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Abstract: Research data between Indonesian institutions such 

as universities are mainly managed in an isolated way between 

research groups, thus creating difficulties in unveiling 

potentially rich insights within the groups. There would be 

considerably arduous tasks to explore research evolutions and 

formulate novelties using the current systems. Therefore, an 

urgent software enhancement in the form of a platform with 

various additional features is required to share data in a secure 

and controllable environment as well as to encourage the 

accountability and reproducibility of the research data. This 

paper presents a big data architecture, which is a scheme of big 

data system with four components for the development, which 

exhibits capabilities to store, query, download, and cite 

heterogeneous research data, at the same time giving data 

proprietors to get control of their assets.  Review of designs are 

done from various implementations of web, mobile and 

institutional platforms where large data management are 

applied to develop big data system (BDS) functions and its 

constituents. BDS is a system that contains technologies that 

process and analyze a large amount of data. The subsequent 

design has demonstrated an effective front-end component and 

adequate back-end component by utilizing five core capabilities 

that exhibit BDS control and data management by using the 

IMDb and IMDb+ data sets to predict the popularity of films 

with several classifiers. The adoption of specific API has also 

given further advantage which gives more controls in the 

navigation system uses SPARQL query federation. 
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I. Introduction 

Many informatics departments in universities manage for 

improving the ability and focus of academic staffs by 

grouping them into research groups. Also, the existence of 

group of studies assists students in getting relevant topics for 

their projects. Each research group regularly conducts 

academic works and contrives research data annually, and 

heterogeneous data are generated from these research 

activities. Not to mention, the external research data are 

produced by other universities, governments, and industries. 

This may lead to a rich set of high-volume, high-variety, high-

velocity, high-veracity, and high-value of data of research 

activities [1]. Moreover, each research group usually restrains 

their own data. However, herein lays the drawbacks. It is 

considerably cumbersome to discover historic research data, 

to evaluate evolution of the research, and to formulate 

novelties of future research. This can potentially cause 

research recurrence and a lack of innovation. It is envisaged 

to remove these barriers by providing an adequate research 

data management to deal with archiving, compliance, security, 

privacy, sharing, and reuse [2]. This collaborative data 

sharing can reveal the potential benefits of the data and to 

allow more researchers to engage. The use of more data from 

different sources may derive additional knowledge and lead 

to improve the result of knowledge discovery processes [3]. 

Eventually, the data sharing may yield externalities and 

preserve innovation, while encouraging digital literacy and 

paving the ways for data-driven innovation and wealth for the 

common good of society. 

Extensive works exist for storing, querying, and 

analyzing heterogeneous data in a timely manner. Big data 

technologies are maturing and easing researchers to produce 

valuable insights from large and un-uniform data. When it 
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comes to supporting the organization's goals, big data presents 

substantial opportunity for more effective decision-making 

[4]. According to Yang et al. [5] employed one of big data 

platforms, Apache Spark, to identify depression level of 

Facebook users. The selection of big data technology tools in 

research by Traina et al. [6] is suitable for overcoming the 

characteristics of big data techniques, namely variations and 

correctness of large and complex data needs to execute. It 

makes extracting quantitative data to acquire qualitative data 

information in research easier [7]. Additionally, it also helps 

researchers to extract various biological contexts and diseases 

[8], profiling technology as a pre-discovery opportunity and 

the development of clinical drugs to improvise and improve 

their performance like paper [9]. However, these advantages 

are overshadowed by concerns of data access, control, citation, 

and ownership. As the number of research data studies is 

increasingly growing, these concerns may lead to 

deterioration of the full potential of big data technologies in 

managing research data. 

The Registry of Research Data Repositories (re3data) is 

one of the approaches to address challenges regarding the 

growing number of data repositories, especially in the 

following problems [10]: (i) to store data in long-term 

preservation and (ii) to find relevant archived data. The 

re3data provides information of more than 1,000 cross-

domain data repositories [11]. Only four Indonesian data 

repositories are registered at the re3data. They are USU 

Institutional Repository/University of North Sumatra 

Institutional Repository, RIN Data Repository, Southeast 

Asian Climate Assessment & Dataset, and mycoCLAP. 

However, all of them do not present data access, control, 

citation, and ownership at the same time. In addition, they are 

solely focused to archive research papers and not research 

data. This is arguably not suitable for data integration and 

interconnection between one part and another as a form of 

research collaboration. 

Following the challenges aforementioned, this study 

presents a big data architecture, which is a scheme of big data 

system (BDS) for managing research data. It allows students, 

academic staff, and external parties to exchange and share 

data with one other, and primarily, they can securely control 

their data and ability to view, access, query, and download by 

others. Also, it provides a citation feature to promote their 

data to cite for accountability and reproducibility. 

There are numerous novelties to this study. First, the 

methodology can assist universities or industries in taking the 

essential steps to establish a big data system to manage their 

vast amounts of complicated data. Another notable feature of 

this research is the inclusion of Hadoop, HIPI, HBase, 

Phoenix, OAuth2, DCAT, and SPARQL Federated Query in 

the development process. The methodological novelty of this 

work is expected to increase as a result of the hybrid strategy. 

Moreover, with the help of using HBase and Phoenix 

approach, querying of multiple different files such as: csv, 

json, sql, txt, and xls using SQL language can be performed. 

Additionally, the main benefits of accomodating SPARQL 

endpoints is the ease of use and flexibility to extend and link 

internal datasets and external datasets. This situation provides 

opportunities to perform SPARQL federated query to add 

background knowledge into existing datasets.  

II. Literature Review 

The practice of data sharing among researchers is a common 

activity in science [12]. In the university environment, in 

which academic staffs demonstrate responsibilities to conduct 

researches and deliver learning and teaching processes, they 

require a special discussion about research data and how to 

discover these to support research publications. For instance, 

provided simulation resources in a digital repository for 

students of the nursing faculty to receive education and 

knowledge in the related subjects [13]. Chard et al. [14] term 

the simplest system to manage research data as the Legacy 

Research Data Portal (LRDP), which is an architecture of web 

application that performs uploading and downloading 

research data on its data repository based on user requests. 

