty in due dates and processing times. Other than 

the standard JSP as portrayed in Table 1, there are also several 

variants of JSP solved by MOPSO. In the literature, some of 

the articles implemented JSP with scheduling constraints such 

as sequence-dependent setup times, ready times, as well as 

fuzzy due dates and fuzzy processing times. It may be more 

appropriate to take into account these considerations in order 

to reflect the real-life situations, as can be found in the related 

works presented in Table 2. 

Based on the works described in Tables 1 and 2, MOPSO 

implementations for solving JSP have a number of similarities 

and differences from each other and this is discussed further in 

the next section. 

VI. Discussion and Future Research Directions 

In this section, a discussion on variations and improvements of 

MOPSO implementation in JSP is conducted. Based on Tables 

1 and 2, there exists a variation of MOPSO in solving JSP, 

where certain preferences are more widely employed 

compared to the others, as described below: 

 

 Objective functions: The standard objective function 

employed is makespan, followed by total tardiness and total 

machine idle time. Other than that, objective functions in 

terms of flow times, due dates and penalties/costs are typical 

choices too. 

 Test problems: The standard test problems used is from the 

OR-Library. Few researchers use self-designed test 

problems and selected problems from the literature. 

 MO optimization methods: The most popular method in 

solving the multi-objective cases for JSP is according to the 

concept of Pareto optimality, as compared to the other 

non-Pareto scheme that includes aggregation strategy and 

lexicographic ordering strategy. 

 Scheduling constraints: A majority of MOPSO does not 

apply additional scheduling constraints to their algorithms 

to solve JSP. Nevertheless, the introduction of fuzzy 

variables into parameters such as due dates and processing 

times, as well as practical considerations such as 

sequence-dependent setup times and ready times, are other 

variations in MOPSO implementation to solve JSP. 

 

Table 3 highlights MOPSO improvements and the aims of 

their implementation in solving JSP based on Tables 1 and 2. 

We can see from Table 3 that different improvement strategies 

can be adopted simultaneously in MOPSO algorithm for JSP. 

For instance, three improvement strategies were used by 

Pratchayaborirak and Kachitvichyanukul [48] to solve JSP: 1) 

a local search procedure is adopted to enhance exploitation 

ability and solution quality; 2) multiple populations are used to 

accelerate the convergence of solution through shared 

information of search experience; 3) a re-initialization strategy 

is employed to diversify particles periodically to avoid being 

trapped in local optima. The combination of these three 

improvement strategies resulted in their MOPSO algorithm for 

JSP has three advantages of better local exploitation capability, 

faster convergence speed and avoiding local optima. 

 

 

No. Improvements Aims Refs. 

1 Combined 

global best 

position 

selection with 

crowding 

measure-based 

archive 

maintenance 

Preserve solutions of the 

closest distance to the 

Pareto front with better 

diversity. 

[43] 

[46] 

[49] 

2 Genetic 

operators 

Reduce stagnation of 

search process, enhance 

convergence and 

diversity. 

[39] 

[43] 

[44] 

[46] 

[49] 

3 Diversification 

procedure in 

maintenance of 

Pareto optima 

Maintain and update 

non-dominated solution 

set to ensure diversity. 

[37] 

4 Orthogonal 

design method 

Improve the widespread 

searching capability. 

[47] 

5 Local search 

procedures 

Enhance exploitation 

ability and solution 

quality. 

[48] 

 

6 Particle 

movement 

strategies 

Explore different 

potential areas, generate 

well-spread and better 

quality of Pareto front. 

[38] 

7 Multiple 

populations 

Accelerate convergence 

of solution through 

shared information of 

search experience. 

[39] 

[48] 

 

8 Re-initialization 

strategy 

Diversify particles 

periodically to avoid 

being trapped in local 

optima. 

[48] 

9 Hybrid with 

other 

metaheuristics: 

simulated 

annealing, 

variable 

neighbourhood 

search,  scatter 

search, tabu 

search  

 

- Escape local optima and 

guide searching process 

converging to optimal 

values. 

- Improve particles 

utilizing different 

neighbourhood search 

structures. 

- Assemble a new swarm 

from superior and 

diverse solutions in 

Pareto archive and new 

particles. 

- Construct a group of 

superior and diverse 

initial solutions. 

[39] 

[43] 

[44] 

Table 3. List of MOPSO improvements applied in JSP. 

