
Abstract: Combinatorial evolution – the creation of new things
through the combination of existing things – can be a power-
ful way to evolve rather than design technical objects such as
electronic circuits. Intriguingly, this seems to be an ongoing
and thus open-ended process creating novelty with increasing
complexity. Here, we employ combinatorial evolution in soft-
ware development. While current approaches such as genetic
programming are efficient in solving particular problems, they
all converge towards a solution and do not create anything new
anymore afterwards. Combinatorial evolution of complex sys-
tems such as languages and technology are considered open-
ended. Therefore, open-ended automatic programming might
be possible through combinatorial evolution. We implemented a
computer program simulating combinatorial evolution of code
blocks stored in a database to make them available for combin-
ing. Automatic programming in the sense of algorithm-based
code generation is achieved by evaluating regular expressions.
We found that reserved keywords of a programming language
are suitable for defining the basic code blocks at the begin-
ning of the simulation. We also found that placeholders can
be used to combine code blocks and that code complexity can
be described in terms of the importance to the programming
language. As in a previous combinatorial evolution simulation
of electronic circuits, complexity increased from simple key-
words and special characters to more complex variable decla-
rations, class definitions, methods, and classes containing meth-
ods and variable declarations. Combinatorial evolution, there-
fore, seems to be a promising approach for open-ended auto-
matic programming.
Keywords: Automatic programming, combinatorial evolution,
open-endedness

I. Introduction

Genetic algorithms and evolutionary computation in general
are widely used for solving optimisation problems [1, 2, 3, 4].
Such algorithms [5, 6, 7] follow the paradigm of biologi-
cal evolution. They consist of a collection of virtual organ-
isms, where every organism represents a possible solution
to a given problem. Some fitness measure is then calcu-
lated for each organism in an iterative process and it tries
to find improved solutions by forming random mutations and

crossovers on them.
In contrast to such evolutionary computation, combinatorial
evolution as proposed by W. Brian Arthur [8, 9], makes no
modifications to the organisms themselves. New solutions
are formed through the combination of existing components
which then form new solutions in later iterations with the
goal of satisfying certain needs. The more useful a combi-
nation is, the higher is its need rating. Combining existing
components to construct new components can be observed in
the evolution of technology [8, 9]. For instance, the invention
of radar was only possible through combining simpler elec-
tronic parts fulfilling functions like amplification and wave
generation [10]. In order to investigate combinatorial evolu-
tion, Arthur and Polak [10] created a simple computer sim-
ulation, where electronic circuits were evolved in a combi-
natorial manner. Their simulation started by randomly com-
bining primitive elementary logic gates and then used these
simpler combinations for more complicated combinations in
later iterations. Over time, a small number of simple building
blocks was transformed into many complicated ones, where
some of them might be useful for future applications. It was
concluded that combinatorial evolution allows building some
kind of library of building blocks for the creation of future
and more complicated building blocks.
Intriguingly, combinatorial evolution is a key ingredient to
achieve open-ended evolution [11, 12], that is the ongoing
creation of novelty [13, 14]. This contrasts classical compu-
tational approaches where the aim is to converge towards a
solution as fast as possible. Computational approaches ac-
cording to open-ended evolution are therefore not more effi-
cient but they are more creative since they generate ongoing
novelty.
Here we want to explore whether combinatorial evolution
could be also applied to software development, more specif-
ically to automatic programming to eventually make it open-
ended [15]. An early idea of automatic programming was to
implement high-level programming languages that are more
human readable resulting in compilers, which produce low-
level programs – down to machine code – from human read-
able syntax [16]. However, human input in some form was
still needed and the programming task was simply transferred
to a higher level. Furthermore, the software solution is lim-

MIR Labs, USA

International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 14 (2022) pp.204-212
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Received: 27 December, 2021; Accepted: 5 April, 2022; Publish: 24 April, 2022