LRDP spreads to various applications for various purposes 

under different names, such as the following: portals, science 

gateways, hubs, and Web Observatories. Portal is a system 

built using standard web technology that provides useful 

resources, involving several stakeholders in the web portal so 

that consistency of many researchers/ stakeholders can work 

together and access it more easily [15]. While Lawrence et al. 

[16] defines science gateways as digital platforms, either web 

or mobile applications, and based on sophisticated 

technologies to support communities to perform collaborative 

research. Wachs et al. [17] collaborating with support tools 

and hubs as a physical prototyping platform that proves the 

concept of collaboration and utilization of one centralized 

resource.  According to Tiropanis et al. [18] defines Web 

Observatory (WO) to engage Web Science researchers 

meaningfully with research data.  

Next, the basic requirements for research do not only deal 

with managing incoming and outgoing data like a data 

repository. Yet, it also requires additional access, control, and 

ownership at the same time. A set of these features can be 

found in the Web Observatory (WO). According to the 

previous studies, the WO is a web platform which 

demonstrates functionalities and capabilities as follows: (i) to 

share, collect, and analyze data on the web [19], (ii) to archive 

data on the web in a distributed fashion [18], (iii) to be 

middleware for generating complex data from different 

sources [18], [19], (iv) to harvest, query, and analyze various 

real-time and historic heterogeneous data as well as to allow 

data owner’s access control to their datasets [18], [20]. 

Aljohani et al. [21] reveals insight into Web Observatory in 

the past, recently exists, and also WO in the future. Table 1 

summarizes existing WOs that are created or published by 

universities (Higher Education) as listed in the WO website 

on the Web Science Trust [22]. 

Hadoop is not only for storing large data but also comprises 

technology stacks to integrate data storage, data processing, 

and system management. Therefore, Hadoop is appropriate to 

select as a solution in the system level. Existing Relational 

Database Management System (RDMS’s) is very powerful in 

managing structured data; however, they do not confront to 

handle big data challenges. In the Hadoop technology stacks, 

NoSQL databases are growing into a standard to address the 

problems of big data [23]. Based on the data model, NoSQL 

can be classified into three primary types: k-value stores, 

column-oriented database, and document databases. HBase is 

categorized into the category of column-oriented database and
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widely used by many IT companies, such as the following: 

Facebook, LinkedIn, and Twitter. It is built on the top of 

Hadoop Distributed File System (HDFS), providing 

capabilities of storing on multiple regions, data reapplication, 

and fault tolerance. 

Next, two libraries to support the stacks implementation, 

Phoenix and HIPI, are reviewed and used in this work. 

Phoenix is a SQL layer to insert data into HBase and supports 

in parallelizing on multiple regions of a table leading to better 

performance of HBase compared to RDBMS. Phoenix 

enables performing parallelism over the regions in a region 

server and supports secondary indexes as well as targets low 

latency query over HBase tables using SQL queries [24], [25]. 

HIPI stands for Hadoop Image Processing Interface. It is 

developed using MapReduce technology to process large-

scale images in a distributed environment [26], [27]. To 

improve the performance of MapReduce in handling images, 

HIPI creates a HIPI Image Bundle (HIB) to store multiple 

images in one large file [28]. HIPI administers a large set of 

images by providing two files: (i) a data file containing set of 

images put together and (ii) an index file containing 

information of images location in HIB. 

Various work such as BDS research datasets have been 

implemented. However, it is necessary to adjust the BDS 

according to the needs of data availability and data processing 

in a system that is adapted to the research data of the 

informatics department. The proposed BDS architecture 

features a more comprehensive mix of several BDS literature 

studies that have been discussed. BDS research data from the 

informatics department can be accessed by many users with 

different preferences. Access data from one system, as well as 

process the data using available APIs. 

III. METHODOLOGY 

The general overview of BDS is shown in Figure 1. BDS 

contains two types of users, namely registered and 

anonymous. Registered users can upload a dataset, which in 

turn is called the owner. The owner can set the dataset access 

permissions into three types, namely public, displayed, and 

private. The displayed and private ones can only be utilized 

by registered users. To use these type of datasets, registered 

users must ask permission from the owner of the dataset, and 

if allowed, the registered user can take full advantage of the 

dataset. These advantages are being able to view, query, 

access, download, and cite datasets. 

BDS is proposed to exhibit seven important features. 

Firstly, it allows data owners to upload their various 

heterogeny datasets and regulate their permissions whether 

public, displayed, or private. To access private datasets, users 

are required to ask for grants from the dataset owners. 

Secondly, it permits data owners to host their datasets not only 

in the local storage but also in remote storages, so that, BDS 

serves to be a middleware to access the data. Thirdly, it 

enables users to download, visualize, and query datasets. 

Fourth, BDS supports SPARQL query language. Users 

exhibit opportunities to make a SPARQL joint statement to 

integrate data from two or more triple data files stored either 

in the local storage or remote storage based on a common 

property between them. BDS also enables the use of SPARQL 

federated query to merge those files with public SPARQL 

endpoints. Fifth, BDS accommodates users to use the most 

popular query language, SQL, to incorporate tabular data 

from multiple files in the following formats: csv, json, sql, txt, 

and xls, based on a linking key between them. Sixth, BDS 

provides a feature for citing a dataset. Therefore, the 

information about the number of citations can be gathered 

either per dataset, user, or institution. This way may promote 

the dataset and improve its accountability and reproducibility. 

Seventh, BDS generates and publishes metadata of datasets in 

the machine-readable format. This way enables external web 

resources to access or harvest the description of the datasets. 