 

 

 

 

A hybrid of MOPSO with other metaheuristics is also 



Anuar and Md Fauadi 58 

preferable because a combination of two or more algorithms 

facilitates the search process to be conducted more 

comprehensively. For instance, a hybrid with another 

metaheuristic such as Simulated Annealing proposed by Meng 

et al. [39] in solving JSP offers collective advantages of each 

individual algorithm, where MOPSO offers an efficient global 

search ability and a good convergence rate while Simulated 

Annealing offers a better local exploitation ability and an 

ability to escape local optima. 

Certainly, these improvement strategies increase the 

computational cost for incorporating the additional 

components into MOPSO. For instance, as demonstrated by 

Tavakkoli-Moghaddam et al. in [43] and [44], their algorithms 

implemented multiple improvement strategies and had better 

performance in solving JSP compared to the competing 

algorithms, even though they took more time to achieve it. 

Therefore, it is generally suitable in the context that a fast 

computational speed is not necessary but the quality of the 

computational result is strongly demanded. 

Based on the summary in Table 3, we consolidate these 

aspects of improvement strategies in the form of a proposed 

MOPSO model in solving JSP, as shown in Figure 1. The 

model illustrates the context of integrating the strategies for 

improvements within two phases of MOPSO, i.e. initialization 

and swarm-evolving phases. It also illustrates the multiple 

aspects of improvements that can be carried out during the 

swarm-evolving phase, i.e. in terms of solution diversity, 

exploitation (nearby) and exploration (wide-ranging) 

mechanisms, as well as premature convergence (convergence 

to a local optimum). These aspects may interrelate with each 

other as well. With regard to the improvement in the diversity 

of solutions, it is not only targeted to the non-dominated 

solutions on the Pareto front, but also includes the diversity of 

the initial solutions and current solutions of the swarm. 

Besides, it is noted that there are strategies that incorporate a 

hybrid with other metaheuristics. In essence, this model 

represents the basis of our perspective on improvement 

strategies available in the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed MOPSO model to solve JSP 

 

 

MOPSO for solving JSP 

 

Initialization  

phase 

Improve diversity of initial solutions 

(e.g. orthogonal design method [47], 

Tabu search [43]-[44]) 

 

 

 

 

 

 

Swarm- 

evolving  

phase 

 

Improve MOPSO 

performance by 

combining with 

other 

metaheuristics 

(e.g. simulated 

annealing [39], 

variable 

neighbourhood 

search [43]-[44], 

scatter search [44], 

Tabu search 

[43]-[44]) 

Improve diversity of current solutions 

(e.g. re-initialization strategy [48], 

variable neighbourhood search 

[43]-[44]) 

Improve exploitation/exploration 

mechanisms throughout search process 

(e.g. orthogonal design method [47], 

local search [48], single swarm with 

multiple movements [38],  multiple 

swarms [39], [48]) 

Improve premature convergence and 

diversity towards Pareto front  

(e.g. genetic operators [39], [43]-[44], 

[46], [49], simulated annealing [39], 

diversification/ maintenance procedure 

for Pareto optima [37], [43], [46], [49]) 



A Study on Multi-Objective Particle Swarm Optimization in Solving Job-Shop Scheduling Problems 

 

 

59 

Based on the proposed MOPSO model in Figure 1, we 

offer some insights regarding aspects of improvements that 

are merit exploring in the near future: 

 Improvements in the diversity of the solutions, which are 

not only targeted to the non-dominated solutions on the 

Pareto front, but also include the diversity of the initial 

solutions and solutions of the swarm in general. 

 Improvements in the exploitation (nearby) and 

exploration (wide-ranging) abilities throughout the 

search process, for example, using a single swarm with 

multiple movements or using multiple swarms. 

 Improvements in the premature convergence 

(convergence to a local optimum), for example, using 

genetic operators, local search and re-initialization 

strategy. 

 Improvements involving multiple aspects or strategies, 

for example, using a hybrid of MOPSO with other 

metaheuristics. 

 

It is clear that MOPSO improvements generally requires 

additional computational cost. Thus, the trade-off between 

the computational cost and quality of solutions should be 

considered based on application requirements in JSP. This 

is imperative for practical purposes since the MOPSO 

algorithm may be implemented in real-life scheduling that 

requires decision-making to be carried out as soon as 

possible. Despite the ability of the technique to achieve 

better computational results, relatively long computation 

time will deem it inefficient in solving real-world 

scheduling problems. 

VII. Conclusion 

In this paper, the discussion of MOPSO and its application 

of solving JSP is carried out in detail. We first described the 

basic concept of multi-objective optimization and its 

general categorization, followed by the descriptions and 

algorithms of the standard PSO and multi-objective PSO. 