Automatic Programming As An Open-Ended
 Evolutionary System

Sebastian Fix, Thomas Probst, Oliver Ruggli, Thomas Hanne and Patrik Christen

FHNW University of Applied Sciences and Arts Northwestern Switzerland, Institute for Information Systems,
 Riggenbachstrasse 16, 4600 Olten, Switzerland

patrik.christen@fhnw.ch

Automatic Programming As An Open-Ended Evolutionary System

ited by the programmer’s capabilities and creativity. Lan-
guage therefore remains a barrier between programmers and
computers. A way around this barrier would be to let the
computer do the programming (also occasionally denoted
as metaprogramming [17]), which might even lead to bet-
ter programs. Koza [18] addressed this issue through genetic
programming, where populations of computer programs are
generated by a computer using genetic algorithms. The prob-
lem space consists of programs that try to solve (or approx-
imately solve) problems. It has been demonstrated that ran-
dom mutations and crossovers in source code can effectively
contribute in creating new sophisticated programs [19].
Therefore, it seems possible to define a programming task
and let a computer do the programming. However, looking
at the process of software development, programming seems
more comparable to technological rather than biological evo-
lution. Existing libraries or algorithms are often integrated
into new software without the necessity of modifying them.
Therefore, an automatic programming approach that creates
new computer programs by means of combinatorial evolu-
tion might be an interesting alternative to genetic program-
ming. Also, due to open-endedness, combinatorial evolution
holds the promise to be more creative generating ongoing
novelty. In the present study we investigate ways to define a
programming task for automatic programming through com-
binatorial evolution including the evaluation of the generated
code with a need rating. Our research question is whether
it is possible to generate computer programs of increasing
complexity using automatic programming through combina-
torial evolution. Specifically, we ask what kind of basic code
blocks are needed at the beginning? How are these code
blocks implemented to allow them to combine? How can
code complexity be measured?

II. Automatic Programming

Since the development of computers, it has been a challenge
to optimise and adapt program code to access the potential
performance of a computer. While the computational power
of computers has been steadily increasing in recent years,
program code is still limited by the ability of programmers
to create efficient and functioning code. Programming lan-
guages have also evolved over the past decades. The de-
velopment of programming languages has sought to provide
programmers with abstractions at higher levels. However,
this also led to limitations, especially regarding performance
and creativity. It is thus intriguing to shift the programming
to the computer itself. Most of the programming is currently
done by human programmers, which often leads to a time-
intensive and error-prone process of software development.
The idea that computers automatically create software pro-
grams has been a long-standing goal [20] with the potential
to streamline and improve software development.
Automatic programming was first considered in the 1940s
describing the automation of a manual process in general and
with the goal to maximise efficiency [21]. Later, automatic
programming was considered a type of computer program-
ming in which code is generated using tools that allow devel-
opers to write code at a higher level of abstraction [21]. There
are two main types of automatic programming: application
generators and generative programming. Cleaveland [22]

describes the development of application generators as the
use of high-level programming models or templates to trans-
late certain components into low-level source code. Gener-
ative programming, on the other hand, assists developers in
writing programs. This can be achieved, e.g. by providing
standard libraries as a form of reusable code [17]. In genera-
tive programming it is crucial to have a domain model, which
consists of three main parts: a problem space, a solution
space, and a configuration knowledge mapping that connects
them [23]. The problem space includes the features and con-
cepts used by application engineers to express their needs.
These can be textual or graphical programming languages,
interactive wizards, or graphical user interfaces. The solution
space consists of elementary components with a maximum of
combinability and a minimum of redundancy. The configu-
ration knowledge mapping presents a form of generator that
translates the objects from the problem space to build com-
ponents in the solution space [17]. Most recently, automatic
programming shifted towards higher level programming lan-
guages and incorporating even more abstraction [24].
While these kinds of automatic programming heavily depend
on human interaction and thus the capabilities and creativity
of programmers, genetic programming can be regarded an
attempts to reduce this dependency and shift the focus to au-
tomation done by the computer itself. Koza [18] describes
genetic programming as a type of programming in which
programs are regarded as genes that can be evolved using ge-
netic algorithms [25, 26]. It aims to improve the performance
of a program to perform a predefined task. According to
Becker et al. [20], a genetic algorithm takes, as an input, a set
of instructions or actions that are regarded as genes. A ran-
dom set of these instructions is then selected to form an initial
sequence of DNA. The whole genome is then executed as a
program and the results are scored in terms of how well the
program solves a predefined task. Afterwards, the top scor-
ers are used to create offspring, which are rated again until
the desired program is produced. To find new solutions, evo-
lutionary techniques such as crossover, mutation, and repli-
cation are used [27]. Crossover children are created by pick-
ing two parents and switching certain components. Another
technique is mutation, which uses only one individual par-
ent and randomly modifies its parts to create a new child.
Sometimes parents with great fitness will be transferred to
the next iteration without any mutation or crossover because
they might do well in later steps as well. The specific choice
or design of the variation operators (mutations and crossover)
are also a significant limitation of the techniques as usually
infeasible solutions might result from them. Whereas some
applications of simple genetic algorithms may be unaffected
by this problem, search problems with various kinds of re-
strictions might suffer from frequently infeasible offspring
solutions. This is especially true for genetic programming as
the evolutionary approach is applied to programs. Without
specific consideration, random changes such as mutations
may already lead to syntactically invalid programs or source
code suffering from compile-time errors. To avoid this, pro-
gramming languages such as Lisp are preferred which are
based on a tree representation of the program. Such a repre-
sentation makes it easier to define variation operators which
keep at least the syntactic correctness of a program. For in-