 
Figure 1. Overview of BDS 

Next, all of the features proposed are intended to engage 

more students, academic staffs, and external researchers to 

foster new data-driven innovations by providing a secure 

environment for them to share and collaborate their research 

data. To make it work, the implementation of BDS is broken 

down into three main stages, i.e., design, development, and 

deployment, as shown in Figure 2. The first stage is to put a 

solid foundation for the further steps of the project. This paper 

is focused on the design step, and it contributed to result in a 

schema of the BDS. The scheme will lead the development 

process of the BDS and is easily replicable to other purposes. 

The last feature is directing BDS to be able to access publicly 

by users. To do so, performing a set of testing in pre-

production environments is required. 

In the design stage, a scheme of BDS is proposed, as shown 

in Figure 3. BDS is designed as a decoupled architecture to 

offer three advantages. Firstly, it benefits reconfigurability 

and scalability. Secondly, it can be a solution to the problems 

of performance. Thirdly, it simplifies operational complexity. 

The architecture of BDS is grouped into four different 

components (component that is usually used for front-end 

application development): User Application, API, Front-End, 

and Back-End, respectively. Each component communicates 

to each other using the API component. Below, each 

component in BDS will be explained. 

 

Figure 2. Stages of the big data system implementation
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 Figure 3. A Scheme of big data system 

 

A. User-application component 

This component contains applications, agents, services, etc. 

belonging to users that take advantage of BDS features. They 

do not need to download datasets and store them in their local 

storage. They can read datasets streams via the BDS APIs to 

do data analytics. To query datasets via the use of API, a user-

application requires it to supply three parameters. The first is 

an access token. The access token exhibits an expiration time 

and the nature of it is reusable. The second is a dataset ID, and 

the last is a query statement. Two options are present of 

queries either of SQL or SPARQL. Once the user sends the 

query request, it is redirected to the dataset by BDS. The 

RESTful API will transfer back the result to the user. This 

approach streamlines the user’s efforts in gathering readily 

data for performing data analytics. Users are advocated to cite 

datasets, thus respecting the ethical use of data as well as 

promoting the academic work of the owner. 

B. API component 

BDS proposes RESTful APIs for the two following goals: to 

connect among components as shown in Figure 3 and to 

provide a capability for end-users to query datasets in a secure 

environment, respectively. The first goal is to handle the 

operations and configurations of each component in a 

distributed manner, while the second goal is to allow users to 

access data whether via direct access on BDS UIs or via 

programmatic using user-applications. 

BDS implements the RESTful API by following the 

principle of HATEOAS (Hypertext as the Engine of 

Application State). As argued by Garriga, et al. [29] and 

Neumann et al. [30], HATEOAS comprises embed hyperlinks 

and controls, so that it provides a navigation system 

throughout the service web and eases a client to know what a 

specific operation can be executed. As an illustration, Figure 

4 indicates the comparison of REST and REST-HATEOS. 

Also, this figure shows that links to view, query, and 

download the dataset with id 12345 are included only if the 

user with id “user12345” demonstrates a status of authorized. 

BDS RESTful APIs allow consumers to locate the resource 

without the need to demonstrate an upfront understanding of 

the resource and its relationship. 

C. Front-end component 

This is the main interface in which users interact with BDS. 

The development of friendly web UIs is suggested using 

ReactJS, to provide non-technical or untrained users to 

visualize data to get understanding of the data. More 

importantly, the users can take advantages of four main 

functionalities available on the front-end: (i) to manage 

accounts or datasets, (ii) to search datasets, (iii) to query 

datasets, and (iv) to cite datasets. This component is possible 

to communicate with the back-end component and the user-

application component using the API component. 

D. Back-end component 

This component resides on the server-side and is responsible 

for handling functionalities and servicing the components of 

front-end and user-application. In this proposal, the back-end 

is proposed using Java programming and exhibits 

functionalities as follows: (i) data types and formats 

management, (ii) data storage, (iii) data querying, (iv) data 

sharing, and (v) metadata management. 

1) Data type and format management 

BDS provides functionality for storing various data formats, 

such as the following: tabular data (structured and semi-

structured) and non-tabular data (unstructured). The 

structured one allowed to store is SQL, NoSQL, and 

triple/RDF (Resource Description Framework). The semi-

structured ones are tabular data in the formats of csv, text, and 

spreadsheet, while the unstructured ones are non-tabular data, 

images, audios, and videos. It follows an industrial standard 

from Freed et al. and Melnikov [31] to naming media types of 

various data formats supported in the portal. To access the 

available datasets in BDS, the naming standard and 

definitions of the media types are beneficial for informing 

protocols and procedures. 

2) Data storage 

To manage data storage, BDS proposes two (HDFS and 

HBase) of the Hadoop technology stacks. Figure 5 shows the 

distributed data store architecture of BDS to provide 

persistent storage for managing and accessing the data. These 

stacks are employed to ingest and store the various incoming 

data. Both HDFS and Hbase support distributed and parallel 

processing to store multiple stream data. This way can 

potentially minimize I/O or resource bottlenecks. To handle 
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tabular data in BDS, both structure (SQL & NoSQL) and 

semi-structure (csv, txt, & xls) data formats, a construction of 

transformation engine exists to transform these files into valid 

data formats. Hence, the engine can seamlessly load these 

inputs into Hbase storage using Data Manipulation Language 

provided by Phoenix library, such as the following: UPSERT 

VALUES for the purpose of row-by-row insertion, UPSERT 

SELECT for large data transfer across the same or different 

tables and DELETE to remove rows permanently. The engine 

leverages data definition language provided by Phoenix to 

perform operations of CREATE TABLE, DROP TABLE, and 

ALTER TABLE for adding/removing columns. 

To deal with non-tabular data both semi-structured and 

unstructured (images, audio, and video) data formats, BDS 

manages to feed and insert these data into the HDFS storage. 

