
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 14 (2022) pp. 347-362

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 27 August, 2021; Accepted: 10 May, 2022; Publish: 3 June, 2022

Big Data System of Research Data in The

Informatics Department Based on Software

Enhancement

Gunawan Budiprasetyo1, Yoppy Yunhasnawa2, Mustika Mentari3 and Dito Cahya Pratama4

1 State Polytechnic of Malang,

Jl. Soekarno Hatta No.9, Malang 65141, East Java, Indonesia

Telp: (+62341) 404424, Fax: (+62341) 404420

gunawan.budi@polinema.ac.id

2 State Polytechnic of Malang,

Jl. Soekarno Hatta No.9, Malang 65141, East Java, Indonesia

yunhasnawa@polinema.ac.id

3 State Polytechnic of Malang,

Jl. Soekarno Hatta No.9, Malang 65141, East Java, Indonesia
must.mentari@polinema.ac.id

4 State Polytechnic of Malang,

Jl. Soekarno Hatta No.9, Malang 65141, East Java, Indonesia

ditocahyapratama717@gmail.com

Abstract: Research data between Indonesian institutions such

as universities are mainly managed in an isolated way between

research groups, thus creating difficulties in unveiling

potentially rich insights within the groups. There would be

considerably arduous tasks to explore research evolutions and

formulate novelties using the current systems. Therefore, an

urgent software enhancement in the form of a platform with

various additional features is required to share data in a secure

and controllable environment as well as to encourage the

accountability and reproducibility of the research data. This

paper presents a big data architecture, which is a scheme of big

data system with four components for the development, which

exhibits capabilities to store, query, download, and cite

heterogeneous research data, at the same time giving data

proprietors to get control of their assets. Review of designs are

done from various implementations of web, mobile and

institutional platforms where large data management are

applied to develop big data system (BDS) functions and its

constituents. BDS is a system that contains technologies that

process and analyze a large amount of data. The subsequent

design has demonstrated an effective front-end component and

adequate back-end component by utilizing five core capabilities

that exhibit BDS control and data management by using the

IMDb and IMDb+ data sets to predict the popularity of films

with several classifiers. The adoption of specific API has also

given further advantage which gives more controls in the

navigation system uses SPARQL query federation.

Keywords: Big Data, Research Data, Decoupled.

I. Introduction

Many informatics departments in universities manage for

improving the ability and focus of academic staffs by

grouping them into research groups. Also, the existence of

group of studies assists students in getting relevant topics for

their projects. Each research group regularly conducts

academic works and contrives research data annually, and

heterogeneous data are generated from these research

activities. Not to mention, the external research data are

produced by other universities, governments, and industries.

This may lead to a rich set of high-volume, high-variety, high-

velocity, high-veracity, and high-value of data of research

activities [1]. Moreover, each research group usually restrains

their own data. However, herein lays the drawbacks. It is

considerably cumbersome to discover historic research data,

to evaluate evolution of the research, and to formulate

novelties of future research. This can potentially cause

research recurrence and a lack of innovation. It is envisaged

to remove these barriers by providing an adequate research

data management to deal with archiving, compliance, security,

privacy, sharing, and reuse [2]. This collaborative data

sharing can reveal the potential benefits of the data and to

allow more researchers to engage. The use of more data from

different sources may derive additional knowledge and lead

to improve the result of knowledge discovery processes [3].

Eventually, the data sharing may yield externalities and

preserve innovation, while encouraging digital literacy and

paving the ways for data-driven innovation and wealth for the

common good of society.

Extensive works exist for storing, querying, and

analyzing heterogeneous data in a timely manner. Big data

technologies are maturing and easing researchers to produce

valuable insights from large and un-uniform data. When it

Budiprasetyo et al. 348

comes to supporting the organization's goals, big data presents

substantial opportunity for more effective decision-making

[4]. According to Yang et al. [5] employed one of big data

platforms, Apache Spark, to identify depression level of

Facebook users. The selection of big data technology tools in

research by Traina et al. [6] is suitable for overcoming the

characteristics of big data techniques, namely variations and

correctness of large and complex data needs to execute. It

makes extracting quantitative data to acquire qualitative data

information in research easier [7]. Additionally, it also helps

researchers to extract various biological contexts and diseases

[8], profiling technology as a pre-discovery opportunity and

the development of clinical drugs to improvise and improve

their performance like paper [9]. However, these advantages

are overshadowed by concerns of data access, control, citation,

and ownership. As the number of research data studies is

increasingly growing, these concerns may lead to

deterioration of the full potential of big data technologies in

managing research data.

The Registry of Research Data Repositories (re3data) is

one of the approaches to address challenges regarding the

growing number of data repositories, especially in the

following problems [10]: (i) to store data in long-term

preservation and (ii) to find relevant archived data. The

re3data provides information of more than 1,000 cross-

domain data repositories [11]. Only four Indonesian data

repositories are registered at the re3data. They are USU

Institutional Repository/University of North Sumatra

Institutional Repository, RIN Data Repository, Southeast

Asian Climate Assessment & Dataset, and mycoCLAP.

However, all of them do not present data access, control,

citation, and ownership at the same time. In addition, they are

solely focused to archive research papers and not research

data. This is arguably not suitable for data integration and

interconnection between one part and another as a form of

research collaboration.

Following the challenges aforementioned, this study

presents a big data architecture, which is a scheme of big data

system (BDS) for managing research data. It allows students,

academic staff, and external parties to exchange and share

data with one other, and primarily, they can securely control

their data and ability to view, access, query, and download by

others. Also, it provides a citation feature to promote their

data to cite for accountability and reproducibility.

There are numerous novelties to this study. First, the

methodology can assist universities or industries in taking the

essential steps to establish a big data system to manage their

vast amounts of complicated data. Another notable feature of

this research is the inclusion of Hadoop, HIPI, HBase,

Phoenix, OAuth2, DCAT, and SPARQL Federated Query in

the development process. The methodological novelty of this

work is expected to increase as a result of the hybrid strategy.

Moreover, with the help of using HBase and Phoenix

approach, querying of multiple different files such as: csv,

json, sql, txt, and xls using SQL language can be performed.

Additionally, the main benefits of accomodating SPARQL

endpoints is the ease of use and flexibility to extend and link

internal datasets and external datasets. This situation provides

opportunities to perform SPARQL federated query to add

background knowledge into existing datasets.

II. Literature Review

The practice of data sharing among researchers is a common

activity in science [12]. In the university environment, in

which academic staffs demonstrate responsibilities to conduct

researches and deliver learning and teaching processes, they

require a special discussion about research data and how to

discover these to support research publications. For instance,

provided simulation resources in a digital repository for

students of the nursing faculty to receive education and

knowledge in the related subjects [13]. Chard et al. [14] term

the simplest system to manage research data as the Legacy

Research Data Portal (LRDP), which is an architecture of web

application that performs uploading and downloading

research data on its data repository based on user requests.

LRDP spreads to various applications for various purposes

under different names, such as the following: portals, science

gateways, hubs, and Web Observatories. Portal is a system

built using standard web technology that provides useful

resources, involving several stakeholders in the web portal so

that consistency of many researchers/ stakeholders can work

together and access it more easily [15]. While Lawrence et al.