We also provided the background of JSP, along with the 

related objective functions. Afterwards, the MOPSO 

applications in solving JSP were presented, succeeded by 

the summary on variations and improvements of MOPSO 

implementation in JSP. Finally, we put forward a proposed 

MOPSO model to solve JSP and the particular aspects of 

MOPSO improvements that could contribute to the future 

directions of research in this area. 

Based on the computational results of the test instances in 

existing woks, MOPSO exhibits superior performance over 

the other algorithms in solving JSP. It offers efficient 

optimization of complex multi-dimensional search spaces, 

flexible to various hybridization and integration with other 

useful techniques. However, despite showing promising 

results, the applications of MOPSO to JSP are still very 

limited. There has been a deficiency in the research work 

done and the development of MOPSO approach for JSP 

remains open, though not very active, research area. Further 

studies of developing effective MOPSO algorithm are 

required, and its challenges in employing JSP with multiple 

objectives need to be further investigated. 

Acknowledgment 

The authors would like to thank Universiti Teknikal 

Malaysia Melaka and Multimedia University in providing 

facilities for the research project to be conducted. 

References 

[1] P. Pongchairerks, V. Kachitvichyanukul. “A Particle 

Swarm Optimization Algorithm on Job-Shop 

Scheduling Problems with Multi-Purpose Machines”, 

Asia-Pacific Journal of Operational Research 

(APJOR), 26(2), pp. 161–184, 2009. 

[2] A. S. Jain, S. Meeran. “Deterministic job-shop 

scheduling: Past, present and future”, European 

Journal of Operational Research, 113(2), pp. 

390–434, 1999. 

[3] P. Brucker. Scheduling Algorithms, 5th ed. 

Springer-Verlag Berlin Heidelberg, 2007. 

[4] J. E. Beasley. “OR-Library: Distributing Test 

Problems by Electronic Mail”, The Journal of the 

Operational Research Society, 41(11), pp. 

1069–1072, 1990. 

[5] J. Carlier, E. Pinson. “An algorithm for solving the 

job-shop problem”, Management Science, 35(2), pp. 

164–176, 1989. 

[6] M. L. Pinedo. Scheduling: Theory, Algorithms, and 

Systems, 5th ed. Springer International Publishing, 

2016. 

[7] C. Rajendran. “Heuristics for scheduling in flowshop 

with multiple objectives”, European Journal of 

Operational Research, 82(3), pp. 540–555, 1995. 

[8] B. Yagmahan, M. M. Yenisey. “A multi-objective ant 

colony system algorithm for flow shop scheduling 

problem”, Expert Systems with Applications, 37(2), 

pp. 1361–1368, 2010. 

[9] R. T. Marler, J. S. Arora. “Survey of multi-objective 

optimization methods for engineering”, Structural 

and Multidisciplinary Optimization, 26(6), pp. 

369–395, 2004. 

[10] H. Afaq, S. Saini. “Swarm Intelligence based Soft 

Computing Techniques for the Solutions to 

Multiobjective Optimization Problems”, 

International Journal of Computer Science Issues, 

8(3), pp. 498–510, 2011. 

[11] P. Ngatchou, A. Zarei, M. A. El-Sharkawi. “Pareto 

Multi Objective Optimization”. In Proceedings of the 

13th International Conference on Intelligent Systems 

Application to Power Systems, pp. 84–91, 2005. 

[12] Y. Zhang, S. Wang, G. Ji. “A Comprehensive Survey 

on Particle Swarm Optimization Algorithm and Its 

Applications”, Mathematical Problems in 

Engineering, 2015, pp. 1–38, 2015. 

[13] A. Banks, J. Vincent, C. Anyakoha. “A review of 

particle swarm optimization. Part II: Hybridisation, 

combinatorial, multicriteria and constrained 

optimization, and indicative applications”, Natural 

Computing, 7(1), pp. 109–124, 2008. 

[14] J. Moore, R. Chapman. “Application of particle 

swarm to multiobjective optimization”. Department of 

Computer Science and Software Engineering, Auburn 

University, 1999. 



Anuar and Md Fauadi 60 

[15] C. A. Coello Coello, M. S. Lechuga. “MOPSO : A 

Proposal for Multiple Objective Particle Swarm 

Optimization”. In Proceedings of the 2002 Congress 

on Evolutionary Computation, pp. 1051–1056, 2002. 

[16] C. A. Coello Coello, G. T. Pulido, M. S. Lechuga. 

“Handling multiple objectives with particle swarm 

optimization”, IEEE Transactions on Evolutionary 

Computation, 8(3), pp. 256–279, 2004. 

[17] X. Hu, R. C. Eberhart. “Multiobjective optimization 

using dynamic neighborhood Particle Swarm 

Optimization”. In Proceedings of the IEEE congress 

on evolutionary computation (CEC 2002), pp. 