205

Fix et al.

stance, nodes of a tree (together with their subtrees) could
be exchanged between different solutions (crossover) or re-
placed by random new nodes or subtrees. However, occa-
sionally genetic programming approaches have also been de-
veloped and tested for more traditional imperative program-
ming languages such as Java [28].

III. Combinatorial Evolution

With combinatorial evolution, new solutions build on combi-
nations of previously discovered solutions. Every evolution
starts with some primitive, existing building blocks and uses
them to build combinations. Those combinations are then
stored in an active repertoire. If the output satisfies a need
better than an earlier solution, it replaces the old one and will
be used as the building block in later iterations. Building
blocks are thus not modified, they are combined together cre-
ating new building blocks. The result is a library of function-
alities that may be useful for a solution in the future [8, 9].
As Ogburn [29] suggested, the more equipment there is
within a material culture, the greater the number of inven-
tions are. This is known as the Ogburn’s Claim. It can there-
fore be inferred that the number and diversity of developed
components as well as their technological developments mat-
ters because next generation components build upon the tech-
nological level of the previous, existing components. To in-
vestigate this, Arthur and Polak [10] created a simple com-
puter simulation to ‘discover’ new electronic circuits. In their
simulation, they used a predefined list of truth tables of basic
logic functions such as full adders or n-bit adders. Every ran-
domly created combination represented a potential satisfac-
tion of a need, which was then tested against this list. If the
truth table of a newly created circuit matched one from the
predefined list, it is added to the active repertoire as it fulfils
the pre-specified functionality. Sometimes, it also replaced
one that was found earlier, if it used fewer parts and there-
fore would cost less. New technologies in the real world are
not usually found by randomly combining existing ones nor
do they exist in a pre-specified list to be compared against.
Nevertheless, their needs are generally clearly visible in eco-
nomics and current technologies [10].
Combinatorial evolution is in general an important element
of evolutionary systems. Stefan Thurner and his colleagues
developed a general model of evolutionary dynamics in
which the combination of existing entities to create new en-
tities plays a central role [11, 30, 12]. They were able to
validate this model using world trade data [31], therefore un-
derlining the importance of evolutionary dynamics in eco-
nomic modelling in general and combinatorial interactions
in particular. The model shows punctuated equilibria that are
typical for open-ended evolutionary systems [11, 30, 12].

IV. Code Complexity

Genetic algorithms have been used for automatic program-
ming already, however, a large number of iterations are re-
quired to significantly increase code complexity in order to
solve more complex problems [32]. It therefore seems ben-
eficial to use combinatorial evolution in which complexity
seems to increase in fewer steps and thus less time.
Code complexity has been measured in this context with dif-

ferent approaches. The cyclomatic complexity of a code is
the number of linearly independent paths within it [33]. For
instance, if the code contains no control flow elements (con-
ditionals), the complexity would be 1, since there would be
only a single path through the code [34]. If the code has one
single-condition IF statement, the complexity would be 2 be-
cause there would be two paths through the code – one where
the IF statement evaluates to TRUE and another one where
it evaluates to FALSE [34]. Two nested single-condition IFs
(or one IF with two conditions) would produce a complexity
of 3 [35, 34]. According to Garg [36], cyclomatic complex-
ity is one of the most used and renowned software metrics
together with other proposed and researched metrics, such as
the number of lines of code and the Halstead measure. Al-
though cyclomatic complexity is very popular, it is difficult
to calculate for object-oriented code [37].