[16] defines science gateways as digital platforms, either web

or mobile applications, and based on sophisticated

technologies to support communities to perform collaborative

research. Wachs et al. [17] collaborating with support tools

and hubs as a physical prototyping platform that proves the

concept of collaboration and utilization of one centralized

resource. According to Tiropanis et al. [18] defines Web

Observatory (WO) to engage Web Science researchers

meaningfully with research data.

Next, the basic requirements for research do not only deal

with managing incoming and outgoing data like a data

repository. Yet, it also requires additional access, control, and

ownership at the same time. A set of these features can be

found in the Web Observatory (WO). According to the

previous studies, the WO is a web platform which

demonstrates functionalities and capabilities as follows: (i) to

share, collect, and analyze data on the web [19], (ii) to archive

data on the web in a distributed fashion [18], (iii) to be

middleware for generating complex data from different

sources [18], [19], (iv) to harvest, query, and analyze various

real-time and historic heterogeneous data as well as to allow

data owner’s access control to their datasets [18], [20].

Aljohani et al. [21] reveals insight into Web Observatory in

the past, recently exists, and also WO in the future. Table 1

summarizes existing WOs that are created or published by

universities (Higher Education) as listed in the WO website

on the Web Science Trust [22].

Hadoop is not only for storing large data but also comprises

technology stacks to integrate data storage, data processing,

and system management. Therefore, Hadoop is appropriate to

select as a solution in the system level. Existing Relational

Database Management System (RDMS’s) is very powerful in

managing structured data; however, they do not confront to

handle big data challenges. In the Hadoop technology stacks,

NoSQL databases are growing into a standard to address the

problems of big data [23]. Based on the data model, NoSQL

can be classified into three primary types: k-value stores,

column-oriented database, and document databases. HBase is

categorized into the category of column-oriented database and

Big Data System of Research Data in The Informatics Department Based on Software Enhancement

MIR Labs, USA

349

widely used by many IT companies, such as the following:

Facebook, LinkedIn, and Twitter. It is built on the top of

Hadoop Distributed File System (HDFS), providing

capabilities of storing on multiple regions, data reapplication,

and fault tolerance.

Next, two libraries to support the stacks implementation,

Phoenix and HIPI, are reviewed and used in this work.

Phoenix is a SQL layer to insert data into HBase and supports

in parallelizing on multiple regions of a table leading to better

performance of HBase compared to RDBMS. Phoenix

enables performing parallelism over the regions in a region

server and supports secondary indexes as well as targets low

latency query over HBase tables using SQL queries [24], [25].

HIPI stands for Hadoop Image Processing Interface. It is

developed using MapReduce technology to process large-

scale images in a distributed environment [26], [27]. To

improve the performance of MapReduce in handling images,

HIPI creates a HIPI Image Bundle (HIB) to store multiple

images in one large file [28]. HIPI administers a large set of

images by providing two files: (i) a data file containing set of

images put together and (ii) an index file containing

information of images location in HIB.

Various work such as BDS research datasets have been

implemented. However, it is necessary to adjust the BDS

according to the needs of data availability and data processing

in a system that is adapted to the research data of the

informatics department. The proposed BDS architecture

features a more comprehensive mix of several BDS literature

studies that have been discussed. BDS research data from the

informatics department can be accessed by many users with

different preferences. Access data from one system, as well as

process the data using available APIs.

III. METHODOLOGY

The general overview of BDS is shown in Figure 1. BDS

contains two types of users, namely registered and

anonymous. Registered users can upload a dataset, which in

turn is called the owner. The owner can set the dataset access

permissions into three types, namely public, displayed, and

private. The displayed and private ones can only be utilized

by registered users. To use these type of datasets, registered

users must ask permission from the owner of the dataset, and

if allowed, the registered user can take full advantage of the

dataset. These advantages are being able to view, query,

access, download, and cite datasets.

BDS is proposed to exhibit seven important features.

Firstly, it allows data owners to upload their various

heterogeny datasets and regulate their permissions whether

public, displayed, or private. To access private datasets, users

are required to ask for grants from the dataset owners.

Secondly, it permits data owners to host their datasets not only

in the local storage but also in remote storages, so that, BDS

serves to be a middleware to access the data. Thirdly, it

enables users to download, visualize, and query datasets.

Fourth, BDS supports SPARQL query language. Users

exhibit opportunities to make a SPARQL joint statement to

integrate data from two or more triple data files stored either

in the local storage or remote storage based on a common

property between them. BDS also enables the use of SPARQL

federated query to merge those files with public SPARQL

endpoints. Fifth, BDS accommodates users to use the most

popular query language, SQL, to incorporate tabular data

from multiple files in the following formats: csv, json, sql, txt,

and xls, based on a linking key between them. Sixth, BDS

provides a feature for citing a dataset. Therefore, the

information about the number of citations can be gathered

either per dataset, user, or institution. This way may promote

the dataset and improve its accountability and reproducibility.

Seventh, BDS generates and publishes metadata of datasets in

the machine-readable format. This way enables external web

resources to access or harvest the description of the datasets.

Figure 1. Overview of BDS

Next, all of the features proposed are intended to engage

more students, academic staffs, and external researchers to

foster new data-driven innovations by providing a secure

environment for them to share and collaborate their research

data. To make it work, the implementation of BDS is broken

down into three main stages, i.e., design, development, and

deployment, as shown in Figure 2. The first stage is to put a

solid foundation for the further steps of the project. This paper

is focused on the design step, and it contributed to result in a

schema of the BDS. The scheme will lead the development

process of the BDS and is easily replicable to other purposes.

The last feature is directing BDS to be able to access publicly

by users. To do so, performing a set of testing in pre-

production environments is required.

In the design stage, a scheme of BDS is proposed, as shown

in Figure 3. BDS is designed as a decoupled architecture to

offer three advantages. Firstly, it benefits reconfigurability

and scalability. Secondly, it can be a solution to the problems

of performance. Thirdly, it simplifies operational complexity.

The architecture of BDS is grouped into four different

components (component that is usually used for front-end

application development): User Application, API, Front-End,

and Back-End, respectively. Each component communicates

to each other using the API component. Below, each

component in BDS will be explained.

Figure 2. Stages of the big data system implementation

Big Data System of Research Data in The Informatics Department Based on Software Enhancement

MIR Labs, USA

350

 Figure 3. A Scheme of big data system

A. User-application component

This component contains applications, agents, services, etc.

belonging to users that take advantage of BDS features. They

do not need to download datasets and store them in their local

storage. They can read datasets streams via the BDS APIs to

do data analytics. To query datasets via the use of API, a user-

application requires it to supply three parameters. The first is

an access token. The access token exhibits an expiration time

and the nature of it is reusable. The second is a dataset ID, and

the last is a query statement. Two options are present of

queries either of SQL or SPARQL. Once the user sends the

query request, it is redirected to the dataset by BDS. The

RESTful API will transfer back the result to the user. This

approach streamlines the user’s efforts in gathering readily

data for performing data analytics. Users are advocated to cite

datasets, thus respecting the ethical use of data as well as

promoting the academic work of the owner.

B. API component

BDS proposes RESTful APIs for the two following goals: to

connect among components as shown in Figure 3 and to

provide a capability for end-users to query datasets in a secure

environment, respectively. The first goal is to handle the

operations and configurations of each component in a

distributed manner, while the second goal is to allow users to

access data whether via direct access on BDS UIs or via

programmatic using user-applications.