HDFS is set up consisting of three clusters. One is purposed 

for a name node, while the others are for data nodes. To store 

these files into HDFS, BDS utilizes the HIPI library for 

simplifying jobs. For scalability and reliability, BDS does a 

parallel job of storing these data in the distributed 

environment. This way keeps efficiency in processing 

resource-intensive tasks, such as the following: processing 

large-scale files. 

3) Data querying 

As a result of selecting HDFS to use, a requirement is present 

to prepare instrumentations of data representation to view and 

interact with the data storage. While an extensive demand for 

MapReduce knowledge was raised in previous methodologies 

to access and query the data, BDS excludes the need for broad 

MapReduce knowledge by proposing various data 

organization and representation approaches to allow quick 

and easy access to the data. Based on the data formats, data in 

BDS storage can be grouped into two types: tabular and non-

tabular data. 

The former is stored in HBase. Next, to provide access to 

the data via HBase query mechanisms, BDS suggests a SQL 

Skin on top of HBase, such as Phoenix. While previous 

approaches would require HBase scans to query the data in 

HBase storage, our approach is to perform distributed queries 

over HBase using SQL statements. This approach allows 

users to query tabular data in semi-structured formats using 

SQL queries either via BDS UIs or user-applications. Besides 

SQL, BDS also supports SPARQL queries to extract 

structured data, like triples. 

The latter is media files such as images, audios, videos, 

etc. stored in HDFS. MapReduce is effective to handle 

accessing and querying data residing in HDFS. However, it is 

not a trivial task to represent images in a standard float image 

using MapReduce. To address this problem, BDS exploits 

HIPI to access these files from HDFS. HIPI creates HIB for a 

large set of images, which contains an index file. The unit 

functions of BDS works by running two important steps. 

Firstly, the function looks for the image location in the index 

file of HIB. This is considered an efficient process as it allows 

us to easily access images across the data file of HIB without 

being required to read in every image. Secondly, it performs 

a parallel job to encode and decode a specific image of the 

HIB in the MapReduce pipeline. This job results in standard 

float images to present. 

 

Observatory Hosted By Features 

Southampton Web Observatory 

(SUWO) 

https://wobs.soton.ac.uk/ 

Southampton University Harvesting, querying, and analyzing multiple real-

time and historic heterogeneous data and 

visualization, while providing data owners access 

control to their resources 

 

Collaborative Online 

Social Media 

Observatory (COSMOS) 

http://www.cs.cf.ac.uk/cosmos/ 

 

Cardiff University Contains social media research data especially 

Twitter, privacy protection and deception of data 

collection, visualization, and dissemination of social 

media data 

 

OSoMe (awesome) 

http://truthy.indiana.edu/ 

Indiana University of 

Bloomington, USA 

Focusing on media and technology in society, and 

curbing the spread of misinformation online and the 

manipulation of social media (tools, findings, 

publications, and resources) 

 

National University of Singapore 

https://nextcenter.org/ 

National University of 

Singapore (NUS) 

and Tsinghua University of 

China 

 

Analyzing heterogeneous data (social media) 

visualization, data analysis (especially unstructured 

data analysis for finance and marketing) 

 

SONIC Northwestern Observatory 

http://sonic.northwestern.edu/ 

SONIC Lab Northwestern 

University 

Provides several inventory datasets such as social 

media data; journal publication data; etc., external 

datasets, and also visualization 

Table 1. Features of different web observatories 
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Figure 4. A comparison of REST and REST-HATEOAS 

 

 
Figure 5. Data storage architecture of big data system 

 

4) Data sharing 

The designing of data sharing architecture is classified into 

two main steps entailing user access controls and API access 

controls. The former two roles are defined: users and owners. 

Registered and anonymous are two types of users. BDS only 

permits registered users to be able to publish datasets and 

grants them as the dataset owners. The owners demonstrate 

capabilities of controlling access permissions. They 

demonstrate full controls over the datasets. The dataset 

owners exhibit three options to determine the basic 

permission of their datasets. The first option is public, where 

the shared datasets allow for any users and applications to 

view and access. The second one is displayed, where the 

shared datasets are visible for any users; however, they only 

can be accessed by authorized users from their owners. The 

last one is private, where the shared datasets are only visible 

and accessible by the owners, unless they explicitly grant for 

a specific user to view and access it. The possibility exists for 

users to ask permission to access datasets, as long as they are 

already visible to them. They cannot request the datasets 

invisible for them. Dataset owners are either granting or 

denying the request. Each user exhibits a unique view of the 

catalog of shared datasets. BDS will render the corresponding 

view according to their permissions. 

The latter prominent feature of data sharing architecture 

is to support accessing APIs for querying datasets in BDS. 

The query API is designed to ease end-users for performing 

analytics on top of data and provide better reusing of data. The 

query API includes two basic components, mechanisms of 

authentication and authorization and RESTful API. 

Authentication and authorization are achieved by adopting 

OAuth2, which was widely used to authorize an application 

on behalf of a user. OAuth2 defines four different roles [32], 

as follows: (i) Dataset owner, which demonstrates a full-

control of access on a protected dataset, (ii) Dataset server, 

which hosts the protected dataset, (iii) Client, which is an 

application that acts on behalf the dataset owner and inherits 

its authorization, (iv) Authorization Server, which issues an 

access token to a client if the dataset owner provided the 

original credential. 

The flow of OAuth2 involves five steps. First, a client 

requests an authorization from the dataset owner using a 

HTTP protocol. Secondly, if the owner of dataset responds 

positively, they will grant an authorization code to the client. 

Third, the client sends the authorization code to authorization 

server. Fourth, the authorization server receives the 

authorization code, exchanges it with an access token, and 

sends it back to the client. Finally, by providing an access 

token, the client accesses the dataset from resource server. 

The use of OAuth2 assures that both public and private 

datasets can be accessed in a secure way using RESTful API. 