V. Methods

A. Development Setup and Environment

We used the programming language Java though other pro-
gramming languages would have been feasible as well. The
development environment was installed on VirtualBox – an
open source virtualisation environment from Oracle. Oracle
Java SE Development Kit 11 was used with Apache Maven
as build automation tool. To map the existing code with
a database, Hibernate ORM was used. It allows mapping
object-oriented Java code to a relational database. Further-
more, code versioning with GitHub was used.

B. Simulation

Simulations are initialised by adding some basic code build-
ing blocks into a repository. The first simulation iteration
then starts by randomly selecting code blocks from this
repository. Selected blocks are then combined into a new
code block, which subsequently gets analysed for its useful-
ness and complexity. Based on this analysis, the code block
is assigned a value. Nonsense code, which is the most com-
mon result when randomly combining keywords of a pro-
gramming language, are assigned a value of 0 and not used
any further. Only code blocks with a value greater than 0 are
added to the repository and consequently have a chance of
being selected in a later iteration.

C. Code Building Blocks

Defining the initial code building blocks of the repository is a
challenging task since they should not contain too much pre-
defined logic and on the other hand have a minimal complex-
ity in order to allow creative combinations without limiting
or predefining too much. One way would be to define code
snippets with placeholders, e.g. a code snippet of a method
definition where the body is a placeholder. Placeholders are
important for the combination of code blocks – they define
where a certain code block can be linked to another code
block in the repository. However, some preliminary exper-
iments in which code snippets with placeholders were pre-
defined showed that this approach would limit the creativity
and complexity of the automatic programming solution by
the predefined snippets. The simulation would only create

206

Automatic Programming As An Open-Ended Evolutionary System

program logic that is already given by the basic set of code
blocks.
To overcome this limitation, we defined basic code build-
ing blocks according to keywords and special characters of
the Java programming language, e.g. the keywords int,
for, class, and String as well as the special characters
&, =, ;, and {. Additionally, we defined three more extra
code blocks: First, PLACEHOLDER to define where blocks
allow other code blocks to be combined and integrated. This
is particularly important for nesting certain code elements,
such as methods that must be nested into a class construct to
be valid Java code. Second, NAME to name something, e.g.
classes, methods, and variables. And third, the special key-
word main in the main method definition. A complete list of
the defined basic code blocks is provided below in figs. 1- 3.

D. Selecting and Combining Code Blocks

During the selection process, new source code is generated
based on combinations of existing code blocks from the
repository. The chance that a particular code block is se-
lected depends on its classification value (see next section).
In a first step, a helper function defines a random value of
how many code blocks are taken into consideration in the
current iteration. There is a minimum of two code blocks
required to generate a new code block. The maximum num-
ber can be predefined in the program. Arthur and Polak [10]
combined up to 12 building blocks. To reduce the number
of iterations needed for receiving valid Java code, a maxi-
mum of eight blocks turned out to be a good limit. After ran-
domly defining the number of code blocks to be combined,
the weighted random selection of code blocks based on their
classification value follows. Instead of simply chaining all
selected code blocks together, there is also the possibility to
nest them into a placeholder if available. A random function
decides whether a code block is nested into the placeholder,
or simply added to the whole code block. This procedure is
important because program code usually exhibits such nested
structures.