BDS implements the RESTful API by following the

principle of HATEOAS (Hypertext as the Engine of

Application State). As argued by Garriga, et al. [29] and

Neumann et al. [30], HATEOAS comprises embed hyperlinks

and controls, so that it provides a navigation system

throughout the service web and eases a client to know what a

specific operation can be executed. As an illustration, Figure

4 indicates the comparison of REST and REST-HATEOS.

Also, this figure shows that links to view, query, and

download the dataset with id 12345 are included only if the

user with id “user12345” demonstrates a status of authorized.

BDS RESTful APIs allow consumers to locate the resource

without the need to demonstrate an upfront understanding of

the resource and its relationship.

C. Front-end component

This is the main interface in which users interact with BDS.

The development of friendly web UIs is suggested using

ReactJS, to provide non-technical or untrained users to

visualize data to get understanding of the data. More

importantly, the users can take advantages of four main

functionalities available on the front-end: (i) to manage

accounts or datasets, (ii) to search datasets, (iii) to query

datasets, and (iv) to cite datasets. This component is possible

to communicate with the back-end component and the user-

application component using the API component.

D. Back-end component

This component resides on the server-side and is responsible

for handling functionalities and servicing the components of

front-end and user-application. In this proposal, the back-end

is proposed using Java programming and exhibits

functionalities as follows: (i) data types and formats

management, (ii) data storage, (iii) data querying, (iv) data

sharing, and (v) metadata management.

1) Data type and format management

BDS provides functionality for storing various data formats,

such as the following: tabular data (structured and semi-

structured) and non-tabular data (unstructured). The

structured one allowed to store is SQL, NoSQL, and

triple/RDF (Resource Description Framework). The semi-

structured ones are tabular data in the formats of csv, text, and

spreadsheet, while the unstructured ones are non-tabular data,

images, audios, and videos. It follows an industrial standard

from Freed et al. and Melnikov [31] to naming media types of

various data formats supported in the portal. To access the

available datasets in BDS, the naming standard and

definitions of the media types are beneficial for informing

protocols and procedures.

2) Data storage

To manage data storage, BDS proposes two (HDFS and

HBase) of the Hadoop technology stacks. Figure 5 shows the

distributed data store architecture of BDS to provide

persistent storage for managing and accessing the data. These

stacks are employed to ingest and store the various incoming

data. Both HDFS and Hbase support distributed and parallel

processing to store multiple stream data. This way can

potentially minimize I/O or resource bottlenecks. To handle

Big Data System of Research Data in The Informatics Department Based on Software Enhancement 351

tabular data in BDS, both structure (SQL & NoSQL) and

semi-structure (csv, txt, & xls) data formats, a construction of

transformation engine exists to transform these files into valid

data formats. Hence, the engine can seamlessly load these

inputs into Hbase storage using Data Manipulation Language

provided by Phoenix library, such as the following: UPSERT

VALUES for the purpose of row-by-row insertion, UPSERT

SELECT for large data transfer across the same or different

tables and DELETE to remove rows permanently. The engine

leverages data definition language provided by Phoenix to

perform operations of CREATE TABLE, DROP TABLE, and

ALTER TABLE for adding/removing columns.

To deal with non-tabular data both semi-structured and

unstructured (images, audio, and video) data formats, BDS

manages to feed and insert these data into the HDFS storage.

HDFS is set up consisting of three clusters. One is purposed

for a name node, while the others are for data nodes. To store

these files into HDFS, BDS utilizes the HIPI library for

simplifying jobs. For scalability and reliability, BDS does a

parallel job of storing these data in the distributed

environment. This way keeps efficiency in processing

resource-intensive tasks, such as the following: processing

large-scale files.

3) Data querying

As a result of selecting HDFS to use, a requirement is present

to prepare instrumentations of data representation to view and

interact with the data storage. While an extensive demand for

MapReduce knowledge was raised in previous methodologies

to access and query the data, BDS excludes the need for broad

MapReduce knowledge by proposing various data

organization and representation approaches to allow quick

and easy access to the data. Based on the data formats, data in

BDS storage can be grouped into two types: tabular and non-

tabular data.

The former is stored in HBase. Next, to provide access to

the data via HBase query mechanisms, BDS suggests a SQL

Skin on top of HBase, such as Phoenix. While previous

approaches would require HBase scans to query the data in

HBase storage, our approach is to perform distributed queries

over HBase using SQL statements. This approach allows

users to query tabular data in semi-structured formats using

SQL queries either via BDS UIs or user-applications. Besides

SQL, BDS also supports SPARQL queries to extract

structured data, like triples.

The latter is media files such as images, audios, videos,

etc. stored in HDFS. MapReduce is effective to handle

accessing and querying data residing in HDFS. However, it is

not a trivial task to represent images in a standard float image

using MapReduce. To address this problem, BDS exploits

HIPI to access these files from HDFS. HIPI creates HIB for a

large set of images, which contains an index file. The unit

functions of BDS works by running two important steps.

Firstly, the function looks for the image location in the index

file of HIB. This is considered an efficient process as it allows

us to easily access images across the data file of HIB without

being required to read in every image. Secondly, it performs

a parallel job to encode and decode a specific image of the

HIB in the MapReduce pipeline. This job results in standard

float images to present.

Observatory Hosted By Features

Southampton Web Observatory

(SUWO)

https://wobs.soton.ac.uk/

Southampton University Harvesting, querying, and analyzing multiple real-

time and historic heterogeneous data and

visualization, while providing data owners access

control to their resources

Collaborative Online

Social Media

Observatory (COSMOS)

http://www.cs.cf.ac.uk/cosmos/

Cardiff University Contains social media research data especially

Twitter, privacy protection and deception of data

collection, visualization, and dissemination of social

media data

OSoMe (awesome)

http://truthy.indiana.edu/

Indiana University of

Bloomington, USA

Focusing on media and technology in society, and

curbing the spread of misinformation online and the

manipulation of social media (tools, findings,

publications, and resources)

National University of Singapore

https://nextcenter.org/

National University of

Singapore (NUS)

and Tsinghua University of

China

Analyzing heterogeneous data (social media)

visualization, data analysis (especially unstructured

data analysis for finance and marketing)

SONIC Northwestern Observatory

http://sonic.northwestern.edu/

SONIC Lab Northwestern

University

Provides several inventory datasets such as social

media data; journal publication data; etc., external

datasets, and also visualization

Table 1. Features of different web observatories

Budiprasetyo et al. 352

Figure 4. A comparison of REST and REST-HATEOAS

Figure 5. Data storage architecture of big data system

4) Data sharing

The designing of data sharing architecture is classified into

two main steps entailing user access controls and API access

controls. The former two roles are defined: users and owners.

Registered and anonymous are two types of users. BDS only

permits registered users to be able to publish datasets and

grants them as the dataset owners. The owners demonstrate

capabilities of controlling access permissions. They

demonstrate full controls over the datasets. The dataset

owners exhibit three options to determine the basic

permission of their datasets. The first option is public, where

the shared datasets allow for any users and applications to

view and access. The second one is displayed, where the

shared datasets are visible for any users; however, they only

can be accessed by authorized users from their owners. The

last one is private, where the shared datasets are only visible

and accessible by the owners, unless they explicitly grant for

a specific user to view and access it. The possibility exists for

users to ask permission to access datasets, as long as they are

already visible to them. They cannot request the datasets

invisible for them. Dataset owners are either granting or

denying the request. Each user exhibits a unique view of the

catalog of shared datasets. BDS will render the corresponding

view according to their permissions.