5) Metadata management 

The intention of BDS to publish, share, and integrate research 

data is to augment values of transparency and self-

empowerment to improve efficiency and effectiveness in 

conducting researches. To reach those full potentialities, BDS 
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publishes a set of rich metadata. These metadata enable 

datasets to discover, understand, and integrate by external 

web resources. 

BDS applies a metadata model, namely DCAT (Data 

Catalogue Vocabulary). DCAT is a catalog for describing 

datasets and data services, which is built using a standard 

model and vocabulary, namely RDF [22]. Three 

considerations to use DCAT are present. Firstly, it eases the 

usage and aggregation of metadata from different catalogs. 

Secondly, it enhances the discoverability of datasets and data 

services as it is published on machine-readable data formats. 

Lastly, data catalogs can be published in a distributed way, 

and the possibility exists to make federated query across 

catalogs in multiple servers as they are built on a standard 

model and vocabulary. 

BDS involves three kinds of important information, such 

as the following: access, license, and provenance in the 

metadata catalog. The access information provides users 

information on how to access data dumps or to query data 

using endpoints. The license information describes a clear 

statement related to the legality to use, share, and distribute 

datasets. For licensing, BDS implements Creative Commons 

Licenses, as they were used widely in industries. The licenses 

will be accepted around the world and will never expire as 

long as the copyright is also applicable (because they are built 

on copyright). For consideration of permissions, copyrights, 

and attributions, we accommodate six types of licenses (CC 

BY, CC BY-SA, CC BY-NC, CC BY-NC-SA, CC BY-ND, 

& CC BY-NC-ND) [33]. For the provenance information, we 

include the time when a dataset is generated for the first time. 

Figure 6 shows an excerpt of the metadata catalog of BDS. 

 

 
Figure 6. An excerpt of semantic metadata catalog 

 

IV. Result and Discussion 

In this section, we discuss some BDS User Interfaces (UIs) 

indicating its features as well as two use cases. The first use 

case is to demonstrate the suitability of BDS to support data 

access and sharing in building movie classification models, 

while the last is to exhibit supporting BDS in performing 

SPARQL query federation. 

A. User interface 

As the security system is designed to implement OAuth2, 

BDS allows users to perform a social login using their social 

media account, i.e., Google, Facebook, and Github. This way 

does not require users to do a registration process. The 

registration is only mandatory for a user who does not want to 

log in using social media. Successful registration permits 

users to log in by filling the text boxes of username or email 

and password. To accommodate this scenario, Figure 7 

indicates a login page. 

BDS presents an UI for managing a dataset which contains 

two main sections: top (Figure 8) and bottom (Figure 9). As 

described in data sharing section, only a registered user can 

input a dataset, so that a user which is logging in will be 

displayed on top right corner of Figure 8. The top section 

involves ten inputs: name, description, research group, 

organization, website, tags, cited as, published, generated, and 

license. The cite input guides users how to cite a dataset they 

use. The input of the organization is to specify what 

organization the data owner is from. According to the cited as, 

the number of citations per dataset or user can be known. 

Moreover, it is combined with the information of organization 

and will produce the total number of citations per 

organizations. This may benefit for organizations when they 

are being assessed by an official higher education assessor. 

The licensing design, as shown in the license input in Figure 

8, will explain the copyright grant from the owner of the 

dataset to the dataset user using a standard way, which is well 

known in the industry. The addition of the published date and 

generated date fields in Figure 8 is intended to an UI that 

supports the provenance of dataset. This way enables it to 

trace the originality of the dataset owner and to ensure its 

originality and value. 

 

 
Figure 7. Login page 
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The bottom section contains three tabs related with 

supporting files of the dataset and the Query Browser tab. The 

first tab, local files, consists of a button and a table. The table 

is designed to display all supporting files of the dataset, which 

were stored in in HDFS or HBase. BDS can store various files 

in different formats and sizes, as illustrated in Figure 9. To 

add a new file is simply done by clicking the Add Files button, 

while the Edit and Delete buttons in the last column of the 

table are used to modify and delete an existing file, 

respectively. Following, pressing the Add Files or Edit button 

is next, a form as shown in Figure 10 appears. The Add/Edit 

File form exhibits six inputs: file name, description, file 

location, alias, permission, and shared to. The two first inputs 

are for naming and describing a file, while the third is for 

locating a file to store in the big data storage. The fourth is to 

determine whether the specific file (csv, json, txt, or xls) is 

queryable or not. If it is yes then the input is required to be 

filled with an alias name. For a sql file, the dataset owner does 

not require it to specify an alias. Either the queryable file or 

the sql file, BDS, will parse it. Subsequently, it creates tables 

and loads data into HBase storage. BDS provides the owner 

to arrange the file permission, i.e., public, displayed, or 

private. Successful operation will appear in the table on the 

Local Files tab, as shown in Figure 9. On the Remote Files 

tab, it provided inputs to locate a remote file and its 

description as well as notes to use it. This file may be stored 

in storage of the dataset owner or somewhere in third-party 

storage. The third tab is to keep favorite images so one of them 

can be selected to be an image profile of the user. 

The last tab is dedicated to browsing the data by supplying 

queries with either SQL or SPARQL. This feature may be a 

unique design concept that is distinguished from other 

research portals especially the ones in Indonesia. The feature 

can query different file formats using a SQL query. BDS also 

provides another feature for querying semantic data using a 

SPARQL query. Figure 11 demonstrates a SQL query to join 

four existing different files: skripsi_salsa.sql, test_score.csv, 

interview_score.json, and employee.xlsx, respectively. In 

Figure 11, vacancy represents a table from the sql file, while 

employee symbolizes a from the xls file. While the other two 

test_score and interview_score tables denote the csv file and 

the json file. Figure 11 shows that our approach can combine 

data in different formats using a single SQL query, while 

Figure 12 shows the use of SPARQL to query the ontology 

file called skripsi_salsa.owl. Figure 11 and 12 exposes that the 

design of the portal equips users with two powerful query 

languages to explore datasets published in the portal. These 

features offer flexibility for users to make custom queries for 

their own purposes. Also, these allow users to download 

query results as csv, json, or xls files. 