E. Code Analysis and Building Block Classification

After the selection and combination process, the newly gen-
erated source code is passed into the classification function
where it gets analysed. The classification process is required
to weight the different code blocks according to their rele-
vance in the Java programming language and to see whether
the code evolved with respect to complexity. This is achieved
with regular expression patterns, which allow identifying rel-
evant Java code structures such as classes and methods that
can be weighted with predefined classification values for
these code structures. Basic structures such as variable dec-
larations are assigned a value of 1. More elaborate structures
such as classes have a value of 2 and even more complicated
structures such as methods have a value of 3. If a structure
contains several of these substructures, their classification
values is added. An important structure in many program-
ming languages is the declaration of a variable. With the fol-
lowing regular expression, any declaration of the value types
boolean, byte, char, double, float, int, long,
and short are detected:

(PLACEHOLDER(?!PLACEHOLDER))?
(boolean|byte|char|double|float|

int|long|short) NAME;
(PLACEHOLDER(?!PLACEHOLDER))?

Other important elements are brackets. E.g. they are used in
methods and classes specifying the body. The syntax is given
by the programming language. Placeholders inside brackets
are important, they allow new code to be injected into exist-
ing code blocks in future combinations. We therefore created
the following regular expression:

ˆ(\{PLACEHOLDER\}|\(PLACEHOLDER\))$

As already shown in the simple simulation with electronic
circuits [10], one needs a minimal complexity of the initial
building blocks to be able to generate useful and more com-
plex future combinations. Classes and methods are essential
to build anything complex in Java. Therefore, regular expres-
sions were implemented to identify valid classes and meth-
ods. Valid means, the element is closed and it successfully
compiles. Variable declarations and methods are allowed to
be nested in the class structure. The following regular ex-
pression to detect classes was developed:

(protected|private|public) class NAME \{
((boolean|byte|char|double|float|

int|long|short) NAME;
|(protected|private|public) void NAME\(
((boolean|byte|char|double|float|

int|long|short) NAME)?\) \{
((boolean|byte|char|double|float|

int|long|short) NAME;
|PLACEHOLDER(?!PLACEHOLDER))*\}
|PLACEHOLDER(?!PLACEHOLDER))*\}$

A valid method needs to be correctly closed and can contain
either a placeholder or a variable declaration. We wanted
to influence the generated code as little as possible. There-
fore, many attempts had to be done with formulating regular
expression patterns and weighting the detected code struc-
ture accordingly. The following regular expression to detect
methods was developed:

(PLACEHOLDER(?!PLACEHOLDER))?
(protected|private|public) void NAME\(
((boolean|byte|char|double|float|
int|long|short) NAME)?\) \{
((boolean|byte|char|double|float|
int|long|short) NAME;
|PLACEHOLDER(?!PLACEHOLDER))*\}
(PLACEHOLDER(?!PLACEHOLDER))?

F. Regular Expression Validation

In some preliminary experiments, we automatically com-
piled source code files of newly combined code blocks to
check whether they are valid. However, this process is too
time consuming to allow large numbers of iterations. An
iteration required one to three seconds compilation time.
As combinatorial evolution relies on rather large numbers
of iterations, we instead used regular expressions to check
whether newly combined code blocks compile and are thus
valid. Java allows compiling regular expression into a pattern

207

Fix et al.

abstract

assert

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

Figure. 1: Complete list of keywords in Java.

'

-

!

"

%

&

(

)

*

,

.

/

:

;

[

]

^

{

|

}

+

<

=

>

Figure. 2: Complete list of special characters in Java.

PLACEHOLDER

NAME

main

Figure. 3: Additionally defined basic code blocks in the present combinatorial evolution simulation.

208

Automatic Programming As An Open-Ended Evolutionary System

Table 1: Examples of newly generated code blocks within
the first 100’000 iterations of a combinatorial evolution sim-
ulation. Class refers to the classification value representing
how useful the code block is in programming.

ClassNew Code BlockBlockIteration
254’647 short NAME ; 1
3016’394 public void NAME 1
3422’729 boolean NAME ; 1
4250’419 protected class NAME 1
4458’595 { PLACEHOLDER } 1
5593’722 public class NAME 1

Table 2: Examples of newly generated code blocks within a
wide range of iterations of a combinatorial evolution simula-
tion of 1.6 billion iterations. Class refers to the classification
value representing how useful the code block in program-
ming.