1677–1681, 2002. 

[18] X. Hu, R. C. Eberhart, Y. Shi. “Particle swarm with 

extended memory for multiobjective optimization”. In 

Proceedings of the 2003 IEEE Swarm Intelligence 

Symposium, pp. 193–197, 2003. 

[19] K. E. Parsopoulos, M. N. Vrahatis. “Particle swarm 

optimization method in multiobjective problems”. In 

Proceedings of the 2002 ACM Symposium on Applied 

Computing (SAC’2002), pp. 603–607, 2002. 

[20] K. E. Parsopoulos, M. N. Vrahatis. “Recent 

approaches to global optimization problems through 

Particle Swarm Optimization”, Natural Computing, 

1(2–3), pp. 235–306, 2002. 

[21] J. D. Schaffer. “Multiple objective optimization with 

vector evaluated genetic algorithms”. In Proceedings 

of the 1st International Conference on Genetic 

Algorithms and their Applications, pp. 93–100, 1985. 

[22] K. E. Parsopoulos, D. K. Tasoulis, M. N. Vrahatis. 

“Multiobjective Optimization Using Parallel Vector 

Evaluated Particle Swarm Optimization”. In 

Proceedings of the IASTED International Conference 

on Artificial Intelligence and Applications (AIA 2004), 

pp. 823–828, 2004. 

[23] J. E. Fieldsend, S. Singh. “A Multi-Objective 

Algorithm based upon Particle Swarm Optimisation, 

an Efficient Data Structure and Turbulence”. In 

Proceedings of UK Workshop on Computational 

Intelligence (UKCI’02), pp. 37–44, 2002. 

[24] S. Lalwani, S. Singhal, R. Kumar, N. Gupta. “A 

comprehensive survey: applications of 

multi-objective particle swarm optimization (MOPSO) 

algorithm”, Transactions on Combinatorics, 2(1), pp. 

39–101, 2013. 

[25] M. Reyes-Sierra, C. A. Coello Coello. 

“Multi-Objective Particle Swarm Optimizers: A 

Survey of the State-of-the-Art”, International Journal 

of Computational Intelligence Research, 2(3), pp. 

287–308, 2006. 

[26] K. E. Parsopoulos, M. N. Vrahatis. “Multi-Objective 

Particles Swarm Optimization Approaches”, in 

Multi-Objective Optimization in Computational 

Intelligence, pp. 20–42, 2008. 

[27] J. E. Fieldsend. “Multi-objective particle swarm 

optimisation methods”. Department of Computer 

Science, University of Exeter, 2004. 

[28] M.-P. Song, G.-C. Gu. “Research on particle swarm 

optimization: a review”. In Proceedings of the Third 

International Conference on Machine Learning and 

Cybernetics, pp. 2236–2241, 2004. 

[29] T. Li, B. Yang. “A Review of Multi-objective Particle 

Swarm Optimization Algorithms in Power System 

Economic Dispatch”, International Journal of 

Simulation -- Systems, Science & Technology, 17(27), 

pp. 1–5, 2016. 

[30] E. Zitzler, L. Thiele. “Multiobjective Evolutionary 

Algorithms - A Comparative Case Study and the 

Strength Pareto Approach”, IEEE Transactions on 

Evolutionary Computation, 3(4), pp. 257–271, 1999. 

[31] E. Zitzler, M. Laumanns, S. Bleuler. “A Tutorial on 

Evolutionary Multiobjective Optimization”, in 

Metaheuristics for Multiobjective Optimisation, X. 

Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, 

(eds.), Berlin, Heidelberg: Springer Berlin Heidelberg, 

pp. 3–37, 2004. 

[32] N. Gunantara. “A review of multi-objective 

optimization: Methods and its applications”, Cogent 

Engineering, 5(1), pp. 1–16, 2018. 

[33] U. Baumgartner, C. Magele, W. Renhart. “Pareto 

optimality and particle swarm optimization”, IEEE 

Transactions on Magnetics, 40(2), pp. 1172–1175, 

2004. 

[34] C. Chi-kin, T. Hung-tat. “Autonomous agent response 

learning by a multi-species particle swarm 

optimization”. In Proceedings of the 2004 Congress 

on Evolutionary Computation, pp. 778–785, 2004. 

[35] J. Kennedy, R. Eberhart. “Particle swarm 

optimization”. In Proceedings of the 1995 IEEE 

International Conference on Neural Networks, pp. 

1942–1948, 1995. 

[36] N. Padhye, J. Branke, S. Mostaghim. “Empirical 

comparison of MOPSO methods-guide selection and 

diversity preservation”. In 2009 IEEE Congress on 

Evolutionary Computation, pp. 2516–2523, 2009. 