 

 
Figure 8. Dataset entry page (top section) 

 

 

 
Figure 9. Dataset entry page (bottom section) 
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Figure 10. Add file page 

 

 
Figure 11. SQL query results 

 

 
Figure 12. SPARQL query results 
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B. The use case of movie popularity classifications 

To demonstrate this use case in building classification models 

for movie popularities, we involved two large files stored in 

BDS: moviesdb.sql and moviesdb.rdf, in which, the sizes of 

them are around 7 GB. Three steps of knowledge discovery, 

i.e., data selection, data transformation, and data mining, were 

performed to generate the classification models. 

C. Data selection 

The main data source used is from IMDb (ftp://ftp.fu-

berlin.de/misc/movies/database/frozendata). There are two 

considerations to use IMDb dataset instead of datasets of 

Kaggle, data.world or Academic Torrents. Firstly, the IMDb 

is arguably the most complete movie data freely available on 

the internet. Secondly, we intend to integrate the IMDb data 

wither other related data sources. The high-level schematic of 

the integration of nine data sources (IMDb list files, DBpedia, 

Wikidata, and the following six websites: IMDb, 

BoxOfficeMojo, FilmAffinity, Metacritic, MovieMeter & 

RottenTomatoes) to create an integrated movie database is 

shown in Figure 13. The movie database is in the form of 

MySQL database and can be generated into a set of SQL 

scripts, namely moviesdb.sql. Subsequently, we write the 

script in Java, to convert the movie database into a file namely 

moviesdb.rdf, which contains a set of RDF data. Both 

moviesdb.sql and moviesdb.rdf are stored in BDS to be used 

to the purpose of knowledge discovery. 

D. Data transformation 

We generate two ready datasets for classification purposes: 

IMDb and IMDb+, which contain notable attributes in 

affecting the future of movies. All the datasets involved 6,287 

movies for analysis and classification purposes. Those movies 

are gathered from the integrated movie database by applying 

five filters. The first filter is movies released between 1990 

and 2017. As argued by Asad et al. [34] movies released after 

the year 2000 fell around the same time which delighted in 

the product of innovation [34]. However, finding movies in 

the low ratings in these periods is hard. Therefore, we made 

the range of movies released years wider. We believe that the 

wider the year range produces more possibilities to get movies 

with high, medium, and low ratings. 

The second and third ones are English movies released in 

the USA. As suggested by Asad et al. [34], the IMDB list files 

potentially contain more movie data based on the English 

language and released in the USA. The fourth one is only 

movies receiving more than 1,000 user votes. As mentioned 

by Saraee et al. [35], the fourth filter was applied to eliminate 

the bias of an unknown movie with a few high votes. The last 

filter is only movies listed in DBpedia, IMDb list files 

(movies.lst), and IMDb website. The reason to apply this filter 

is that DBpedia provides links to Wikidata. Subsequently, 

Wikidata provides links to the other resources, such as the 

BoxOfficeMojo, IMDb, and Metacritic websites. Therefore, 

the consideration to use only movies provided in DBpedia as 

the data training is for the ease of data integration. 

 
Figure 13. A high-level schema to create the Integrated DB 

 

To build a dataset for the classification purpose, defining 

input attributes and an output attribute is required. The input 

attributes are factors possibly recognized as the success factor 

of a movie to get a high rating from users. Table 2 summarizes 

the input attributes of the IMDb dataset with a total number 

of 16 attributes. The IMDb dataset is generated from only one 

data source, namely the IMDb file list, while the IMDb+ 

dataset is an extension of the IMDb dataset with the addition 

of seven new input attributes, as shown in Table 3. Therefore, 

the total number of attributes of the IMDb + dataset is 23. 

The main transformation in the generation of the IMDb 

and IMDb+ datasets was to calculate the numerical rankings 

for actors, actresses, and directors, as was performed by 

Saraee et al. [35] and Asad et al. [34]. Other inherent movie 

attributes from the IMDb list files that may be useful to 

predict the future popularity of a movie are cinematographers, 

composers, costume designers, distributors, editors, 

production companies, product designers, and writers. To the 

best of our knowledge, those attributes were not investigated 

by other researchers as the consideration factors to the future 

success of movies. We used the sum function only to get a 

distributor rating, while the other attributes used the average 

function to get the ratings. We believe more distributors 

involved in marketing a movie will increase that movie’s 

likelihood of popularity. 

Determining an output attribute is mandatory. We 

considered using user rating as provided by IMDb. IMDb 

provides a rating scale between 0 and 10, and every IMDb 

user can vote their favorite movie. Movie rating is a weighted 

average vote, and the value is continuous. To complete the 

aim of analysis and classification, we generalized the 

continuous numeric value of the average of voting into four 

categories, as shown in Table 3. This approach was used by 

previous researchers [34]-[36]. The SQL query to generate the 

IMDb dataset is shown in Figure 14, while the SPARQL 

query to extract data for composing the IMDb+ dataset is 

indicated in Figure 15. The popularity of the film has 4 classes 

as output with details of the rating range in Table 4, which 

consists of excellent, average, poor, and terrible. 