ClassNew Code BlockBlockIteration

58’903 45
protected class NAME {

PLACEHOLDER
}

2

61112’609
public class NAME {
PLACEHOLDER

}
2

> 1 · 109 168
public void NAME () {

PLACEHOLDER
}

3

> 1 · 109 169

public class NAME {
public void NAME () {

PLACEHOLDER
}
short NAME ;

}

6

> 1 · 109 170

protected class NAME {
boolean NAME ;
public void NAME () {
PLACEHOLDER

}
}

6

object, which can then be used to match it with a string con-
taining the code to be tested. It turned out to be a much faster
alternative to the actual compilation of source code files.

VI. Results

Using Java keywords for the initial basic code blocks, we
found the first useful combinations of code blocks within
100’000 iterations in a simulation of 1.6 billion iterations,
which took approximately 5 hours on a desktop computer.
These code blocks mainly consisted of combinations of three
basic building blocks classified with a value of 1. Table 1
shows some examples that were found in the simulation.
Such combinations are typically assigned a small classifi-
cation value due to their simplicity, keeping in mind that
only code blocks that are assigned values greater than 0 are
added to the code block repository for later combinations.
It did not take long for the combinatorial evolution simula-
tion to find the first combinations that consisted of previously
found code blocks as illustrated in Table 2. E.g. code block
45 – which consists of block 42 and block 44 – was found
only 308 iterations later. Though it took some time to find
a Java method in code block 168, only a small number of
iterations later, many subsequent code blocks followed with

higher classification values. Code blocks 169 and 170 char-
acterise Java classes that contain methods and declarations of
variables.
Only after 308 iterations after protected class NAME
and { PLACEHOLDER } were found, the simulation com-
bined these code blocks to form a class with a placeholder in
it leading to a higher classification of value 2. Shortly after
this code block for classes with a placeholder in it was found,
around 100 combinations followed that represented classes
containing variable declarations. This can be observed by
looking at the dots between 100k and 10m in Fig. 4. The
larger the repository grew, the smaller became the probabil-
ity of a Java method being found. The dot with value 3 at
around 1 billion iterations is the method code block 168 in
Table 2. All the following code blocks built on this one.
It took considerably longer to jump to the next higher clas-
sification value of 3 as compared to the jump from value 1
to 2. More than 1 · 109 iterations were required to evolve
a method with a placeholder in it, classified with a value
of 3. From there it only took a few iterations to jump to
classification values of 4, 5, and even 6. Combinations of
a method with a variable declaration were assigned a clas-
sification value of 4, combinations with a class were as-
signed a classification value of 5, and combining all three
resulted in the assignment of a classification value of 6.
E.g., a class with a variable and a method declaration in
it: protected class NAME { boolean NAME ;
public void NAME () { PLACEHOLDER } }.

VII. Discussion and Conclusion

In the present paper, we investigated whether it is possible
to generate computer programs of increasing complexity us-
ing automatic programming through combinatorial evolution
since this would make it an open-ended process. Specifi-
cally, we wanted to know what kind of basic code blocks are
needed at the beginning of a simulation, how are these code
blocks implemented to allow them to combine, and how can
code complexity be measured. To start the first iteration of
the combinatorial evolution simulation we needed to define
code blocks that existed in the programming framework Java.
As initial code blocks we defined reserved keywords of the
Java programming language that are used to define classes,
methods, initialise variables, and so on. This also includes
some special characters used in the programming language
that we also added. Placeholders within code blocks are used
to allow combining code blocks and thus source code. Newly
generated code blocks are assigned a classification value ac-
cording to their structure, which represents code complex-
ity. The combinatorial evolution simulation generated code
blocks including classes, methods, variables, and combina-
tions thereof. It therefore generated code of increasing com-
plexity.
Regarding measuring complexity, different approaches to do
so, e.g. determining the number of lines of code and Mc-
Cabe’s cyclomatic complexity [35], have been taken into
consideration but the code blocks from the outcomes after
nearly 2 billion iterations were in our opinion still too short to
implement these complexity measures. Two factors were im-
portant why we did not use McCabe’s cyclomatic complex-
ity [35]. First, it did not generate the required main method

209

Fix et al.