The latter prominent feature of data sharing architecture

is to support accessing APIs for querying datasets in BDS.

The query API is designed to ease end-users for performing

analytics on top of data and provide better reusing of data. The

query API includes two basic components, mechanisms of

authentication and authorization and RESTful API.

Authentication and authorization are achieved by adopting

OAuth2, which was widely used to authorize an application

on behalf of a user. OAuth2 defines four different roles [32],

as follows: (i) Dataset owner, which demonstrates a full-

control of access on a protected dataset, (ii) Dataset server,

which hosts the protected dataset, (iii) Client, which is an

application that acts on behalf the dataset owner and inherits

its authorization, (iv) Authorization Server, which issues an

access token to a client if the dataset owner provided the

original credential.

The flow of OAuth2 involves five steps. First, a client

requests an authorization from the dataset owner using a

HTTP protocol. Secondly, if the owner of dataset responds

positively, they will grant an authorization code to the client.

Third, the client sends the authorization code to authorization

server. Fourth, the authorization server receives the

authorization code, exchanges it with an access token, and

sends it back to the client. Finally, by providing an access

token, the client accesses the dataset from resource server.

The use of OAuth2 assures that both public and private

datasets can be accessed in a secure way using RESTful API.

5) Metadata management

The intention of BDS to publish, share, and integrate research

data is to augment values of transparency and self-

empowerment to improve efficiency and effectiveness in

conducting researches. To reach those full potentialities, BDS

Big Data System of Research Data in The Informatics Department Based on Software Enhancement 353

publishes a set of rich metadata. These metadata enable

datasets to discover, understand, and integrate by external

web resources.

BDS applies a metadata model, namely DCAT (Data

Catalogue Vocabulary). DCAT is a catalog for describing

datasets and data services, which is built using a standard

model and vocabulary, namely RDF [22]. Three

considerations to use DCAT are present. Firstly, it eases the

usage and aggregation of metadata from different catalogs.

Secondly, it enhances the discoverability of datasets and data

services as it is published on machine-readable data formats.

Lastly, data catalogs can be published in a distributed way,

and the possibility exists to make federated query across

catalogs in multiple servers as they are built on a standard

model and vocabulary.

BDS involves three kinds of important information, such

as the following: access, license, and provenance in the

metadata catalog. The access information provides users

information on how to access data dumps or to query data

using endpoints. The license information describes a clear

statement related to the legality to use, share, and distribute

datasets. For licensing, BDS implements Creative Commons

Licenses, as they were used widely in industries. The licenses

will be accepted around the world and will never expire as

long as the copyright is also applicable (because they are built

on copyright). For consideration of permissions, copyrights,

and attributions, we accommodate six types of licenses (CC

BY, CC BY-SA, CC BY-NC, CC BY-NC-SA, CC BY-ND,

& CC BY-NC-ND) [33]. For the provenance information, we

include the time when a dataset is generated for the first time.

Figure 6 shows an excerpt of the metadata catalog of BDS.

Figure 6. An excerpt of semantic metadata catalog

IV. Result and Discussion

In this section, we discuss some BDS User Interfaces (UIs)

indicating its features as well as two use cases. The first use

case is to demonstrate the suitability of BDS to support data

access and sharing in building movie classification models,

while the last is to exhibit supporting BDS in performing

SPARQL query federation.

A. User interface

As the security system is designed to implement OAuth2,

BDS allows users to perform a social login using their social

media account, i.e., Google, Facebook, and Github. This way

does not require users to do a registration process. The

registration is only mandatory for a user who does not want to

log in using social media. Successful registration permits

users to log in by filling the text boxes of username or email

and password. To accommodate this scenario, Figure 7

indicates a login page.

BDS presents an UI for managing a dataset which contains

two main sections: top (Figure 8) and bottom (Figure 9). As

described in data sharing section, only a registered user can

input a dataset, so that a user which is logging in will be

displayed on top right corner of Figure 8. The top section

involves ten inputs: name, description, research group,

organization, website, tags, cited as, published, generated, and

license. The cite input guides users how to cite a dataset they

use. The input of the organization is to specify what

organization the data owner is from. According to the cited as,

the number of citations per dataset or user can be known.

Moreover, it is combined with the information of organization

and will produce the total number of citations per

organizations. This may benefit for organizations when they

are being assessed by an official higher education assessor.

The licensing design, as shown in the license input in Figure

8, will explain the copyright grant from the owner of the

dataset to the dataset user using a standard way, which is well

known in the industry. The addition of the published date and

generated date fields in Figure 8 is intended to an UI that

supports the provenance of dataset. This way enables it to

trace the originality of the dataset owner and to ensure its

originality and value.

Figure 7. Login page

Budiprasetyo et al. 354

The bottom section contains three tabs related with

supporting files of the dataset and the Query Browser tab. The

first tab, local files, consists of a button and a table. The table

is designed to display all supporting files of the dataset, which

were stored in in HDFS or HBase. BDS can store various files

in different formats and sizes, as illustrated in Figure 9. To

add a new file is simply done by clicking the Add Files button,

while the Edit and Delete buttons in the last column of the

table are used to modify and delete an existing file,

respectively. Following, pressing the Add Files or Edit button

is next, a form as shown in Figure 10 appears. The Add/Edit

File form exhibits six inputs: file name, description, file

location, alias, permission, and shared to. The two first inputs

are for naming and describing a file, while the third is for

locating a file to store in the big data storage. The fourth is to

determine whether the specific file (csv, json, txt, or xls) is

queryable or not. If it is yes then the input is required to be

filled with an alias name. For a sql file, the dataset owner does

not require it to specify an alias. Either the queryable file or

the sql file, BDS, will parse it. Subsequently, it creates tables

and loads data into HBase storage. BDS provides the owner

to arrange the file permission, i.e., public, displayed, or

private. Successful operation will appear in the table on the

Local Files tab, as shown in Figure 9. On the Remote Files

tab, it provided inputs to locate a remote file and its

description as well as notes to use it. This file may be stored

in storage of the dataset owner or somewhere in third-party

storage. The third tab is to keep favorite images so one of them

can be selected to be an image profile of the user.

The last tab is dedicated to browsing the data by supplying

queries with either SQL or SPARQL. This feature may be a

unique design concept that is distinguished from other

research portals especially the ones in Indonesia. The feature

can query different file formats using a SQL query. BDS also

provides another feature for querying semantic data using a

SPARQL query. Figure 11 demonstrates a SQL query to join

four existing different files: skripsi_salsa.sql, test_score.csv,

interview_score.json, and employee.xlsx, respectively. In

Figure 11, vacancy represents a table from the sql file, while

employee symbolizes a from the xls file. While the other two

test_score and interview_score tables denote the csv file and

the json file. Figure 11 shows that our approach can combine

data in different formats using a single SQL query, while

Figure 12 shows the use of SPARQL to query the ontology

file called skripsi_salsa.owl. Figure 11 and 12 exposes that the

design of the portal equips users with two powerful query

languages to explore datasets published in the portal. These

features offer flexibility for users to make custom queries for

their own purposes. Also, these allow users to download

query results as csv, json, or xls files.