[37] D. Y. Sha, H. H. Lin. “A multi-objective PSO for 

job-shop scheduling problems”, Expert Systems with 

Applications, 37(2), pp. 1065–1070, 2010. 

[38] W. Wisittipanich, V. Kachitvichyanukul. “An 

Efficient PSO Algorithm for Finding Pareto-Frontier 

in Multi-Objective Job Shop Scheduling Problems”, 

Industrial Engineering and Management Systems, 

12(2), pp. 151–160, 2013. 

[39] Q. Meng, L. Zhang, Y. Fan. “Research on 

Multi-objective Job Shop Scheduling with Dual 

Particle Swarm Algorithm Based on Greedy Strategy”, 

Wireless Personal Communications, 103(1), pp. 

255–274, 2018. 

[40] J. F. Muth, G. L. Thompson. Industrial Scheduling. 

New Jersey: Prentice Hall, 1963. 

[41] Y. Chen, Z. Guan, X. Shao. “A comparative analysis 

of job scheduling algorithm”. In 2011 International 

Conference on Management Science and Industrial 

Engineering, pp. 1091–1095, 2011. 

[42] J. Błażewicz, W. Domschke, E. Pesch. “The job shop 

scheduling problem: Conventional and new solution 

techniques”, European Journal of Operational 

Research, 93(1), pp. 1–33, 1996. 

[43] R. Tavakkoli-Moghaddam, M. Azarkish, A. 

Sadeghnejad-Barkousaraie. “Solving a 

multi-objective job shop scheduling problem with 

sequence-dependent setup times by a Pareto archive 

PSO combined with genetic operators and VNS”, 



A Study on Multi-Objective Particle Swarm Optimization in Solving Job-Shop Scheduling Problems 61 

International Journal of Advanced Manufacturing 

Technology, 53(5–8), pp. 733–750, 2011. 

[44] R. Tavakkoli-Moghaddam, M. Azarkish, A. 

Sadeghnejad-Barkousaraie. “A new hybrid 

multi-objective Pareto archive PSO algorithm for a 

bi-objective job shop scheduling problem”, Expert 

Systems with Applications, 38(9), pp. 10812–10821, 

2011. 

[45] E. O. Oyetunji. “Some common performance 

measures in scheduling problems: Review article”, 

Research Journal of Applied Sciences, Engineering 

and Technology, 1(2), pp. 6–9, 2009. 

[46] D. Lei. “A Pareto archive particle swarm optimization 

for multi-objective job shop scheduling”, Computers 

and Industrial Engineering, 54(4), pp. 960–971, 

2008. 

[47] M. Feng et al. “Orthogonal particle swarm 

optimization for multi-objective job shop scheduling 

problems”. In 2010 2nd International Conference on 

Computational Intelligence and Natural Computing, 

pp. 256–260, 2010. 

[48] T. Pratchayaborirak, V. Kachitvichyanukul. “A 

two-stage PSO algorithm for job shop scheduling 

problem”, International Journal of Management 

Science and Engineering Management, 6(2), pp. 

83–92, 2011. 

[49] D. Lei. “Pareto archive particle swarm optimization 

for multi-objective fuzzy job shop scheduling 

problems”, International Journal of Advanced 

Manufacturing Technology, 37(1–2), pp. 157–165, 

2008. 

Author Biographies 

Nurul Izah Anuar received her Bachelor of  

Electronic Engineering (Computer) and Master of 

Engineering (Advanced Manufacturing Management) 

degrees from Multimedia University (MMU), 

Malaysia in 2006 and  2011, respectively, where she is 

currently a senior lecturer in the university. She is 

currently pursuing a PhD programme in Universiti 

Teknikal Malaysia Melaka (UTeM), Malaysia. Her 

research interests include exploring the application of 

computational intelligence in production scheduling problems.   

 

Muhammad Hafidz Fazli bin Md Fauadi is an 

associate professor in the Universiti Teknikal Malaysia 

Melaka (UTeM), Malaysia. He obtained the Bachelor 

degree in Information Technology from Universiti 

Kebangsaan Malaysia (UKM) in 2004 and Master 

degree in Mechanical Engineering (Advanced 

Manufacturing Technology) from Universiti Teknologi 

Malaysia (UTM) in 2006. Then, he received the Doctor 

of Engineering (Information, Production and System Engineering) degree 

from Waseda University, Japan in 2012. His specializations are in 

intelligent manufacturing system, cloud manufacturing and Internet of 

Things.   

 

 

 

 

 

 

 

 

 

 
 