Figure. 4: Classification values of newly generated code blocks over combinatorial evolution iterations.

within a reasonable number of iterations, so there was no
starting point. Second, we decided to not have the decision
code block assigned a value greater than 0 in the initial code
blocks. Without any of these code blocks, the complexity
would always be evaluated as 1.
We conclude that the combinatorial evolution simulation
clearly shows how Java code can be automatically created
using combinatorial evolution. Simple keywords and special
characters were successfully combined into more complex
and different structures like variable declarations or methods
and in later iterations they even got combined into more so-
phisticated results such as classes consisting of methods and
variable declarations. We also conclude that due to combina-
torial evolution, open-ended automatic programming could
be achieved, indicating an intriguing approach if creativity is
important.
The reached limitations of complexity show that further re-
search is required. Similar observations for genetic program-
ming [32] suggest that more advanced evolutionary operators
could be useful. However, already when starting with fur-
ther elaborated code blocks or when reaching them during
previous combinatorial evolution, the goal of automatic pro-
gramming might come much closer. Therefore, forthcom-
ing research may also study the concept with much increased
computational power and distributed computing.

References

[1] Said Tkatek, Otman Abdoun, Jaafar Abouchabaka, and
Najat Rafalia. A Parallel Genetic Algorithm to Opti-
mize the Massive Recruitment Process. International
Journal of Computer Information Systems and Indus-
trial Management Applications, 13:364–371, 2021.

[2] Paulo Salgado and Paulo Afonso. Evolutionary Genes
Algorithm To Path Planning Problems. International
Journal of Computer Information Systems and Indus-
trial Management Applications, 10:65–72, 2019.

[3] Chandra Naik and D. Pushparaj Shetty. Differen-
tial Evolution Meta-Heuristic Scheme for k-Coverage
and m-Connected Optimal Node Placement in Wireless
Sensor Networks. International Journal of Computer
Information Systems and Industrial Management Ap-
plications, 11:132–141, 2019.

[4] Cláudio A. D. Silva, Carlos Grilo, and Catarina Silva.
Model Optimisation for Server Loading Forecasting
with Genetic Algorithms. International Journal of
Computer Information Systems and Industrial Manage-
ment Applications, 11:178–191, 2019.

[5] Altaf Q. H. Badar. Evolutionary Optimization Algo-
rithms. CRC Press, Boca Raton, 2022.

[6] Thomas Bäck. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, New York, 1996.

210

Automatic Programming As An Open-Ended Evolutionary System

[7] David E. Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
1989.

[8] W. Brian Arthur. The Nature of Technology: What it Is
and How it Evolves. Free Press, New York, 2009.

[9] W. Brian Arthur. How We Became Modern. In Shuzhen
Sim and Benjamin Seet, editors, Sydney Brenner’s 10-
on-10: The Chronicles of Evolution. Wildtype Books,
2018.

[10] W. Brian Arthur and Wolfgang Polak. The evolution of
technology within a simple computer model. Complex-
ity, 11(5):23–31, 2006.

[11] Stefan Thurner. A Simple General Model of Evolu-
tionary Dynamics. In Hildegard Meyer-Ortmanns and
Stefan Thurner, editors, Principles of Evolution: From
the Planck Epoch to Complex Multicellular Life, The
Frontiers Collection, pages 119–144. Springer, Berlin
Heidelberg, 2011.

[12] Stefan Thurner, Rudolf Hanel, and Peter Klimek. In-
troduction to the Theory of Complex Systems. Oxford
University Press, New York, 2018.

[13] Wolfgang Banzhaf, Bert Baumgaertner, Guillaume
Beslon, René Doursat, James A. Foster, Barry Mc-
Mullin, Vinicius Veloso de Melo, Thomas Miconi, Lee
Spector, Susan Stepney, and Roger White. Defin-
ing and simulating open-ended novelty: requirements,
guidelines, and challenges. Theory in Biosciences,
135(3):131–161, 2016.

[14] Tim Taylor. Evolutionary Innovations and Where to
Find Them: Routes to Open-Ended Evolution in Nat-
ural and Artificial Systems. Artificial Life, 25(2):207–
224, 2019.

[15] Patrik Christen. Modelling and implementing open-
ended evolutionary systems. The Fourth Workshop on
Open-Ended Evolution (OEE4), The 2021 Conference
on Artificial Life (ALife), 2021. arXiv:2201.06858v1
[cs.NE].