Figure 8. Dataset entry page (top section)

Figure 9. Dataset entry page (bottom section)

Big Data System of Research Data in The Informatics Department Based on Software Enhancement

MIR Labs, USA

355

Figure 10. Add file page

Figure 11. SQL query results

Figure 12. SPARQL query results

Big Data System of Research Data in The Informatics Department Based on Software Enhancement

MIR Labs, USA

356

B. The use case of movie popularity classifications

To demonstrate this use case in building classification models

for movie popularities, we involved two large files stored in

BDS: moviesdb.sql and moviesdb.rdf, in which, the sizes of

them are around 7 GB. Three steps of knowledge discovery,

i.e., data selection, data transformation, and data mining, were

performed to generate the classification models.

C. Data selection

The main data source used is from IMDb (ftp://ftp.fu-

berlin.de/misc/movies/database/frozendata). There are two

considerations to use IMDb dataset instead of datasets of

Kaggle, data.world or Academic Torrents. Firstly, the IMDb

is arguably the most complete movie data freely available on

the internet. Secondly, we intend to integrate the IMDb data

wither other related data sources. The high-level schematic of

the integration of nine data sources (IMDb list files, DBpedia,

Wikidata, and the following six websites: IMDb,

BoxOfficeMojo, FilmAffinity, Metacritic, MovieMeter &

RottenTomatoes) to create an integrated movie database is

shown in Figure 13. The movie database is in the form of

MySQL database and can be generated into a set of SQL

scripts, namely moviesdb.sql. Subsequently, we write the

script in Java, to convert the movie database into a file namely

moviesdb.rdf, which contains a set of RDF data. Both

moviesdb.sql and moviesdb.rdf are stored in BDS to be used

to the purpose of knowledge discovery.

D. Data transformation

We generate two ready datasets for classification purposes:

IMDb and IMDb+, which contain notable attributes in

affecting the future of movies. All the datasets involved 6,287

movies for analysis and classification purposes. Those movies

are gathered from the integrated movie database by applying

five filters. The first filter is movies released between 1990

and 2017. As argued by Asad et al. [34] movies released after

the year 2000 fell around the same time which delighted in

the product of innovation [34]. However, finding movies in

the low ratings in these periods is hard. Therefore, we made

the range of movies released years wider. We believe that the

wider the year range produces more possibilities to get movies

with high, medium, and low ratings.

The second and third ones are English movies released in

the USA. As suggested by Asad et al. [34], the IMDB list files

potentially contain more movie data based on the English

language and released in the USA. The fourth one is only

movies receiving more than 1,000 user votes. As mentioned

by Saraee et al. [35], the fourth filter was applied to eliminate

the bias of an unknown movie with a few high votes. The last

filter is only movies listed in DBpedia, IMDb list files

(movies.lst), and IMDb website. The reason to apply this filter

is that DBpedia provides links to Wikidata. Subsequently,

Wikidata provides links to the other resources, such as the

BoxOfficeMojo, IMDb, and Metacritic websites. Therefore,

the consideration to use only movies provided in DBpedia as

the data training is for the ease of data integration.

Figure 13. A high-level schema to create the Integrated DB

To build a dataset for the classification purpose, defining

input attributes and an output attribute is required. The input

attributes are factors possibly recognized as the success factor

of a movie to get a high rating from users. Table 2 summarizes

the input attributes of the IMDb dataset with a total number

of 16 attributes. The IMDb dataset is generated from only one

data source, namely the IMDb file list, while the IMDb+

dataset is an extension of the IMDb dataset with the addition

of seven new input attributes, as shown in Table 3. Therefore,

the total number of attributes of the IMDb + dataset is 23.

The main transformation in the generation of the IMDb

and IMDb+ datasets was to calculate the numerical rankings

for actors, actresses, and directors, as was performed by

Saraee et al. [35] and Asad et al. [34]. Other inherent movie

attributes from the IMDb list files that may be useful to

predict the future popularity of a movie are cinematographers,

composers, costume designers, distributors, editors,

production companies, product designers, and writers. To the

best of our knowledge, those attributes were not investigated

by other researchers as the consideration factors to the future

success of movies. We used the sum function only to get a

distributor rating, while the other attributes used the average

function to get the ratings. We believe more distributors

involved in marketing a movie will increase that movie’s

likelihood of popularity.

Determining an output attribute is mandatory. We

considered using user rating as provided by IMDb. IMDb

provides a rating scale between 0 and 10, and every IMDb

user can vote their favorite movie. Movie rating is a weighted

average vote, and the value is continuous. To complete the

aim of analysis and classification, we generalized the

continuous numeric value of the average of voting into four

categories, as shown in Table 3. This approach was used by

previous researchers [34]-[36]. The SQL query to generate the

IMDb dataset is shown in Figure 14, while the SPARQL

query to extract data for composing the IMDb+ dataset is

indicated in Figure 15. The popularity of the film has 4 classes

as output with details of the rating range in Table 4, which

consists of excellent, average, poor, and terrible.

Table 2. Summary of input attributes of the IMDb Dataset

Attribute Name Math Operation Values References

Actor Rank Sum Positive Numbers (Asad et al., 2012; Saraee et al., 2004)

Actress Rank Sum Positive Numbers (Asad et al., 2012; Saraee et al., 2004)

ftp://ftp.fu-berlin.de/misc/movies/database/frozendata
ftp://ftp.fu-berlin.de/misc/movies/database/frozendata

Big Data System of Research Data in The Informatics Department Based on Software Enhancement 357

Attribute Name Math Operation Values References

Budget Discretization 1,2,3, 4,5,6,7,8.9 (Asad et al., 2012; Saraee et al., 2004; Afzal and Latif,

2016)

Cinematographer

Rank

Average Positive Numbers

Competition

 High, Medium, Low (Simonoff and Sparrow, 2000)

Composer Rank

Average Positive Numbers

Costume Designer

Rank

Average Positive Numbers

Director Rank Average Positive Numbers (Asad et al., 2012; Saraee et al., 2004)

Distributor Rank Sum Positive Numbers

Editor Rank Average Positive Numbers

Genre Action, adventure,

thriller, biography,

crime, drama,

horror, comedy,

fantasy, animation,

mystery, music, war,

documentary,

romance, sci-fi,

western, family,

sport, short

(Asad et al., 2012; Sharda and Delen, 2006)

MPAA R, PG, PG-13, G, NR (Afzal and Latif, 2016; Simonoff and Sparrow, 2000;

Sharda and Delen, 2006)

Production

Company Rank

Average Positive Numbers

Production

Designer Rank

Average Positive Numbers

Production Rank

Average Positive Numbers

Writer Rank Average

Table 2. Summary of input attributes of the IMDb Dataset

Table 3. Additional input attributes of the IMDb+ Dataset

Attribute Name Math Operation Values Data Source References

Golden Globe

Nominee

 Positive Integers IMDb Website (Afzal and Latif, 2016; Simonoff and

Sparrow, 2000)

Golden Globe

Win

 Positive Integers IMDb Website (Afzal and Latif, 2016; Simonoff and

Sparrow, 2000)