 

Table 2. Summary of input attributes of the IMDb Dataset 

Attribute Name Math Operation Values References 

Actor Rank Sum Positive Numbers (Asad et al., 2012; Saraee et al., 2004) 

  

Actress Rank Sum Positive Numbers (Asad et al., 2012; Saraee et al., 2004) 

 

ftp://ftp.fu-berlin.de/misc/movies/database/frozendata
ftp://ftp.fu-berlin.de/misc/movies/database/frozendata
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Attribute Name Math Operation Values References 

Budget Discretization 1,2,3, 4,5,6,7,8.9 (Asad et al., 2012; Saraee et al., 2004; Afzal and Latif, 

2016) 

 

Cinematographer 

Rank 

Average Positive Numbers  

 

Competition 

 High, Medium, Low (Simonoff and Sparrow, 2000)  

 

Composer Rank 

Average Positive Numbers  

Costume Designer  

 

Rank 

Average Positive Numbers  

Director Rank Average Positive Numbers (Asad et al., 2012; Saraee et al., 2004) 

 

Distributor Rank Sum Positive Numbers 

 

 

Editor Rank Average Positive Numbers 

 

 

Genre  Action, adventure, 

thriller, biography, 

crime, drama, 

horror, comedy, 

fantasy, animation, 

mystery, music, war, 

documentary, 

romance, sci-fi, 

western, family, 

sport, short 

 

(Asad et al., 2012; Sharda and Delen, 2006) 

MPAA  R, PG, PG-13, G, NR (Afzal and Latif, 2016; Simonoff and Sparrow, 2000; 

Sharda and Delen, 2006) 

Production 

Company Rank 

 

Average Positive Numbers  

Production 

Designer Rank 

 

Average Positive Numbers  

Production Rank 

 

Average Positive Numbers  

Writer Rank Average   

Table 2. Summary of input attributes of the IMDb Dataset 

 

Table 3. Additional input attributes of the IMDb+ Dataset 

Attribute Name Math Operation Values Data Source References 

Golden Globe 

Nominee 

 Positive Integers IMDb Website (Afzal and Latif, 2016; Simonoff and 

Sparrow, 2000)  

 

Golden Globe 

Win 

 Positive Integers IMDb Website (Afzal and Latif, 2016; Simonoff and 

Sparrow, 2000) 

 

Metascore  Positive Integers Metacritic 

Website 

(Afzal and Latif, 2016; Simonoff and 

Sparrow, 2000) 

 

Opening Gross Discretization 1,2,3,4,5,6,7,8,9 BoxOfficeMojo 

Website 

(Afzal and Latif, 2016; Simonoff and 

Sparrow, 2000) 

 

Opening Theaters  Positive Integers BoxOfficeMojo 

Website 

(Afzal and Latif, 2016; Simonoff and 

Sparrow, 2000; Sharda and Delen, 2006) 

 

Oscar Nominee  Positive Integers 

 

IMDb Website  



Budiprasetyo et al. 358 

Attribute Name Math Operation Values Data Source References 

Oscar Win  Positive Integers IMDb Website (Afzal and Latif, 2016; Simonoff and 

Sparrow, 2000) 

Table 3. Additional input attributes of the IMDb+ Dataset 

 

 

Class Rating 

Excellent 7.5–10 

Average 5–7.4 

Poor 2.5–4.9 

Terrible 1–2.4 

Table 4. The output attribute of the IMDb and IMDb+ Datasets 

 

 

 
Figure 14. The SQL query to generate the IMDb Dataset 

 

 
Figure 15. The SPARQL query to compose the IMDb+ Dataset 
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E. Data mining 

In utilizing the IMDb and IMDb+ datasets to predict the future 

popularity of films, we employ five classifiers: Artificial 

Neural Network (ANN), Decision Tree (DT), k-NN, Rule 

Induction (RI), and Support Vector Machine (SVM). 

Advantages of neural networks include the following:  to 

model complex dynamic systems on a wide variety of 

applications with low mathematical calculation requirements 

[37]. Decision Tree is robust in its imperviousness to noise, 

flexible in dealing with redundant attributes, and generates 

models at a low computational cost [38]. k-NN is a lazy 

learner that uses the training dataset as a lookup table with the 

aid of which they can match input variables to achieve the 

desired outcome [39]. k-NN is a simple supervised learning 

learning algorithm that is easy to implement [40]. RI is a 

classifier that demonstrates the ability to classify unknown 

data and to produce if-then rules in a simple form easily 

understood by non-expert users. 

Predictive tasks turn future uncertainties into usable 

probabilities [41]. Therefore, selecting appropriate methods 

for testing the quality of a predictive model is imperative. The 

measurement of standard metrics (Accuracy, Precision, 

Recall) for measuring classification performances is often 

based on the confusion matrix. Besides these three metrics, 

we consider one additional measure, namely the F-Measure. 

As mentioned by Ference et al. [42], F-Measure can be 

beneficial to select the most well-suited hyperparameters. 

Secondly, it balances the performance of the classes 

when a substantial class imbalance is found in a dataset. We 

selected a popular method to test and evaluate classification 

models, which are k-fold cross-validation. The setting of the 

k-value to get a broad research context or not, adapted to 

research needs [43]. In this work, we set k = 10. In the 10-fold 

cross-validation, the data set is divided into ten subsets and 

repeated in ten iterations. Over each iteration, one subset is 

leveraged as the testing data, while the nine subsets are 

utilized as training data. Across all ten trials, performance 

statistics are calculated. 

The classification results yielded from each classifier 

using the IMDb and IMDb+ datasets are shown in Table 5 and 

Table 6, respectively. Applied to the two datasets, the two 

highest F-Measure value were achieved by k-NN and RI. In 

the IMDb dataset, the comparison is 83.47% and 82.02%, 

while the IMDb + dataset contributes to 86.33% and 82.75%. 

The results also suggest that the addition of input attributes 

from external data sources in the IMDb+ dataset can improve 

classification performances using the IMDb dataset. This is 

in-line with the advocate by Ristoski and Paulheim [3], in 

which the addition of background knowledge from different 

data sources exhibits the potential to improve data mining 

results. The use of background knowledge to enrich datasets 

is similar with the adding of new axioms, concepts, properties, 

and rules into an existing ontology in the process of ontology 

enrichment. Zaouga and Rabai [44] demonstrated the 

ontology enrichment was able to improve the performance of 

a decision support system to mitigate risks in project 

management.  