[16] Wendy Hui Kyong Chun. On Software, or the Per-
sistence of Visual Knowledge. Grey Room, 18:26–51,
2005.

[17] Krysztof Czarnecki and Ulrich Eisenecker. Gener-
ative Programming: Methods, Tools, and Applica-
tions. ACM Press/Addison-Wesley Publishing Co.,
New York, 2000.

[18] John R. Koza. Genetic programming as a means for
programming computers by natural selection. Statistics
and Computing, 4(2):87–112, 1994.

[19] Riccardo Poli, William B Langdon, Nicholas F
McPhee, and John R Koza. Genetic programming: An
introductory tutorial and a survey of techniques and ap-
plications. University of Essex, UK, Tech. Rep. CES-
475, pages 927–1028, 2007.

[20] Kory Becker and Justin Gottschlich. AI Programmer:
Autonomously Creating Software Programs Using Ge-
netic Algorithms. arXiv, 2017.

[21] David Lorge Parnas. Software aspects of strategic de-
fense systems. ACM SIGSOFT Software Engineering
Notes, 10(5):15–23, 1985.

[22] James Craig Cleaveland. Building application genera-
tors. IEEE Software, 5(4):25–33, 1988.

[23] Krzysztof Czarnecki. Perspectives on generative pro-
gramming. In SFB 501 ”Development of Large Systems
with Generic Methods”, 2003.

[24] Michael O’Neill and Lee Spector. Automatic program-
ming: The open issue? Genetic Programming and
Evolvable Machines, 21(1-2):251–262, 2020.

[25] John H. Holland. Genetic Algorithms. Scientific Amer-
ican, 267(1):66–72, 1992.

[26] John H. Holland. Signals and Boundaries: Building
Blocks for Complex Adaptive Systems. The MIT Press,
Cambridge, 2012.

[27] Nelishia Pillay and Caryl K. A. Chalmers. A hy-
brid approach to automatic programming for the object-
oriented programming paradigm. In Proceedings of
the 2007 Annual Research Conference of the South
African Institute of Computer Scientists and Informa-
tion Technologists on IT Research in Developing Coun-
tries, SAICSIT ’07, page 116–124, New York, NY,
USA, 2007. Association for Computing Machinery.

[28] Brendan Cody-Kenny, Edgar Galván-López, and
Stephen Barrett. locoGP: improving performance by
genetic programming java source code. In Proceed-
ings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation,
pages 811–818, 2015.

[29] William Fielding Ogburn. Social Change: With Respect
to Culture and Original Nature. B. W. Huebsch, New
York, 1922.

[30] Stefan Thurner. The Creative Destruction Of Evolu-
tion. In Shuzhen Sim and Benjamin Seet, editors, Syd-
ney Brenner’s 10-on-10: The Chronicles of Evolution.
Wildtype Books, 2018.

[31] Peter Klimek, Ricardo Hausmann, and Stefan Thurner.
Empirical Confirmation of Creative Destruction from
World Trade Data. PLoS ONE, 7(6):e38924, 2012.

[32] Adam Tyler Harter. Advanced techniques for improving
canonical genetic programming. Missouri University
of Science and Technology, 2019.

[33] Christof Ebert, James Cain, Giuliano Antoniol, Steve
Counsell, and Phillip Laplante. Cyclomatic complexity.
IEEE Software, 33(6):27–29, 2016.

211

Fix et al.

[34] com-Cyclomaticcontributors.Wikipedia
— encyclope-freetheplexity Wikipedia,

https://en.wikipedia.org/w/index.php?title=dia.
Cyclomatic 2021.complexity&oldid=1054490449,
[Online; accessed 19-November-2021].

[35] Tom J. McCabe. A complexity measure. IEEE Trans-
actions on Software Engineering, SE-2(4):308–320,
1976.

[36] Ankita Garg. An approach for improving the concept of
Cyclomatic Complexity for Object-Oriented Program-
ming. arXiv, 2014.

[37] Mir Muhammd Suleman Sarwar, Sara Shahzad, and
Ibrar Ahmad. Cyclomatic complexity: The nesting
problem. In Eighth International Conference on Digital
Information Management (ICDIM 2013), pages 274–
279. IEEE, 2013.

212