Metascore Positive Integers Metacritic

Website

(Afzal and Latif, 2016; Simonoff and

Sparrow, 2000)

Opening Gross Discretization 1,2,3,4,5,6,7,8,9 BoxOfficeMojo

Website

(Afzal and Latif, 2016; Simonoff and

Sparrow, 2000)

Opening Theaters Positive Integers BoxOfficeMojo

Website

(Afzal and Latif, 2016; Simonoff and

Sparrow, 2000; Sharda and Delen, 2006)

Oscar Nominee Positive Integers

IMDb Website

Budiprasetyo et al. 358

Attribute Name Math Operation Values Data Source References

Oscar Win Positive Integers IMDb Website (Afzal and Latif, 2016; Simonoff and

Sparrow, 2000)

Table 3. Additional input attributes of the IMDb+ Dataset

Class Rating

Excellent 7.5–10

Average 5–7.4

Poor 2.5–4.9

Terrible 1–2.4

Table 4. The output attribute of the IMDb and IMDb+ Datasets

Figure 14. The SQL query to generate the IMDb Dataset

Figure 15. The SPARQL query to compose the IMDb+ Dataset

Big Data System of Research Data in The Informatics Department Based on Software Enhancement

MIR Labs, USA

359

E. Data mining

In utilizing the IMDb and IMDb+ datasets to predict the future

popularity of films, we employ five classifiers: Artificial

Neural Network (ANN), Decision Tree (DT), k-NN, Rule

Induction (RI), and Support Vector Machine (SVM).

Advantages of neural networks include the following: to

model complex dynamic systems on a wide variety of

applications with low mathematical calculation requirements

[37]. Decision Tree is robust in its imperviousness to noise,

flexible in dealing with redundant attributes, and generates

models at a low computational cost [38]. k-NN is a lazy

learner that uses the training dataset as a lookup table with the

aid of which they can match input variables to achieve the

desired outcome [39]. k-NN is a simple supervised learning

learning algorithm that is easy to implement [40]. RI is a

classifier that demonstrates the ability to classify unknown

data and to produce if-then rules in a simple form easily

understood by non-expert users.

Predictive tasks turn future uncertainties into usable

probabilities [41]. Therefore, selecting appropriate methods

for testing the quality of a predictive model is imperative. The

measurement of standard metrics (Accuracy, Precision,

Recall) for measuring classification performances is often

based on the confusion matrix. Besides these three metrics,

we consider one additional measure, namely the F-Measure.

As mentioned by Ference et al. [42], F-Measure can be

beneficial to select the most well-suited hyperparameters.

Secondly, it balances the performance of the classes

when a substantial class imbalance is found in a dataset. We

selected a popular method to test and evaluate classification

models, which are k-fold cross-validation. The setting of the

k-value to get a broad research context or not, adapted to

research needs [43]. In this work, we set k = 10. In the 10-fold

cross-validation, the data set is divided into ten subsets and

repeated in ten iterations. Over each iteration, one subset is

leveraged as the testing data, while the nine subsets are

utilized as training data. Across all ten trials, performance

statistics are calculated.

The classification results yielded from each classifier

using the IMDb and IMDb+ datasets are shown in Table 5 and

Table 6, respectively. Applied to the two datasets, the two

highest F-Measure value were achieved by k-NN and RI. In

the IMDb dataset, the comparison is 83.47% and 82.02%,

while the IMDb + dataset contributes to 86.33% and 82.75%.

The results also suggest that the addition of input attributes

from external data sources in the IMDb+ dataset can improve

classification performances using the IMDb dataset. This is

in-line with the advocate by Ristoski and Paulheim [3], in

which the addition of background knowledge from different

data sources exhibits the potential to improve data mining

results. The use of background knowledge to enrich datasets

is similar with the adding of new axioms, concepts, properties,

and rules into an existing ontology in the process of ontology

enrichment. Zaouga and Rabai [44] demonstrated the

ontology enrichment was able to improve the performance of

a decision support system to mitigate risks in project

management.

Compared with previous works in classifying movie

popularities, Asad et al. [34] achieved the best accuracy using

the PART classifier for 77.72%, and the highest accuracy was

gained by Afzal and Latif [36], with 84.34% using the

classifier of Simple Logistic. Our results using the IMDb and

IMDb+ datasets as indicated in Table 5 and Table 6 are much

better, and the lowest accuracy was produced by SVM for

84.23% and 85.26%, respectively, while the best accuracy

achieved was 89.62% using RI on the IMDb and 91.19%

using k-NN on the IMDb+. As k-NN is a non-parametric

classifier that supports non-linear solutions and tunes a few

hyperparameters. Meanwhile, the IMDb+ having more

attributes than the IMDb which may affect the IMDb+ to be

more non-linear. This is one of the reasons why k-NN is

better than other classifiers when working with the IMDb+.

The best classifier is very likely to change when the

hyperparameters tuning is applied.

Classifiers Accuracy Precision Recall F-Measure

ANN 86.59 81.58 74.86 78.20

Decision Tree 84.38 81.68 72.83 77.00

k-NN 89.19 85.36 81.66 83.47

Rule Induction 89.62 88.88 76.15 82.02

SVM 84.23 81.35 65.41 72.52

Table 5. Percentage of classification results of the IMDb

dataset

Classifiers Accuracy Precision Recall F-Measure

ANN 88.32 83.57 78.26 78.20

Decision Tree 85.02 83.05 71.34 76.75

k-NN 91.19 88.44 84.32 86.33

Rule Induction 89.79 89.83 76.71 82.75

SVM 85.26 81.50 68.61 74.62

Table 6. Percentage of classification results of the IMDb+

dataset

F. The use case of SPARQL query federation

One of the advanced features of linked data is to interlink

documents, data, people and organizations in various and

often unexpected ways [45]. The moviesdb.rdf file contains

information for a film entitled The Revenant (2015), with id

3591049 and an URL to DBpedia. For instance, providing

information about what notable works were done by The

Revenant’s director is required. Leveraging the linked data

principles, we address this question by interlinking the local

moviesdb.rdf dataset to external DBpedia datasets to gain

information enrichment. BDS supports SPARQL 1.1, which

one of the features, namely SERVICE, is to be used to

implement a federated SPARQL query. Federated SPARQL

processing systems enable the execution of queries distributed

over multiple SPARQL endpoints [45]. The fusion of

information between the local dataset and the external dataset

using the SPARQL federated query is shown in Figure 16. We

queried to moviesdb.rdf to retrieve information such as the

following: movie id, movie title, director, and DBpedia URL

of the corresponding movie. The movielinks variable was

utilized to join between these results and DBpedia SPARQL

Endpoint. The use of movielinks as a subject and a director

ontology of DBpedia as a predicate were applied to fetch the

URI of The Revenant director. A triple consisting of the

director URI as a subject and a notableWorks property of

DBpedia as predicate were used to retrieve the notableWorks

URI. Finally, the composition of the notableWorks URI as

subject and a rdfs:label as predicate were leveraged to get a

Budiprasetyo et al. 360

list of notableWorks. The list consists three notable works of

the director, as indicated in Figure 16.

V. Conclusion

This work accomplished one of the three stages of

implementing BDS based on software enhancement (There

are additional features customized to the research data). In the

design stage a decouple architecture of BDS consisting of four

components was produced, i.e., front-end, back-end, API, and

user-application. This work also presented two use cases of

BDS.