Compared with previous works in classifying movie 

popularities, Asad et al. [34] achieved the best accuracy using 

the PART classifier for 77.72%, and the highest accuracy was 

gained by Afzal and Latif [36], with 84.34% using the 

classifier of Simple Logistic. Our results using the IMDb and 

IMDb+ datasets as indicated in Table 5 and Table 6 are much 

better, and the lowest accuracy was produced by SVM for 

84.23% and 85.26%, respectively, while the best accuracy 

achieved was 89.62% using RI on the IMDb and 91.19% 

using k-NN on the IMDb+. As k-NN is a non-parametric 

classifier that supports non-linear solutions and tunes a few 

hyperparameters. Meanwhile, the IMDb+ having more 

attributes than the IMDb which may affect the IMDb+ to be 

more non-linear.  This is one of the reasons why k-NN is 

better than other classifiers when working with the IMDb+. 

The best classifier is very likely to change when the 

hyperparameters tuning is applied. 

 

Classifiers Accuracy Precision Recall F-Measure 

ANN 86.59 81.58 74.86 78.20 

Decision Tree 84.38 81.68 72.83 77.00 

k-NN 89.19 85.36 81.66 83.47 

Rule Induction 89.62 88.88 76.15 82.02 

SVM 84.23 81.35 65.41 72.52 

Table 5. Percentage of classification results of the IMDb 

dataset 

 

Classifiers Accuracy Precision Recall F-Measure 

ANN 88.32 83.57 78.26 78.20 

Decision Tree 85.02 83.05 71.34 76.75 

k-NN 91.19 88.44 84.32 86.33 

Rule Induction 89.79 89.83 76.71 82.75 

SVM 85.26 81.50 68.61 74.62 

Table 6. Percentage of classification results of the IMDb+ 

dataset 

F. The use case of SPARQL query federation 

One of the advanced features of linked data is to interlink 

documents, data, people and organizations in various and 

often unexpected ways [45]. The moviesdb.rdf file contains 

information for a film entitled The Revenant (2015), with id 

3591049 and an URL to DBpedia. For instance, providing 

information about what notable works were done by The 

Revenant’s director is required. Leveraging the linked data 

principles, we address this question by interlinking the local 

moviesdb.rdf dataset to external DBpedia datasets to gain 

information enrichment. BDS supports SPARQL 1.1, which 

one of the features, namely SERVICE, is to be used to 

implement a federated SPARQL query. Federated SPARQL 

processing systems enable the execution of queries distributed 

over multiple SPARQL endpoints [45]. The fusion of 

information between the local dataset and the external dataset 

using the SPARQL federated query is shown in Figure 16. We 

queried to moviesdb.rdf to retrieve information such as the 

following: movie id, movie title, director, and DBpedia URL 

of the corresponding movie. The movielinks variable was 

utilized to join between these results and DBpedia SPARQL 

Endpoint. The use of movielinks as a subject and a director 

ontology of DBpedia as a predicate were applied to fetch the 

URI of The Revenant director. A triple consisting of the 

director URI as a subject and a notableWorks property of 

DBpedia as predicate were used to retrieve the notableWorks 

URI. Finally, the composition of the notableWorks URI as 

subject and a rdfs:label as predicate were leveraged to get a 
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list of notableWorks. The list consists three notable works of 

the director, as indicated in Figure 16. 

V. Conclusion 

This work accomplished one of the three stages of 

implementing BDS based on software enhancement (There 

are additional features customized to the research data). In the 

design stage a decouple architecture of BDS consisting of four 

components was produced, i.e., front-end, back-end, API, and 

user-application. This work also presented two use cases of 

BDS. 

The front-end component is responsible to interact 

between either users or user-applications and BDS. The UIs 

of login and entry dataset pages are beneficial in three folds. 

Firstly, realistic, they are the images of the final product that 

even the development stage did not start yet. Secondly, they 

are easy to be changed by fixing in the design step is easier 

rather than later in the development one when coding 

processes are starting. Thirdly, they are satisfying because 

they are naturally acceptable and closely favor with the final 

BDS. 

The back-end component was planned for exhibiting five 

core capabilities. The first one is to manage types and formats 

of data. The second one is data storage management. This way 

prepares storage mechanisms for large size files in different 

formats in a distributed manner to minimize I/O or resource 

bottlenecks. The third is data query management, which 

supports queries over different file formats using the most 

popular query language, SQL. It also assists users in working 

with triple data claimed as machine-understandable data using 

the SPARQL query. The fourth is data sharing management 

(public, displayed, and private) to limit users in accessing 

datasets. BDS places mechanisms of authentication and 

authorization using OAuth2 before user-applications can 

access data via APIs. The fifth is metadata management. BDS 

is intended to be able to discover, understand, and integrate 

by external web resources. To address those challenges, BDS 

published a metadata catalog based on a standard model and 

vocabulary and in a distributed way (leverages DCAT to 

manage the metadata system). 

BDS also is equipped with components of API and user-

application. The API component adapts RESTful API 

HATEOAS. It is more advantageous, compared with the 

standard API in two ways. The former is embedding 

hyperlinks and controls, while the latter is to provide a 

browsable navigation system. The user-application 

component is purposed to make BDS can be broadly accepted. 

More users and applications can connect, collaborate, and 

integrate into leveraging research data to improve existing 

researches.  

 

 

 

 
Figure 16. The federated SPARQL query to fuse information between two datasets 

 

Two case studies are provided as a manifestation of the 

use of BDS, the first using the IMDb and IMDb+ data sets to 

predict the popularity of films in the future, using five 

classifiers (ANN, DT, k-NN, RI, and SVM). This first use to 

show that in BDS we can take advantage of available datasets 

available on BDS and then process them using several 

classifiers using the available APIs on BDS. Second is the 

SPARQL query federation use case. The second use to show 

BDS features in the form of advanced features of linked data 

that connect documents, data, people, and organizations. The 

next paper would be a discourse of developing BDS.  
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