The front-end component is responsible to interact

between either users or user-applications and BDS. The UIs

of login and entry dataset pages are beneficial in three folds.

Firstly, realistic, they are the images of the final product that

even the development stage did not start yet. Secondly, they

are easy to be changed by fixing in the design step is easier

rather than later in the development one when coding

processes are starting. Thirdly, they are satisfying because

they are naturally acceptable and closely favor with the final

BDS.

The back-end component was planned for exhibiting five

core capabilities. The first one is to manage types and formats

of data. The second one is data storage management. This way

prepares storage mechanisms for large size files in different

formats in a distributed manner to minimize I/O or resource

bottlenecks. The third is data query management, which

supports queries over different file formats using the most

popular query language, SQL. It also assists users in working

with triple data claimed as machine-understandable data using

the SPARQL query. The fourth is data sharing management

(public, displayed, and private) to limit users in accessing

datasets. BDS places mechanisms of authentication and

authorization using OAuth2 before user-applications can

access data via APIs. The fifth is metadata management. BDS

is intended to be able to discover, understand, and integrate

by external web resources. To address those challenges, BDS

published a metadata catalog based on a standard model and

vocabulary and in a distributed way (leverages DCAT to

manage the metadata system).

BDS also is equipped with components of API and user-

application. The API component adapts RESTful API

HATEOAS. It is more advantageous, compared with the

standard API in two ways. The former is embedding

hyperlinks and controls, while the latter is to provide a

browsable navigation system. The user-application

component is purposed to make BDS can be broadly accepted.

More users and applications can connect, collaborate, and

integrate into leveraging research data to improve existing

researches.

Figure 16. The federated SPARQL query to fuse information between two datasets

Two case studies are provided as a manifestation of the

use of BDS, the first using the IMDb and IMDb+ data sets to

predict the popularity of films in the future, using five

classifiers (ANN, DT, k-NN, RI, and SVM). This first use to

show that in BDS we can take advantage of available datasets

available on BDS and then process them using several

classifiers using the available APIs on BDS. Second is the

SPARQL query federation use case. The second use to show

BDS features in the form of advanced features of linked data

that connect documents, data, people, and organizations. The

next paper would be a discourse of developing BDS.

Acknowledgments

The authors would like to thank the State Polytechnic of

Malang for the grant fund support through 2020 Applied

Research Grant Contract.

References

[1] A. Gandomi, M. Haider. “Beyond the Hype: Big Data

Concepts, Methods, and Analytics”, International

Journal of Information Management, 35 (2), pp. 137–

144, 2015.

Big Data System of Research Data in The Informatics Department Based on Software Enhancement 361

[2] M.I. Bellgard. “ERDMAS: An Exemplar-Driven

Institutional Research Data Management and Analysis

Strategy”, International Journal of Information

Management, 50, pp. 337–340, 2020.

[3] P. Ristoski, H. Paulheim. “Semantic Web in Data Mining

and Knowledge Discovery: A Comprehensive Survey”,

Journal of Web Semantics, 36, pp. 1–22. 2016.

[4] T. A. T. Izhar, T. Torabi, and M. Ishaq Bhatti, “Using

Ontology to Incorporate Social Media Data and

Organizational Data for Efficient Decision-Making,”

International Journal of Computer Information Systems

and Industrial Management Applications, 8, pp. 372–

385, 2016.

[5] X. Yang, R. McEwen, L.R. Ong, M. Zihayat. “A Big

Data Analytics Framework for Detecting User-Level

Depression from Social Networks”, International

Journal of Information Management, 54, pp. 102–141,

2020.

[6] A.J. Traina, S. Brinis, G.V. Pedrosa, L.P. Avalhais, C.

Traina Jr, “Querying on Large and Complex Databases

by Content: Challenges on Variety and Veracity

Regarding Real Applications”, Information Systems, 86,

pp. 10–27, 2019.

[7] L. Abberley, N. Gould, K. Crockett, J. Cheng.

“Modelling Road Congestion Using Ontologies for Big

Data Analytics in Smart Cities”. In 2017 International

Smart Cities Conference (ISC2), IEEE, pp. 1–6, 2017. 6

[8] J.F. Brothers II, M. Ung, R. Escalante-Chong, J. Ross, J.

Zhang, Y. Cha, A. Lysaght, J. Funt, R. Kusko. “Integrity,

Standards, and QC-Related Issues with Big Data in Pre-

clinical Drug Discovery”, Biochemical Pharmacology,

152, pp. 84–93, 2018.

[9] B. Gupta, A. Kumar, R.K. Dwivedi. “Big Data and Its

Applications–A Review”. In 2018 International

Conference on Advances in Computing, Communication

Control and Networking (ICACCCN), IEEE, pp. 146–

149, 2018.

[10] W.K. Michener. “Ecological Data Sharing”, Ecological

Informatics, 29 (1), pp. 33–44, 2015.

[11] H. Pampel, P. Vierkant, F. Scholze, R. Bertelmann, M.

Kindling, J. Klump, H.J. Goebelbecker, J. Gundlach, P.

Schirmbacher, U. Dierolf. “Making Research Data

Repositories Visible: The re3data.org Registry”, PloS

One, 8 (11), pp. e78080, 2013.

[12] C.L. Borgman. “The Conundrum of Sharing Research

Data”, Journal of the American Society for Information

Science and Technology, 63 (6), pp. 1059–1078, 2012.

[13] B. O'Neill, C. Ryan, S. Roy, T. Simes. “Supporting

Nursing Faculty with a Digital Repository of Simulation

Resources”, Teaching and Learning in Nursing, 15 (3),

pp. 175–180, 2020.

[14] K. Chard, E. Dart, I. Foster, D. Shifflett, S. Tuecke, J.

Williams. “The Modern Research Data Portal: A Design

Pattern for Networked, Data-intensive Science”, PeerJ

Computer Science, 4 (6), pp. 1–30, 2018.

[15] Bringula, R. P. “Influence of faculty- and web portal

design-related factors on web portal usability: A

hierarchical regression analysis”. Computers &

Education, 68, 187–198, 2013.

[16] K.A. Lawrence, M. Zentner, N. Wilkins-Diehr, J.A.

Wernert, M. Pierce, S. Marru, S. Michael. “Science

Gateways Today and Tomorrow: Positive Perspectives

of Nearly 5000 Members of the Research Community”,

Concurrency and Computation: Practice and

Experience, 27 (16), pp. 4252–4268, 2015.

[17] Zhong, H., Wachs, J. P., & Nof, S. Y. “Telerobot-enabled

HUB-CI model for collaborative lifecycle management

of design and prototyping”. Computers in Industry,

65(4), pp. 550–562, 2014.

[18] T. Tiropanis, W. Hall, J. Hendler, C. de Larrinaga. “The

Web Observatory: A Middle Layer for Broad Data”, Big

Data, 2 (3), pp. 129–130, 2014.

[19] W. Hall, T. Tiropanis. “The Web Science Observatory -

The Challenges of Analytics Over Distributed Linked

Data Infrastructures”, Computer Networks, 56 (18), pp.

3859–3865, 2012.

[20] R. Tinati, X. Wang, T. Tiropanis, W. Hall. “Building a

Real-Time Web Observatory”, IEEE Internet

Computing, 19 (6), pp. 36–45, 2015.

[21] N.R. Aljohani, R.A. Abbasi, F.M. Bawakid, F. Saleem,

Z. Ullah, A. Daud, M.A. Aslam, J.S. Alowibdi, S.U.

Hassan. “Web Observatory Insights: Past, Current, and

Future”, International Journal on Semantic Web and

Information Systems (IJSWIS), 15 (4), pp. 52–68, 2019.

[22] Web Observatories - Web Science Trust. (2019), “The

Web Science Trust (WST)”, Web Sciences Trust:

Untangling the Web of Humans and Technology, 2019.

[Online]. Available at:

https://www.webscience.org/web-observatory/

(accessed 10 December 2019).

[23] A.X.L. Han Hu, Y. Wen, T.S. Chua. “Toward Scalable

Systems for Big Data Analytics: A Technology

Tutorial”, Explore Research, 2, pp. 2–28, 2011.

[24] H.J. Kim, E.J. Ko, Y.H. Jeon, K.H. Lee. “Techniques and

Guidelines for Effective Migration from RDBMS to

NoSQL”, The Journal of Supercomputing, 76, pp. 7936–

7950, 2020.

[25] K. Gupta, A. Sachdev, A. Sureka. “Empirical Analysis

on Comparing the Performance of Alpha Miner

Algorithm in SQL Query Language and NoSQL

Column-oriented Databases Using Apache Phoenix”,

arXiv preprint arXiv:1703.05481v1, pp. 1–21, 2017. 24

[26] D.P. Augustine. “Leveraging Big Data Analytics and

Hadoop in Developing India’s Healthcare Services”,

International Journal of Computer Applications, 89 (16),

pp. 44–50, 2014.

[27] P. Ushapreethi, B. Jeyakumar, P. BalaKrishnan. “Action

Recongnition in Video Survillance Using Hipi and Map

Reducing Model”, International Journal of Mechanical

Engineering and Technology, 8 (11), pp. 368–375, 2017.

[28] C. Sweeney, L. Liu, S. Arietta, J. Lawrence. “HIPI: A

Hadoop Image Processing Interface for Image-Based

Mapreduce Tasks”, Chris. University of Virginia, 2 (1),

pp. 1–5, 2011.

[29] M. Garriga, C. Mateos, A. Flores, A. Cechich, A. Zunino.

“RESTful Service Composition at a Glance: A Survey”,

Journal of Network and Computer Applications, 60, pp.

32-53, 2016.

[30] A. Neumann, N. Laranjeiro, J. Bernardino. “An Analysis

of Public REST Web Service APIs”, IEEE Transactions

on Services Computing, 14 (4), pp. 957–970, 2018.

[31] N. Freed, A. Melnikov, M. Kucherawy. “Media Types”,

2020. [Online]. Available at:

http://www.iana.org/assignments/media-types/media-

types.xhtml (Accessed February 21, 2020).

[32] F. Maali, J. Erickson. “Data catalog vocabulary (DCAT)”,

W3C Recommendation, January 16, 2014. [Online].

Budiprasetyo et al. 362

Available at: http://www.w3.org/TR/vocab-dcat/

(Accessed December 23, 2019).

[33] G. Hagedorn, D. Mietchen, R.A. Morris, D. Agosti, L.

Penev, W.G. Berendsohn, D. Hobern. “Creative

Commons Licenses and the Non-commercial Condition:

Implications for the re-use of biodiversity information”,

ZooKeys, 150, pp. 127–149, 2011.

[34] K.I. Asad, T. Ahmed, M.S. Rahman. “Movie popularity

classification based on inherent movie attributes using

C4. 5, PART and correlation coefficient”. In 2012

International Conference on Informatics, Electronics &

Vision (ICIEV), IEEE, pp. 747–752, 2012.

[35] M. Saraee, S. White, J. Eccleston. “A Data Mining

Approach to Analysis and Prediction of Movie Ratings”,

Management Information Systems, 10, pp. 343–352,

2004.

[36] H. Afzal, M.H. Latif. “Prediction of Movies Popularity

Using Machine Learning Techniques”, International

Journal of Computer Science and. Network Security, 16

(8), pp. 127–131, 2016.

[37] Vergini, Eleni S. Groumpos, Peter P. “Advanced State

Fuzzy Cognitive Maps applied on nearly Zero Energy”,

IFAC PapersOnLine, 54-13 pp 533–538, 2021.

[38] R.C. Barros, M.P. Basgalupp, A.C. de Carvalho, A.A.

Freitas. “A Survey of Evolutionary Algorithms for

Decision-Tree Induction”, IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 42 (3), pp. 291–312, 2011.

[39] P. Viswanath, T.H. Sarma. “An Improvement to K-

nearest Neighbor Classifier”. In 2011 IEEE Recent

Advances in Intelligent Computational Systems, IEEE,

pp. 227-231, 2011.

[40] Tharwat, A., Mahdi, H., Elhoseny, M., & Hassanien, A.

E. “Recognizing human activity in mobile crowdsensing

environment using optimized k -NN algorithm”. Expert

Systems with Applications, 107, pp. 32–44, 2018.

[41] J. Taylor. Decision management systems: a practical

guide to using business rules and predictive analytics,

Pearson Education, Boston, 2011.

[42] Ferenc, R., Bán, D., Grósz, T., & Gyimóthy, T. “Deep

learning in static, metric-based bug prediction”. Array,

6, 100021, 2020.

[43] Rafalo, Mariusz. “Cross validation methods: Analysis

based on diagnostics of thyroid cancer metastasis”. ICT

Express, 2021.

[44] W. Zaouga and L. B. A. Rabai, “A Decision Support

System for Project Risk Management based on Ontology

Learning,” International Journal of Computer

Information Systems and Industrial Management

Applications, 13, pp. 113–123, 2021.

[45] P. Peng, L. Zou, M.T. Özsu, L. Chen, D. Zhao.

“Processing SPARQL Queries Over Distributed RDF

Graphs”, The International Journal on Very Large Data

Bases, 25 (2), pp. 243–268, 2016.

Gunawan Budiprasetyo received his Bachelor of

Industrial Engineering and Master of Management

Technology – Management of Information Technology

degrees from UPN Surabaya and ITS Surabaya in 2000

and 2007, respectively. In 2019, he finished Ph.D program

in Computer Science at the University of Southampton.

He is active as a lecturer and researcher in State

Polytechnic of Malang. His research interest is big data,

distributed information system, decision support system,

machine learning, and semantic web.

Yoppy Yunhasnawa received his Bachelor of Applied

Science degree from Electronic Engineering Polytechnic

Institute of Surabaya in 2013 and Master of Science

degree from Chang Gung University in 2016, now he is an

active lecturer and researcher at State Polytechnic of

Malang. His researches focus on software engineering,

artificial intelligence, information systems, and database

programming.

Mustika Mentari received her Bachelor of Computer

from Brawijaya University in 2011 and Master of

Computer from Institute Technology of Sepuluh

Nopember in 2014. Now she is an active lecturer and

researcher which focuses on computer vision, image

processing, and machine learning.

Dito Cahya Pratama is an active student of bachelor

program in State Polytechnic of Malang. He experienced

frontend web developer with a demonstrated history of

working in the computer software industry.

